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A Literature Review
There are generally two types of QA methods. Consensus-model QA
methods decide on the quality of individual protein models based on
their statistics in the assessed set. On the contrary, single-model QA
methods consider atoms of only the assessed protein structure without any
additional information about other protein models and hence, these can be
used for conformational sampling and structure refinement. Furthermore,
performance of consensus-model QA methods usually depends on single-
model QA methods involved in the conformational sampling used for
generating a pool of protein models to be assessed. Also, single-model QA
methods are proved to achieve better performance compared to consensus-
model QA methods on unbalanced sets and in cases where the protein
models within the assessed set are very similar (Ray et al., 2012).

Among recently proposed single-model QA methods, there are
generally two main approaches to design a scoring function, which are
the physics-based and knowledge-based (data-driven) approaches (Faraggi
and Kloczkowski, 2014; Liu et al., 2014). Physics-based scoring functions
are constructed according to some physical knowledge of the configuration
and interactions in the system. This approach is based on the Gibbs
free energy minimization principle, which states that all target protein
structures minimize the Gibbs free energy over the whole conformational
space. However, precise estimation of the Gibbs free energy requires
exhaustive sampling of a huge number of conformational states (Cecchini
et al., 2009; Tyka et al., 2006), which is computationally intractable in
most practical cases. Thus, the physics-based approaches are aimed at
constructing scoring functions (often called energy potentials or force-
fields) that approximate only the enthalpic part of the Gibbs free energy and
can be estimated efficiently. Usually, these potentials decompose the total
energy into a sum of additive terms (contributions) that represent stretching
of bonds and angles, dihedral potentials, electrostatic and van der Waals
interactions, etc. Alongside with the physics-based approaches, there are
so-called knowledge-based approaches that deduce the essential energies
of molecular interactions from the structural and sequence databases
assuming a certain distribution of conformations or minimizing a certain
loss function. The corresponding scoring functions are typically derived
either by machine learning or by estimating the probabilities of certain
conformations (statistical QA methods) using the information from known
protein structures found in structural databases.

There have been many QA methods proposed using either physics-
based or knowledge-based approaches. However, recent QA methods that
combine these two approaches appeared to be the most promising. Below,
we briefly overview several commonly used QA methods involving the
most representative techniques.

Statistical QA methods are derived according to the Boltzmann
assumption, which states that the energy of a protein structure
is proportional to the negative logarithm of the probability of its
conformational state (Finkelstein et al., 2004). Orientation-dependent
statistical QA methods take into account the many-body interactions by
describing both distance and relative orientation of atom groups involved
in these interactions, and typically they outperform traditional distance-
dependent-only methods. For example, the popular RWplus (Zhang and

Zhang, 2010) scoring function combines pairwise distance-dependent
and orientation-dependent contributions. For a given protein model, it
computes the number Nobs(α, β, r) of atom pairs of types (α, β) at a
distance in the interval from r to r + ∆r and divides it by the number
of expected pairs Nexp(α, β, r) to estimate the likelihood of the assessed
protein model. For each residue except glycines and alanines, Zhang and
Zhang (2010) set a local frame defined by three side-chain atoms, which
is centered at the location of one of them. The relative orientation of a
pair of local frames is then represented by five parameters, which are two
pairs of spherical angles and a torsion angle. Finally, the total orientation-
dependent packing energy is calculated using the same technique for
counting statistics as for the distance-dependent potentials.

ORDER_AVE (Liu et al., 2014) is another orientation-dependent
statistical potential, which assesses the quality of protein models using the
joint probability distribution for four parameters to describe the geometric
relationship between a pair of atoms (i, j) and connected to them heavy
atoms (ir, jr). These parameters are three angles that describe the relative
orientation of four atoms i, j, ir, jr, and the distance between atoms i
and j. ORDER_AVE treats local (when two corresponding residues have
a small sequence separation) and non-local interactions separately with
the overall energy assigned as a weighted sum of these two.

The SELECTpro method (Randall and Baldi, 2008) is based on a
potential consisting of physical and statistical terms as well as penalties
inferred from structural predictions. Together with such conventional
contributions as van der Waals, electrostatic, and side-chain hydrogen
bonding interactions, Randall and Baldi (2008) proposed to also use β-
strand pairing and introduced penalties for mismatches of observed and
predicted structural features (secondary structure, solvent accessibility,
contact map). The total energy is computed as a weighted sum of the
introduced energy terms with weights that maximize the sum of the GDT-
TS (Zhang and Skolnick, 2007) of the best-ranked models in the training
set built from the CASP6 (Moult et al., 2016) dataset.

Nowadays, more and more research is being devoted to techniques
for building QA methods involving machine learning, especially to meta
algorithms that combine several other knowledge-based scoring functions
using their predictions as features. For example, the ProQ2 (Ray et al.,
2012) scoring function, which is one of the best QA methods according
to experiments on the CASP11 (Moult et al., 2016) dataset, is trained
using support vector machine (SVM) in the space of structural and
sequence-based features calculated from the model. As the structural
features, ProQ2 uses contacts between 13 different atom types, residue-
residue contacts, and the surface accessibility by aggregating amino
acids into six different groups. The sequence-based features (secondary
structure, surface accessibility, and sequence profiles) are derived using
information predicted from the sequence. Another QA method by Faraggi
and Kloczkowski (2014) uses physics-based electrostatic potentials and
other knowledge-based scoring functions as the features and trains a neural
network to predict the TM-score (Zhang and Skolnick, 2007) similarity
measure between the protein models and the target structures. The
Wang_SVM (Liu et al., 2016) scoring function was trained by SVM using
as features the protein sequences and several protein descriptors predicted
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by external utilities. These are the secondary structure and the solvent
accessibility predicted with SSPRO, residue-residue contact probabilities
predicted with NNcon, and evolutionary information predicted with
PSI-BLAST, for details see (Liu et al., 2016). The Qprob (Cao and
Cheng, 2016) scoring function was trained using structural features
(compact score, surface score, the exposed mass, the exposed surface),
features predicted from the protein sequence (secondary structure, solvent
accessibility), and estimated distributions of features provided by other QA
methods: RWplus by Zhang and Zhang (2010), ModelEvaluator by Wang
et al. (2009), DOPE by Shen and Sali (2006), and RF_CB_SRS_OD
by Rykunov and Fiser (2010). Following a similar strategy, Jing et al.
(2016) applied a learning-to-rank technique (ranking SVM (Joachims,
2002)) to learn a scoring function using as features predictions by other QA
methods: DFIRE (Zhou and Zhou, 2002), DOPE (Webb and Sali, 2014),
GOAP (Zhou and Skolnick, 2011), RWplus (Zhang and Zhang, 2010), etc.

Although plenty of QA methods have been proposed, often they
miss some meaningful contributions. For example, the solvation-related
terms and terms related to hydrogen bonding interactions are very often
neglected by many QA methods. However, these contributions are
important and generally should be taken into account. For instance,
hydrogen bonds (Hubbard and Kamran Haider, 2001) are stated to
confer directionality and specificity to the intra-molecular interactions in
structures. They provide structural organization of distinct protein folds
because suitable interactions in the folded structure are typically achieved
by the maximum number of hydrogen bonding groups. In addition, most
of QA methods require all-atom protein models as input, and thus their
performance critically depends on the accuracy of side-chain packing,
that is, positions of the side-chain atoms, which can be modeled with
the widely-used SCWRL4 method (Krivov et al., 2009), as in (Cao and
Cheng, 2016), or any other (Liang et al., 2011). A simplified coarse-grained
representation of amino acids, as in (Kmiecik et al., 2016), overcomes
this issue and also reduces the overall computational complexity. Another
problem of many QA methods is that sequence-dependent features often
introduce non-smooth terms that break the continuity and smoothness
of the scoring function. Thus, these methods cannot be applied to
gradient-based structure optimization.

In this paper, we propose a novel method for protein quality assessment,
the Smooth Backbone-Reliant Orientation-Dependent (SBROD) scoring
function. SBROD is a single-model QA method that scores protein models
using only structural features along with the explicit representation of
solvent generated on a regular grid. It requires only coordinates of the
protein backbone, and thus it is insensitive to the side-chain conformations
in protein models. In addition, the SBROD scoring function is continuous
with respect to coordinates of the protein atoms. This makes it also
applicable to be used in molecular mechanics or dynamics, for example.

B Methods Availability
For running comparison against SBROD, the following state-of-the-art
methods were downloaded: RWplus, VoroMQA, ProQ2, ProQ2-refine,
ProQ3, and ProQ3-repack.

The RWplus (Zhang and Zhang, 2010) QA method was
downloaded from https://zhanglab.ccmb.med.umich.edu/

RW/calRWplus.tar.gz (accessed Apr 20, 2018).
VoroMQA (Olechnovič and Venclovas, 2017) was downloaded

from https://bitbucket.org/kliment/voronota/

downloads/voronota_1.18.1877.tar.gz and installed
according to instructions at http://bioinformatics.lt/

software/voromqa (accessed Apr 20, 2018).
The ProQ2 (Uziela and Wallner, 2016) QA method was downloaded

and installed according to instructions at https://github.com/

bjornwallner/ProQ_scripts (accessed Apr 20, 2018). For
scoring a protein model, the ProQ2-refine method repeats the exact
framework of ProQ2 except for the fact that now ProQ2 method is used to
assess quality of ten protein models with the same backbone and randomly
repacked side-chains using Rosetta, as suggested in the instructions to
ProQ2, and the highest score of the ten generated repacked protein models
is used as prediction of ProQ2-refine for the assessed protein model.

The ProQ3 and ProQ3-repack (Uziela et al., 2016) QA methods
were downloaded and installed according to instructions at https://
bitbucket.org/ElofssonLab/proq3 (accessed Apr 20, 2018).

Rosetta 2018.12.60119 downloaded from the official website https:
//www.rosettacommons.org/software/academic was used
to run the ProQ2 and ProQ3 methods.

C Data Preparation and Filtering
We were not able to get the ProQ3 score for the protein model
CASP12Stage2/T0912/Atome2_CBS_TS1 because ProQ3 was
raising a segmentation fault when trying to assess that protein model.
Therefore, we used scores predicted for the same protein model by the QA
method ProQ3-repack. All other protein models were assessed directly by
ProQ3.

D Performance on the CASP11 dataset
To compare the performance of SBROD with nine state-of-the-art QA
methods, we first used the results obtained by Cao and Cheng (2016). They
assessed the performance of several QA methods against the ground truth
GDT-TS computed with the LGA utility (Zemla, 2003) for structures with
side-chains repacked with SCWRL4 (Krivov et al., 2009) on the CASP11
Stage1 and Stage2 datasets. Since the LGA utility (Zemla, 2003) is not
open-source, we used the TM-score utility (Zhang and Skolnick, 2007)
instead. Nonetheless, SBROD is not sensitive to the side-chains packing,
and the difference between the GDT-TS computed by the TM-score and
LGA utilities is negligible. Therefore, the measurements estimated by Cao
and Cheng (2016) are consistent with ours, measured as described above,
and all of these can be fairly compared to each other.

Tables S1a and S1b list the performance measures computed for the
SBROD scoring function (trained on the CASP[5-10] data augmented
with the generated NMA-based decoy models, with the CNDF smoothing
parameters of σa = σr = σh = σs = 0.187 on the testing stage) and
for nine other state-of-the-art methods on the CASP11 Stage1 and Stage2
datasets, correspondingly. It can be seen that our method outperforms all
other methods on both stages of the CASP11 experiment if assessed by
the mean score loss, and it is highly competitive to the other methods if
assessed by the other performance measures.

E Additional Tests
We have assessed the performance of SBROD together with several
other QA methods on the MOULDER dataset (Eramian et al., 2006)
downloaded from https://salilab.org/decoys/moulder_

decoys_scores.txt. MOULDER is a conventional dataset, although
outdated, for testing physics-based and statistical energy potentials.
Table S2a lists the obtained results.

As we can see from this table, SVM_SCORE scoring function is a clear
winner. However, Eramian et al. (2006) stated that SVMod (SVM_SCORE
in Table S1) was derived by using a subsample of the MOULDER dataset.
Hence, SVM_SCORE could not avoid overfitting, which can explain its
prominent performance on the MOULDER dataset. Taking into account
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Table S1. Performance of ten QA methods measured on the CASP11 dataset. Here and below the best values are highlighted in bold, results are sorted by the
Spearman correlation, the reference measure is GDT-TS, and native protein structures were filtered out from the dataset.

(a) CASP11 Stage1.

QA Method GDT-TS loss Pearson Spearman Kendall

ProQ2-refine 0.093 0.653 0.535 0.402

Wang-SVM 0.109 0.655 0.535 0.401
SBROD (this study) 0.083 0.645 0.522 0.388
Qprob 0.097 0.631 0.517 0.389
ProQ2 0.090 0.643 0.506 0.379
ModelEvaluator 0.097 0.600 0.470 0.353
RWplus 0.135 0.536 0.433 0.433
VoroMQA 0.108 0.561 0.426 0.318
Dope 0.111 0.542 0.416 0.316
RF_CB_SRS_OD 0.162 0.486 0.357 0.357

(b) CASP11 Stage2.

QA Method GDT-TS loss Pearson Spearman Kendall

SBROD (this study) 0.057 0.441 0.426 0.298

Qprob 0.068 0.381 0.387 0.272
VoroMQA 0.069 0.401 0.386 0.269
ProQ2-refine 0.069 0.370 0.375 0.264
ProQ2 0.058 0.372 0.366 0.256
Wang-SVM 0.085 0.362 0.351 0.245
RF_CB_SRS_OD 0.097 0.360 0.350 0.243
Dope 0.077 0.304 0.324 0.228
RWplus 0.084 0.295 0.314 0.220
ModelEvaluator 0.072 0.324 0.305 0.212

Table S2. Performance of several QA methods on the MOULDER dataset. The SBROD scoring function is trained on the CASP[5-11] datasets. Results are sorted
by the Spearman correlation.

(a) Metrics calculated with GDT-TS as the target scoring function.

QA Method GDT-TS loss Pearson Spearman Kendall

SVM_SCORE 0.023 0.938 0.935 0.778
SBROD (this study) 0.041 0.927 0.920 0.755
GA341 0.076 0.838 0.913 0.741
PSIPRED_WEIGHT 0.040 0.919 0.910 0.738
DOPE_AA 0.034 0.887 0.909 0.743
PSIPRED_PERCENT 0.050 0.910 0.900 0.723
PROSA_COMB 0.040 0.889 0.900 0.723
MP_COMBI 0.050 0.879 0.889 0.708
MODCHECK 0.052 0.888 0.887 0.708
DFIRE 0.040 0.846 0.883 0.709
ROSETTA 0.042 0.868 0.878 0.694
PROSA_SURF 0.065 0.873 0.873 0.692
RWplus 0.055 0.847 0.871 0.696
MP_SURF 0.071 0.855 0.864 0.677
Xd 0.077 0.838 0.835 0.656
DOPE_BB 0.053 0.798 0.826 0.634
PROSA_PAIR 0.070 0.799 0.818 0.626
MP_PAIR 0.080 0.793 0.812 0.615
SOLVX 0.100 0.815 0.810 0.614
GB 0.056 0.584 0.794 0.609
EEF1 0.054 0.535 0.791 0.605
FRST 0.100 0.761 0.773 0.588
Anolea_PUC 0.123 0.682 0.667 0.484
Anolea_Z 0.097 0.592 0.645 0.457
SIFT 0.220 0.226 0.275 0.187
Anolea_PE 0.453 0.093 0.127 0.091

(b) Metrics calculated with RMSD as the target scoring function.

QA Method RMSD loss Pearson Spearman Kendall

SVM_SCORE 0.601 0.874 0.881 0.696
DOPE_AA 0.675 0.870 0.872 0.690
SBROD (this study) 0.890 0.866 0.868 0.682
PSIPRED_WEIGHT 0.792 0.858 0.865 0.672
DFIRE 0.692 0.847 0.859 0.677
PSIPRED_PERCENT 0.919 0.847 0.855 0.661
RWplus 1.272 0.846 0.852 0.670
GA341 1.604 0.768 0.849 0.654
ROSETTA 0.868 0.846 0.843 0.652
PROSA_COMB 0.844 0.835 0.839 0.648
MODCHECK 1.045 0.806 0.827 0.634
MP_COMBI 1.231 0.816 0.823 0.627
PROSA_SURF 1.045 0.803 0.819 0.629
MP_SURF 1.811 0.783 0.809 0.615
DOPE_BB 1.119 0.783 0.787 0.589
Xd 1.741 0.753 0.770 0.585
SOLVX 2.431 0.753 0.762 0.566
EEF1 1.386 0.577 0.758 0.567
PROSA_PAIR 1.961 0.748 0.752 0.560
GB 1.562 0.620 0.751 0.562
MP_PAIR 1.770 0.730 0.739 0.544
FRST 2.081 0.693 0.699 0.515
Anolea_PUC 2.368 0.673 0.645 0.462
Anolea_Z 1.903 0.588 0.615 0.433
SIFT 6.052 0.203 0.257 0.175
Anolea_PE 10.748 0.136 0.159 0.115

that many conventional scoring functions were developed to predict the
RMSD similarity, we repeated the same experiment using the RMSD
similarity measure as the ground-truth. These results are listed in Table S1b.
Again, SVM_SCORE shows the best performance. Also, the performance
of DOPE_AA is higher than the performance of SBROD, since DOPE_AA
was specifically optimized to predict the RMSD similarity measure as
opposed to SBROD, which was trained to predict the GDT-TS.
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