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1 Supplemental Methods

1.1 Derivation of Variance-Covariance Matrix Σe

The unbiased estimator b̂ = b̂(ω̂0, η̂0) can be expressed as b̂ = (1, ω̂, η̂ij)
′ = (b1, b̂2, b̂3)′ , where b1 ≡ 1, b̂2 =

(ω̂1, . . . , ω̂q), b̂3 = (η̂12, . . . , η̂1q; η̂23, . . . , η̂2q; . . . ; η̂q−1,q) = (η̂i,j), 1 ≤ i ≤ q − 1, i + 1 ≤ j ≤ q. All elements of Σe is

given by Cov (ω̂i, ω̂j), Cov (η̂i,k, ω̂l) and Cov (η̂i,k, η̂j,l). Define µG =
(
µG
i , . . . , µ

G
q

)′
as the mean vector of pooled genotypes

Gi, Ḡ =
∑T

i=1Gi/T =
(
Ḡ(1), . . . , Ḡ(q)

)′
as the sample mean vector, µ̂G = Ḡ = 2Nω̂. Let ΣG = (σG

i,j)q×q represents the

variance-covariance matrix of pooled genotypes Gi, S
G = (sGi,j)q×q represents the sample variance covariance matrix of

genotype observations, or SG = Σ̂G =
∑T

i=1 (Gi − Ḡ)(Gi − Ḡ)′/T equivalently. From multivariate sampling we see that

Var(ω̂) =
1

4N2T
ΣG

Cov (ω̂i, ω̂j) = σG
i,j (1)

According to Chapter 6.2 in Bilodeau and Brenner 1 , we have

(T − 1)SG d−→Wq

(
T − 1,ΣG

)
Var(SG) =

1

T − 1
(Iq +Kq)

(
ΣG ⊗ ΣG

)

We can also write this expression componentwise as

Cov
(
sGi,k, s

G
j,l

)
=

1

T − 1

(
σG
i,jσ

G
k,l + σG

k,jσ
G
i,l

)
(2)

Now, rewrite η̂ = Σ̂0 + ω̂ω̂′ componentwise as

η̂i,j = σ̂0
i,j + ω̂iω̂j =

1

2N
sGi,j +

1

4N2
Ḡ(i)Ḡ(j)

This lead to

Cov (η̂i,k, ω̂l) = Cov

(
1

2N
sGi,k +

1

4N2
Ḡ(i)Ḡ(k), Ḡ(l)

)
= Cov

(
1

2N
sGi,k, Ḡ(l)

)
+ Cov

(
1

4N2
Ḡ(i)Ḡ(k), Ḡ(l)

)
= 0 +

1

8N3T

(
µG
i σ

G
k,l + µG

k σ
G
i,l

)
(3)

The first part becomes 0 because Ḡ ⊥ SG, the second part is provided by multivariate cumulants. Also,

Cov (η̂i,k, η̂j,l) = Cov

(
1

2N
sGi,k +

Ḡ(i)Ḡ(k)

4N2
,

1

2N
sGj,l +

Ḡ(j)Ḡ(l)

4N2

)
=

1

4N2
Cov

(
sGi,k, s

G
j,l

)
+

1

(4N2)
2 Cov

(
Ḡ(k), Ḡ(j)Ḡ(l)

)
+

1

8N3

[
Cov

(
sGi,k, Ḡ(j)Ḡ(l)

)
+ Cov

(
sGj,l, Ḡ(i)Ḡ(k)

)]
, I + II + III (4)

Respectively, we have

I =
1

4N2(T − 1)

(
σG
i,jσ

G
k,l + σG

k,jσ
G
i,l

)
II =

1

(4N2)
2

{
1

T
µG
i µ

G
j σ

G
k,l +

1

T
µG
i µ

G
l σ

G
k,j +

1

T
µG
k µ

G
l σ

G
i,j +

1

T
µG
k µ

G
j σ

G
i,l +

1

T 2
σG
i,jσ

G
k,l +

1

T 2
σG
i,lσ

G
k,j

}
III = 0, because Ḡ ⊥ SG.

Hence, by (1)(3)(4) we can calculate the elements in the variance-covariance matrix Var(b̂) one by one to construct the

entire Σe, or its estimator Σ̂e similarly.
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1.2 Missing Data Imputation

For an individual, the genotype data can be represented as a vector g = (g1, g2, . . . , gq) ∈ {0, 1, 2, 3}q. Here 0, 2 stand for
homozygous loci, 1 stands for heterozygous loci, and 3 stands for missing data, that is, no information is observed at some
specific loci. hk ⊕ hj = g denotes that a haplotype pair [hk, hl] is compatible with the obersved genotype data g, then [hk, hl]
is called a resolution of g. Define S(g) = { [hk, hl] | hk ⊕ hj = g} as the set of g’s all resolutions.

When g has no missing data, It is easy to enumerate the set S(g), then the EM alogrithmn can be used. Now we
demonstrate how to get S(g) when g contains missing data. Suppose g has n missing locus located separately at i1, i2, . . . , in.
Denote a new vector f ∈ {0, 1, 2}q, the element of which are assigned as

fi =

{
gi if gi 6= 3,

0 if gi = 3.

In other words, we first regard all the missing locus in g as 0, and constitute S(f). Next we consider g’s first missing loci
i1. For every element [hk, hl] in S(f), define a function IMPUTE as

IMPUTE([hk, hl]) = {[hk, hl], [h1k, hl], [hk, h
1
l ], [h1k, h

1
l ]}

where h1k ∈ {0, 1}q is a haplotype vector which differs from hk only at locus i1. Formally, the i-th element of h1k is defined as

h1k(i) =

{
hk(i) if i 6= i1,

1 if i = i1.

When we apply the function IMPUTE to the set S, it means

IMPUTE(S) =
⋃

[hk,hl]∈S

IMPUTE([hk, hl])

Let S1(f) = IMPUTE(S(f)), S2(f) = IMPUTE(S1(f)), . . . , Sn(f) = IMPUTE(Sn−1(f)). Obviously the S(g) = Sn(f) is
actually what we want, then the EM algorithm can be implemented on Sn(f). However, we notice that |Sn(f)| = 4n|S(f)|,
for every missing site, the number of all possible resolutions will increase by 3 times, which leads to an increasement in
computational complexity. In CSHAP, we can overcome this problem by limiting the number of elements in the S(g) as

SH(g) = {[hk, hl] | [hk, hl] ∈ Sn(f), hk ∈ H}

Notice that the missing data in samples has no impact on the estimation of sample moments, since we only need to
estimate sample moments based on samples which are complete on the locus or loci involved. So that the main procedure
still works, we can always get H whether there is missing data.
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1.3 Brief Introduction of EM Algorithm

The expectation-maximization (EM) algorithm is a likelihood-based method which regards the phase as unobserved latent

variables2–5. The algorithm starts with an initial haplotype frequencies, e.g. p
(0)
1 = p

(0)
2 = . . . = p

(0)
r = 1/r, r = 2q. In step

t (t = 0, 1, 2, ....), the current value of haplotype frequencies are denoted as a vector p(t), the posterior of each resolution
(the possible phase in S(g)) of each individual are calculated based on HWE (E-Step). Then the new frequencies p(t+1) are
estimated based on the posterior probabilities (M-Step). The E-Step and M-Step are repeated alternately until convergence
is reached (i.e. |p(t+1) − p(t)| < ε). Formally, the EM algorithm for haplotype estimation is described as follows.

E-Step

P (t)([hk, hl]) =

{
p
(t)
k p

(t)
l if k 6= l,

p
(t)
k p

(t)
l /2 if k = l.

Denote Gi as the genotype of the i-th individual, then the posterior probability of each resolution [hk, hl] ∈ S(Gi) is
estimated as

P (t)(Gi) =
∑

[hk,hl]∈S(Gi)

P (t)([hk, hl])

P (t)([hk, hl]|Gi) =
P (t)([hk, hl])

P (t)(Gi)

M-Step For each j = 1, 2, · · · , r, update haplotype frequencies as

p
(t+1)
j =

1

2

∑
i

∑
[hk,hl]∈S(Gi)

(Ij=k + Ij=l)P
(t)([hk, hl]|Gi)

Phasing For an individual, denote his/her genotype as g, the haplotype pair with the highest posterior probability is used
as an estimate of phase.

[ĥk, ĥl] = argmax
k,l

P (hk, hl|g)

Note that the standard EM algorithm does not use any prior biological knowledge, and does not make any assumptions
about sparsity property. Since the total number of all haplotypes r increases exponentially with the number of sites q, the
maximum number of q that EM method can handle is usually very small. On the other hand, the EM method requires to
enumerate all possible resolutions S(g) from all haplotypes for all individuals, this leads to a heavy computational burden.
When there are some missing sites in the genotype data, this defect is more severe since every missing site will quadruple
|S(g)|.

Our CSHAP methods use the sparse solution p̂ of equation (5) and corresponding haplotype reference set H as the
initial haplotype guess. Most individuals have only one possible resolution in SH(g). This can greatly reduce the number of
haplotypes that need to be considered, and substantially reduce the number of iterations needed for a convergence, especially
so when missing data are present in the genotype data.
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1.4 Extra Long-range haplotype estimation

1.4.1 Methods

When the number of loci q increases to the scale of 1000s, the frequency estimation is meaningless, since almost every
haplotypes are rare. What we actually need to do is “phasing”, which is a totally different question. At this point, we don’t
need to connect all the blocks as one. Instead, we only need to determine how the haplotypes are “transferred” between
blocks, since the linkage disequilibrium (LD) is decay with distance of genotyped markers.

First, We carry out 1 ∼ 2 ligation steps, to make “atomistic” blocks be connected into longer blocks. For each individual
and each block, we select best phase estimate based on estimated frequencies. Note that most individuals have only 1 major
phase estimation at this time.

Suppose we have two adjacent blocks called A and B. Denote hAi h
B
j as the concatenation of i-th haplotype on the block A

and j-th haplotype on the block B. pAi as the haplotype frequency of i-th haplotype hAi on the block A, pBj as the haplotype

frequency of j-th haplotype hBj on the block B. Denote P (i, j) as the haplotype frequency of hAi h
B
j on the new block formed

by the ligation of A and B. Let P (i→ j) = P (i, j)/pAi as the “transition probability” of hAi → hBj .
For a specific individual, suppose the partial genotype data on A and B are heterozygous (i.e. have at least one or more

heterozygous sites on both A and B). And the best phase guess are hAi ⊕ hAk and hBj ⊕ hBl respectively. Then we calculate a
statistic called “LOR” as

LOR = log
P (i→ j)P (k → l)

P (i→ l)P (k → j)

We choose hAi h
B
j ⊕ hAk hBl as the phase estimation upon AB if LOR > 0, and hAi h

B
l ⊕ hAk hBj on the contrary. Then we

consider the transition of B and C (the next adjacent block of B), and so on. For some individuals there may exist some
homozygous blocks, we skip these homozygous blocks and only consider the transition between the heterozygous blocks,
since the phase on homozygous blocks are unambiguous. (i.e. If the block B is homozygous for this individual, we ligate A
and C instead of A and B).

The idea we used here is similar to the 2SNP method in Brinza and Zelikovsky 6 , but we only need one ligation step to
determine the transition of all individuals on AB.

1.4.2 Results

We use a larger dataset from the HapMap database7 to compare the performances. We choose the genotype data in ENr113
region of chromosome band 4q26 of USA Utah residents. The original data includes 30 phased mother, father, child trios
genotypes with the number of locus q = 1393. We discard the child’s genotype data, randomly combine the rest 60 parental
haplotypes into 30 new diplotypes, and regard them as unrelated. This step is repeated 100 times to generate 100 sets of
unrelated genotype data. Upon these trials, we use various phasing methods and compare the average Switch Error Rate8

(SER). The results are shown in Table S1 below.

Table S1: Mean SER and runtime of phasing algorithms on the HapMap dataset

Methods SER SD Time (s)

PHASE — — —
fastPHASE 3.38% 1.02% 288.9

CSHAP 2.20% 0.51% 7.7
Shape-IT 1.49% 0.61% 18.5
PL-EM — — —

Note: All the simulations are repeated 100 times.
The PHASE and PL-EM failed to gain a solution in a week.

From the result, we can see that although the switch error rate of CSHAP is not the best, it’s better than fastPHASE,
and the running time of CSHAP is lower than others’. The Shape-IT-gets the lowest switch error rate, since it was designed
primarily for phasing instead of frequency estimation.
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2 Supplemental Figures and Tables

0

20000

40000

60000

3 4 5 6 7

log(Individuals)

Methods

PHASE

fastPHASE

CSHAP

Shape−IT

PL−EM

Comparison of Running times (AGT)

Figure S1: Running times of CSHAP, PHASE, fastPHASE, Shape-IT and PL-EM algorithm for 1,000 replicates of simulation
on AGT dataset for individual data. The number of individuals T ranges from 10 to 2000. The time costs of PHASE,
fastPHASE and Shape-IT are represented as exponential increase with log T , while CSHAP just scales linear.

6



0

25000

50000

75000

100000

125000

4 5 6 7 8

log(Individuals)

Methods

PHASE

fastPHASE

CSHAP

Shape−IT

PL−EM

Comparison of Running times (ACE)

Figure S2: Running times of CSHAP, PHASE, fastPHASE, Shape-IT and PL-EM algorithm for 100 replicates of simulation
on ACE dataset for individual data. The number of individuals T ranges from 50 to 4000.
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Table S2: Comparison of PHASE, fastPHASE, CSHAP, Shape-IT and PL-EM algorithms for frequency estimation in
individual design under HWE (SDs are in parentheses)

T = 10

SNP p PHASE fastPHASE CSHAP Shape-IT PL-EM

0101001111 0.100 0.071 (0.069) 0.086 (0.069) 0.087 (0.071) 0.070 (0.067) 0.085 (0.071)
0101100111 0.017 0.006 (0.018) 0.012 (0.025) 0.013 (0.026) 0.005 (0.015) 0.013 (0.026)
1001011001 0.017 0.007 (0.018) 0.012 (0.026) 0.013 (0.026) 0.006 (0.015) 0.013 (0.026)
1100001111 0.033 0.017 (0.031) 0.027 (0.039) 0.027 (0.038) 0.017 (0.030) 0.026 (0.038)
1101001001 0.017 0.008 (0.018) 0.013 (0.025) 0.015 (0.027) 0.008 (0.017) 0.014 (0.027)
1101011001 0.017 0.017 (0.025) 0.015 (0.028) 0.015 (0.028) 0.019 (0.027) 0.014 (0.028)
1101011110 0.016 0.009 (0.019) 0.011 (0.023) 0.012 (0.025) 0.010 (0.019) 0.012 (0.025)
1101011111 0.193 0.178 (0.090) 0.201 (0.100) 0.203 (0.102) 0.170 (0.084) 0.196 (0.106)
1111011000 0.033 0.018 (0.031) 0.021 (0.034) 0.021 (0.035) 0.015 (0.025) 0.021 (0.035)
1111011101 0.507 0.437 (0.132) 0.500 (0.127) 0.513 (0.123) 0.422 (0.113) 0.507 (0.136)
1111111111 0.050 0.033 (0.042) 0.041 (0.047) 0.041 (0.047) 0.029 (0.038) 0.039 (0.047)

Total 1.000 0.801 0.939 0.960 0.771 0.940

T = 100

SNP p PHASE fastPHASE CSHAP Shape-IT PL-EM

0101001111 0.100 0.100 (0.021) 0.098 (0.022) 0.099 (0.022) 0.101 (0.021) 0.099 (0.022)
0101100111 0.017 0.016 (0.010) 0.015 (0.009) 0.016 (0.009) 0.013 (0.011) 0.016 (0.009)
1001011001 0.017 0.017 (0.010) 0.015 (0.009) 0.016 (0.009) 0.015 (0.010) 0.016 (0.009)
1100001111 0.033 0.033 (0.013) 0.031 (0.013) 0.031 (0.013) 0.033 (0.014) 0.031 (0.013)
1101001001 0.017 0.016 (0.010) 0.015 (0.009) 0.016 (0.009) 0.016 (0.010) 0.016 (0.009)
1101011001 0.017 0.018 (0.010) 0.017 (0.010) 0.016 (0.009) 0.020 (0.010) 0.016 (0.009)
1101011110 0.016 0.015 (0.009) 0.014 (0.009) 0.015 (0.009) 0.015 (0.010) 0.015 (0.009)
1101011111 0.193 0.193 (0.028) 0.192 (0.029) 0.195 (0.029) 0.192 (0.028) 0.195 (0.029)
1111011000 0.033 0.033 (0.013) 0.030 (0.013) 0.030 (0.013) 0.031 (0.013) 0.029 (0.013)
1111011101 0.507 0.505 (0.035) 0.503 (0.036) 0.511 (0.036) 0.499 (0.034) 0.512 (0.036)
1111111111 0.050 0.050 (0.016) 0.047 (0.016) 0.047 (0.016) 0.049 (0.016) 0.047 (0.016)

Total 1.000 0.996 0.977 0.992 0.984 0.992

Using Yang et al. 9 ’s 10-locus haplotype frequencies p as gold-standard. For each simulation, T unrelated individual
genotypes are randomly generated by assuming HWE. All the simulations are repeated 10, 000 times.
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Table S3: Haplotypes frequencies for the G6PD gene in six populations

SNP Afri.Am. Asian Beni Euro.Am. Shona Yoruba

00000000000 0.133 0.067 0.150 0.031 0.133 0.207
00000000001 0.067 0.800 — 0.569 — —
00000000010 0.189 0.067 0.233 0.169 0.446 0.241
00000001000 0.011 — 0.017 — 0.036 —
00000001100 0.144 — 0.217 — 0.060 0.115
00000100000 0.222 — 0.167 — 0.108 0.103
00110110000 0.033 — 0.050 — 0.060 0.069
01111110000 0.133 — 0.167 — 0.133 0.230
10000000001 0.067 0.067 — 0.231 0.024 0.034

From published haplotype data in Sabeti et al. 10 .
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Table S4: Estimates of haplotype frequencies with variant inbreeding coefficients for individual design (SDs are in parentheses)

p̂ (SD)
SNP p ρ = 0.05 ρ = 0.1 ρ = 0.15 ρ = 0.2 ρ = 0.3

0101001111 0.100 0.099 (0.022) 0.099 (0.023) 0.099 (0.023) 0.099 (0.023) 0.099 (0.025)
0101100111 0.017 0.016 (0.009) 0.016 (0.010) 0.016 (0.010) 0.016 (0.010) 0.016 (0.010)
1001011001 0.017 0.016 (0.009) 0.016 (0.010) 0.016 (0.010) 0.016 (0.010) 0.016 (0.011)
1100001111 0.033 0.031 (0.013) 0.032 (0.014) 0.032 (0.014) 0.032 (0.014) 0.032 (0.015)
1101001001 0.017 0.016 (0.009) 0.016 (0.010) 0.016 (0.010) 0.016 (0.010) 0.016 (0.011)
1101011001 0.017 0.016 (0.010) 0.016 (0.010) 0.016 (0.010) 0.016 (0.010) 0.016 (0.011)
1101011110 0.016 0.015 (0.009) 0.015 (0.010) 0.015 (0.010) 0.015 (0.010) 0.015 (0.010)
1101011111 0.193 0.195 (0.030) 0.195 (0.030) 0.195 (0.031) 0.196 (0.031) 0.195 (0.033)
1111011000 0.033 0.029 (0.014) 0.030 (0.014) 0.030 (0.015) 0.030 (0.015) 0.031 (0.015)
1111011101 0.507 0.513 (0.037) 0.512 (0.038) 0.511 (0.038) 0.511 (0.039) 0.511 (0.041)
1111111111 0.050 0.047 (0.016) 0.047 (0.016) 0.048 (0.017) 0.048 (0.017) 0.048 (0.018)

Total 1.000 0.992 0.992 0.993 0.993 0.994

Using Yang et al. 9 ’s 10-locus haplotype frequencies. For each simulation, T = 100 unrelated individual genotypes are
randomly generated with respective inbreeding coefficients ρ. All the simulations are repeated 10, 000 times.
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Table S5: Running times of CSHAP and AEM algorithm for 1,000 replicates of simulation.

N T CSHAP AEM

50 50 108 13350
50 100 115 14644
100 50 184 21709
100 100 192 24031

Using Yang et al. 9 ’s 10-locus haplotype frequencies of AGT dataset for pooled data.
The unit of running time is second. T : pool number, N : pool size.
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[5] Polańska, J. (2003). The em algorithm and its implementation for the estimation of frequencies of snp-haplotypes.
International Journal of Applied Mathematics and Computer Science 3, 419–429.

[6] Brinza, D. and Zelikovsky, A. (2008). 2snp: Scalable phasing method for trios and unrelated individuals. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 5, 313–318.

[7] Consortium, T. I. H., Gibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Yang, H., Ch’ang, L.-Y.,
Huang, W., Liu, B. et al. (2003). The international hapmap project. Nature 426, 789.

[8] Lin, S., Cutler, D. J., Zwick, M. E., and Chakravarti, A. (2002). Haplotype inference in random population samples.
The American Journal of Human Genetics 71, 1129–1137.

[9] Yang, Y., Zhang, J., Hoh, J., Matsuda, F., Xu, P., Lathrop, M., and Ott, J. (2003). Efficiency of single-nucleotide
polymorphism haplotype estimation from pooled dna. Proceedings of the National Academy of Sciences 100, 7225–7230.

[10] Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z. P., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko,
J. V., Patterson, N. J., McDonald, G. J. et al. (2002). Detecting recent positive selection in the human genome from
haplotype structure. Nature 419, 832–837.

11


	Supplemental Methods
	Derivation of Variance-Covariance Matrix e
	Missing Data Imputation
	Brief Introduction of EM Algorithm
	Extra Long-range haplotype estimation
	Methods
	Results


	Supplemental Figures and Tables

