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Note S1: Workflow explanation for the fitness protocol to convert sequencing to fitness 

metric measurements. To run the protocol enter the config file at the command line >python 

pact.py –c ./fitness.ini. 

 

This protocol is capable of:  

1) Merging FASTQ files. 

2) Translating FASTQ files to amino acid sequences and filtering on read quality. 

3) Filtering translated sequences based on expected library design. 

4) Counting accepted and filtered synonymous and non-synonymous mutations. 

5) Calculating the log2 enrichment of mutations above a certain read count threshold. 

6) Calculating the fitness metric of mutations and wild-type synonymous mutations. 

7) Calculating the distribution of wild-type synonymous mutations. 

8) Calculating the error on fitness metrics. 

9) Calculating a probability value that a non-synonymous mutation is functionally 

indistinguishable from wild-type. 

10) Calculating the per-residue amino acid frequency change for multiple-codon libraries. 

11) Calculating mutual information for amino acid pairs in multiple-codon libraries. 

12) Outputting tile library statistics (total read counts, amino acid and codon coverage, median 

library read counts, wild-type synonymous codon enrichment mean and standard deviation) for 

publication. 

 

Comparison to existing packages: 

Alternative software packages for the fitness protocol are Enrich 0.2 (Fowler, et al., 2011), 

Enrich2 (Rubin, et al., 2017), and dms_tools (Bloom, 2015). While Enrich 0.2 is no longer 

supported nor recommended by the authors, it still has a strong presence as it was one of the 

early software packages to calculate log2 enrichments of mutations in deep mutational scanning 

experiments. The PACT fitness protocol replicates the core functionality of these existing 

packages with some improvements and differences; however, PACT goes beyond their scope 

(Fig. 1). In short, existing software packages process deep sequencing reads then calculate a 

metric of per-variant function. For example, Enrich2 provides an implementation of a random-

effects model that is geared for calculating variant enrichment over multiple time points while 

combining multiple replicates. The experiments targeted by the PACT fitness protocol are end-

point with a reference library and a selected library where replicates are processed separately and 

compared via correlation statistics. More importantly, other protocols within the PACT platform 

are not included within existing packages. The PACT fitness protocol offers several advantages 

over existing packages. First, it provides stricter FASTQ filtering by offering minimum Q and 

average Q quality filtering. fitness also filters reads with incorrectly mutated locations and total 

number of mutations based on library design. The six other advantages PACT fitness has over 



3 

 

Enrich 0.2 is native multi-processing support, calculation of synonymous wild-type codon fitness 

to guide mutation classification and evaluation of statistical significance, the conversion of log2 

enrichment values into fitness metrics, the support of ‘tiles,’ and the analysis of designed multi-

site comprehensive libraries.  

 

Workflow and config file options: 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: fitness 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

fastq_merge_sel: False 
fastq_merge_ref: False 

fastq_filter_translate_ref: False 

fastq_filter_translate_sel: False 

filter_counter_sel: False 

filter_counter_ref: False 

enrichment: False 

fitness: False 

multiple_freq_mi: True 

library_stats: False 

 

The [workflow] section defines which steps to perform by either True or False. For this 

protocol, the order listed here is the order of the workflow. 
 

[global]  
wtdna: CCCGAG… 

wtaa: PE… 

processes: 12 

directory: ./runs/loops/loop2/ 

output_prefix: Loop2 

firstaamutated: 229 

lastaamutated: 256 

mutationtype: multiple 

mutthreshold: 7 

mutcodons: [[243, 244, 245, 246, 247, 248, 249]] 

 

The [global] section includes shared information for multiple steps. The wtdna and wtaa 

should be the entire sequence of the gene (neither the entire vector nor just the tile). The first 

and last aa mutated is the starting and ending amino acid of the tile. Mutcodons defines 

which residues are mutated [1,’n’,92]] would be 1 to 92, [[1,3,5], [7,9,11]] would be 1,3,5 in 

one group and 7,9,11 in a second group. Mutationtype is either single or multiple. The 

number of processes can also be defined here. Mutthreshold defines the maximum number of 

amino acid non-synonymous mutations to accept. 
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[fastq_merge_sel] 

forward_fastq: Sel_R1.fastq 

reverse_fastq: Sel_R2.fastq 

directory: 

min_coverage: 0.2 
[fastq_merge_ref] 

forward_fastq: Ref_R1.fastq 

reverse_fastq: Ref_R2.fastq 

directory: 

min_coverage: 0.2 

 

Illumina MiSeq reads are merged by [fastq_merge]. Reads are merged by a pairwise analysis 

of the forward and reverse read. The relative position with the most number of matches is 

used to merge the reads. The software will select 100 reads and perform statistics on the 

median position value to speed up the rest of the file. Mismatches in the read overlaps are 

handled by taking the base with the higher Q score or marked as unresolvable in the case of 

equal quality. The forward and the reverse reads must be of equal length and have at 

minimum 20% overlap. Directory provides the opportunity to define a custom directory to 

search for the fastq file otherwise the software will search the directory defined in [global].  
 

[fastq_filter_translate_sel] 

fiveprimeanchor:  

enable_anchors: True 

qaverage: 20 

qlimit: 10 

fastq_file: <custom file if needed, leave blank otherwise> 

[fastq_filter_translate_ref] 

fiveprimeanchor:  

enable_anchors: True 

qaverage: 20 

qlimit: 10 
fastq_file: <custom file if needed, leave blank otherwise> 

 

The software will select 100 reads and perform a non-gapping alignment to find the nine 

bases immediately preceding the tile as the ‘5’ anchor’ sequence. This sequence can also be 

defined in this section if multiple repeats are present. If the reads have been merged and 

trimmed by other software then the requirement for anchors can be disabled by 

enable_anchors. The reads are then translated and filtered by Q score (version 1.8, phred 

+33) by [fastq_filter_translate]. Output from other programs that merge Illumina reads 

(Magoč and Salzberg, 2011; Masella, et al., 2012) can be used as the standard FASTQ file 

format is used as the input. The read quality filter offers the option of both filtering on the 

average Q score of the entire read and a minimum lower limit of Q for any one base. The 

default settings are Q of 20 averaged across the entire read, a minimum Q of 10 for any one 

base, and no unresolvable ‘N’ bases. 

 
[filter_counter_sel] 

read_file: <custom file if needed, leave blank otherwise> 

[filter_counter_ref] 

read_file: <custom file if needed, leave blank otherwise> 
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Synonymous mutations and the location and amount of non-synonymous mutations are 

filtered by and then counted by [filter_counter]. Non-synonymous mutations within the 

expected mutational library design and the total amount within an expected threshold are 

accepted. 
 

[enrichment] 

ref_count_wildtype: <custom file if needed, leave blank otherwise> 

sel_count_wildtype: <custom file if needed, leave blank otherwise> 

ref_count: <custom file if needed, leave blank otherwise> 
sel_count: <custom file if needed, leave blank otherwise> 

ref_count_rejected: <custom file if needed, leave blank otherwise> 

sel_count_rejected: <custom file if needed, leave blank otherwise> 

ref_count_threshold: 12 

sel_count_threshold: 12 

strict_count_threshold: False 

 

The log2 enrichments for synonymous, rejected, and accepted non-synonymous mutations are 

calculated by [enrichment]. The log2 enrichments for the rejected and accepted non-

synonymous mutations are then calculated for mutations above a user-defined read count 

threshold (default 12 counts for the reference and selected population) as mutations with low 

counts are affected by counting noise (Fig S1). If a mutation is above this threshold in one of 

the two populations then the original count or a count of one in the case of zero is added to 

the other population to capture mutations that fell out of the population or had a dramatic 

enrichment. If strict_count_threshold is set as True, then the variant must have that count 

defined in the ref or sel count threshold values. The log2 enrichment variance (Klesmith, et 

al., 2015) is calculated for each variant.  
 

[fitness] 

pact_enrichment_summary: <custom file if needed, leave blank otherwise> 

pact_enrichment_accept_nonsynon: <custom file if needed, leave blank otherwise> 
pact_enrichment_wtsynon: <custom file if needed, leave blank otherwise> 

manual_log2: 

metric: e-wt 

evalue_type: facs 

evalue_facs_cellcount: 10389351 

growth_gp: 10 

facs_sd: 0.6 

facs_pc: 0.05 

 

Several fitness metrics are available to be applied to the log2 enrichments (e-wt, facs, or 

growth) (Table S1). If a manual wild-type enrichment value is desired then it can be defined 

in manual_log2. The standard deviation of the fitness metric values at varying read depths for 

synonymous wild-type mutations within the designed library is calculated and used to define 

functionally neutral mutations (Klesmith, et al., 2017).  

 

To calculate the expectation value for the number of experiments per variant (Note S13 and 

S14) the type of analysis is selected on evalue_type (either FACS or growth). If the FACS 

expectation value is selected then the number of total cells that were able to be collected is 

entered on the evalue_facs_cellcount line. For the growth expectation value, growth_gp is 

used for the number of generations (converted to the nearest integer). 
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For the growth fitness metric the number of generations of growth is entered on the 

growth_gp line. 

 

For the FACS fitness metric the standard deviation and percent collected are entered on the 

facs_sd and facs_pc lines, respectively. 

 

In the case of a single-site saturation mutagenesis library a csv heatmap of fitness metrics is 

saved, while in the case of a multiple codon library a frequency-based heatmap is saved. 

 

All results for the location, mutation, counts, enrichment, and fitness are saved as a column 

based tsv file. The internal Python dictionary with the mutation/count/enrichment/fitness data 

is saved as a .pact file for use by other protocols within the software distribution. 
 

[multiple_freq_mi] 

pact_fitness_nonsynon: <custom file if needed, leave blank otherwise> 

frequency_log2_filter: False 

 

Only for libraries with multiple codons will a per-residue codon enrichment heatmap and 

mutual information will be calculated and output as csv files. While not recommended, if 

only mutations with log2 enrichments are desired to be processed then frequency_log2_filter 

can be set to True (this is only recommended if strict_count_threshold is enabled in the 

[enrichment] section to avoid mutations that 1 was added in for). 
 

[library_stats] 

pact_enrichment_summary: <custom file if needed, leave blank otherwise> 

pact_fitness_nonsynon: <custom file if needed, leave blank otherwise> 

pact_fitness_wtsynon: <custom file if needed, leave blank otherwise> 
codon_type: {'NNK':[229,'n',256]} 

 

The library_stats module is responsible for reporting the number of read counts, amino acid 

coverage, and codon coverage for a given input library design. The total number of reads and 

the percentages of synonymous, accepted and rejected non-synonymous mutations for both 

the reference and selected populations is reported. The theoretical size of the library for 

single or multiple codon libraries is calculated and then used to determine the total coverage 

of non-synonymous amino acid with log2 enrichments. The theoretical codon coverage is 

calculated by a user defined location to codon setting (all base and degenerate 

(GATCRYMKSWHBVDN) codes are supported) then the fold oversampling of the two 

populations is reported. If different codons were used, then codon_type can be defined as, for 

example: {'NNK':[229,'n',256], ‘NNN’:[257,’n’300]}. Where the nomenclature is that for 

residues from 229 to 256 are NNK and 257 to 300 are NNN. 
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Note S2: Workflow explanation for the classification_features protocol to combine PACT 

fitness datasets with sequence and structural features for model generation. 

 

This protocol is capable of:  

1) Combining PACT fitness datasets. 

2) Calculating PSSM and frequency observed sequence homology for each mutation. 

3) Calculating distance from active site, contact number, and fraction burial of residues. 

4) Classifying mutations based on size and chemical properties change. 

5) Calculating site-wise consensus information (see Note S8). 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: classification_features 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 
[workflow] 

combinepact: True 

basal_count: True 

blastp_align_filter: False 

pssm: False 

pssm_reader: True 

pdb_import: True 

distance_to_active: True 

contact_number: True 

residue_chemical_size: True 

consensus: True 
 

This will enable and disable individual sections. It is possible to run the protocol without 

PACT fitness datasets if combinepact is disabled. This would be potentially used with the 

function_filter protocol to identify mutations that are not deleterious. 
 

[global] 

wtaa: MPIAT… 

directory: ./pact/tests/classification_features/ 

output_prefix: enzyme_filter_lgk 
 

This defines the wild-type amino acid sequence, working directory, and output prefix of files. 
 

[pdb_import] 

numpdb: 1 

file_1: 4zlu_cleanf2.pdb 
 

This will import a PDB file. 
 

[distance_to_active] 

pdb_file: 4zlu_cleanf2.pdb 

atoms: CA 

chains: A 
ligands: ADP,MG,4PW 

active_residues: 
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ligand_chains: A 

report_chain: A 

 

This section will calculate the distance to active site (see Note S6). 
 

[contact_number] 

pdb_file: 4zlu_cleanf2.pdb 

atoms: CA 

distance: 10 

chains: A 

report_chain: A 

 

This section will calculate the contact number (see Note S6). 
 

[combinepact] 

numdatasets: 2 

dataset_1: LGK_Triple 

dataset_2: LGK_wt 

[LGK_Triple] 
file1: ./pact/tests/datasets/lgk.1/LGK_Triple_12_SSM_fitness.pact 

file2: …. 

[LGK_wt] 

file1: ./pact/tests/datasets/lgk_wt/LGK_WT_1_SSM_fitness.pact 

file2: …. 

 

This section will import the PACT fitness datasets. 
 

[variant_classification] 

class_column: sd_from_wt 

class_threshold: 1.5 

 

This section will classify mutations based on the ‘column’ (fitness or sd_from_wt) and 

threshold. 
 

[classification_analysis] 

pdb_file: 4zlu_cleanf2.pdb 

chain: A 

 

This section defines which PDB file to use and which chain to use when preparing the output 

CSV and .pact dataset. 
 

[blastp_align_filter] 

processes: 2 

cdhit_clustering_threshold: 0.98 

ncbi_xml: J88W49S1014-Alignment.xml 

minquerylen: 0.6 

minseqid: 0.35 

nummaxhits: 500 

[pssm] 

region_size: 20 

manual_regions: [[0, 19], [20, 39], [40, 59], [60, 79], [80, 99], [100, 119], [120, 139], [140, 159], [160, 179], [180, 

199], [200, 219], [220, 239], [240, 259], [260, 271]]  
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This section will calculate the PSSM and per-residue frequency (see Note S5). This section is 

required for the ‘consensus’ calculations within this protocol. 

  



10 

 

Note S3: Workflow explanation for the function_filter protocol. 

 

This protocol has the capacity to:  

1) Count input mutation classification for different analyses (Table S4) to be used to calculate 

naïve Bayesian probabilities. 

2) Score input mutations against stored LGK-WT/LGK.1 Bayesian feature probabilities and be 

classified as either beneficial, neutral, or deleterious. 

3) Test all combinations of stored Bayesian probabilities to optimize false positive rates for a 

given dataset. 

4) Filter mutations from an input dataset on an old filter and new filter. 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: function_filter 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

import_classifiers: True 

bayes_count: False 

bayes_model_score: False 

strict_filter_old: False 
strict_filter_new: True 

bayes_combo: False 

 

Import_classifiers is required as that will import the dataset. Bayes_count will count 

mutation classifications per analysis bin (i.e. PSSM, contact number, etc). 

Bayes_model_score will import a dataset and classify mutations based on the LGK-

WT/LGK.1 probabilities (individual probabilities can be turned on or off in the 

[bayes_model_score] section). Strict_filter new and old will filter mutations based off of the 

old and new filters. Bayes_combo will score a dataset by testing all combinations of 

classifier. 
 

[global] 

wtaa: MPIAT… 
directory: ./pact/tests/function_filter/ 

output_prefix: enzyme_filter_lgk 

 

This defines the wild-type amino acid sequence, working directory, and output prefix of files. 
 

[import_classifiers] 
file: enzyme_filter_lgk_dataset 

 

This is the input dataset (from the classification_features protocol). 
 

[bayes_count] 

classification_key: LGK_Triple_classified 

classifiers: BEN,NEU,DEL 
 

[variant_classification] 
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[bayes_model_score] 

pssm_variant: false 

frac_burial: false 
contact_number: false 

wt_cons: true 

variant_cons: true 

d_to_a: false 

mut_percent: true 

wt_percent: false 

max_percent: false 

pro_v_contactnum: false 
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Note S4: Workflow explanation for the sequence_homology protocol which will input a 

XML file from a blastp search and then produce a PSSM and observed frequency tables. 

Sequences are handled as described in (Goldenzweig, et al., 2016). In short, a BLASTP search 

with an expect value of 0.0001 is imported, clustered on similarity by CD-Hit, aligned using 

Muscle, and PSSM and frequency data calculated by PsiBLAST.  

 

This protocol has the capacity to:  

1) Filter XML from a blastp search for length and sequence identity. 

2) Call CD-Hit to filter reads based on similarity. 

3) Call MUSCLE to perform the multiple sequence alignment. 

4) Use PSIBlast to produce PSSM and observed percentages heatmap and csv files. 

5) Count mutation classifications based on different sequence homology thresholds. 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: sequence_homology 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

blastp_align_filter: False 

pssm: False 

pssm_reader: True 

site_frequencies: True 
combinepact: True 

analysis_sitefitness_homology: True 

 

Blastp_align_filter and pssm will perform the multiple sequence alignment (MSA), MSA 

similarity filtering, PSSM generation, and weighted amino acid frequencies calculation. 

PSSM_reader will read a stored sequence homology dataset (i.e. blastp_align_filter and pssm 

steps can be disabled after generation). Site_frequencies  
 

[global] 

wtaa: MPIAT… 

directory: ./pact/tests/sequence_homology/ 

output_prefix: enzyme_homology_lgk 

 

The wild-type amino acid sequence, the working directory, and the output prefix is defined 

here. 
 

[blastp_align_filter] 
processes: 2 

cdhit_clustering_threshold: 0.98 

ncbi_xml: J88W49S1014-Alignment.xml 

minquerylen: 0.6 

minseqid: 0.35 

nummaxhits: 500 

[pssm] 

region_size: 20 

manual_regions: [[0, 19], [20, 39], [40, 59], [60, 79], [80, 99], [100, 119], [120, 139], [140, 159], [160, 179], [180, 

199], [200, 219], [220, 239], [240, 259], [260, 271]]  
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This section defines parameters for the MSA generation, CD-Hit clustering, minimum length 

of query hit, minimum sequence identity, max number of hits to consider, pssm region size 

(if region_size has a value then the manual_regions will be ignored). 
 

[combinepact] 

numdatasets: 1 

dataset_1: LGK_Triple 

[LGK_Triple] 

file1: ./pact/tests/datasets/lgk.1/LGK_Triple_12_SSM_fitness.pact 

file2: … 

 

The [combinepact] section defines datasets constituted of multiple .pact files. The dataset 

names must match the [name] of the section with the files listed. 
 

[analysis_sitefitness_homology] 
dataset_x: site_frequencies 

scatter: True 

dataset_y: LGK_Triple 

y_column: sd_from_wt 

y_threshold: 2 

x_axis_label: Frequency 

y_axis_label: Number of 2SD Mutations 

x_axis_min: -0.1 

x_axis_max: 1.1 

y_axis_min: -0.1 

y_axis_max: 1.1 
regression: True 

 

The protocol will count beneficial, neutral, and deleterious classifications based on the 

y_column (fitness or sd_from_wt) and y_threshold for observed frequencies of 1, ≥0.9, 

≥0.75, ≥0.5, ≥0.25, ≤0.5, and ≤0.25. It will then plot a scatterplot of the highest site 

frequency on the x-axis and the number of mutations that are ≥ the threshold value. 
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Note S5: Workflow explanation for the structure_analysis protocol to calculate the burial 

distance, distance to active site, contact number, and fraction burial of a residue for a given 

pdb structure. 

 

This protocol is capable of calculating:  

1) The per-residue fraction burial based off RASA. 

2) The per-residue burial distance to surface. 

3) The per-residue distance to active site ligands or residues. 

4) The per-residue contact number. 

5) The per-residue distance to interface. 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: structure_analysis 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

pdb_import: True 

burial_distance: False 

distance_to_active: True 

contact_number: True 
interface_distance: False 

 

The [workflow] section defines which steps to perform by either True or False. For this 

protocol, burial_distance is disabled and will be enabled in the next release of PACT pending 

a re-write to use vectorization within numpy. Pdb_import is required and cannot be disabled. 
 

[global] 

directory: ./pact/tests/structure_analysis/ 

output_prefix: lgk 
 

The [global] section defines the working directory and the output prefix. 
 

[pdb_import] 

numpdb: 1 

file_1: 4zlu.pdb 
 

This section lists the filenames of pdb files within the working directory. This automatically 

calls DSSP and the ASA is converted to RASA using values by (Tien, et al., 2013). Fraction 

burial is 1-RASA and negative values are set to zero. 
 

[interface_distance] 

pdb_file: 4zlu_cleanf2.pdb 

main_chain: A 

secondary_chains: B 
 

The minimum Euclidean distance from any residue is calculated to atoms in the secondary 

chain as defined in the config file.  
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[burial_distance] 

pdb_file: 4zlu_cleanf2.pdb 

chains: A 

classifer_chain: A 

num_points: 30 
 

For each atom within the PDB file, a Fibonacci sphere is created with the number of points 

given as input. Atoms with points that are not within the radius of any neighboring atom’s 

van der Waals radius plus the radius of water approximate the surface. The average minimum 

side-chain distance to any surface point is defined as the burial distance. 
 

[distance_to_active] 

pdb_file: 4zlu_cleanf2.pdb 

atoms: CA, CB 

chains: A 

active_type: ligands 

active_ligands: ADP,MG,4PW 

active_residues: 212 

active_chains: A 

classifer_chain: A 
 

The Euclidean distance from any active site ligand or residue is calculated to residue atoms 

defined in the config file. 
 

[contact_number] 

pdb_file: 4zlu_cleanf2.pdb 

atom: CA 

distance: 10 

chains: A 

classifer_chain: A 

 

The contact number is the number of residues within a certain distance. This approximates 

the packing density of the residue as located within the structure. 
 

[structure_analysis] 

pdb_file: 4zlu.pdb 
chain: A 

 

This section is used to define which pdb file to use for the report and which chain to use. 
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Note S6: Workflow explanation for the Shannon_entropy protocol to measure the residue-

specific entropy based off the log2 enrichment values. The Shannon entropy calculation and 

modifications for the fraction of observed variants per site is outlined in (Kowalsky, et al., 2015). 

 

This protocol is capable of calculating:  

1) The per-residue Shannon entropy. 

2) The theoretical per-residue Shannon entropy. 

3) The ratio of total Shannon entropy. 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: shannon_entropy 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

combinepact: True 

shannon_entropy: True 

 

This section has no effect as both are required. 
 

[global] 

wtaa: MPIATS… 

directory: ./pact/tests/shannon_entropy/ 

output_prefix: lgk-wt 

 

This section defines the protein amino acid sequence, the output directory, and the output 

prefix. 
 
[combinepact] 

numdatasets: 1 

dataset_1: LGK_wt 

 

This section defines the names of the pact file collections. 
 

[LGK_wt] 
file1: Tile1_SSM_fitness.pact 

file2: … 

 

The name of this section in brackets must match whatever is listed in the [combinepact] 

section. Each line provides the path to a .pact file. 
 

[shannon_entropy] 

dataset: LGK_wt 

mutation_type: single 

 

The dataset decides which dataset to use and the mutation type (single or multiple) is used to 

calculate the theoretical entropy. 
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Note S7: Workflow explanation for the back_to_consensus protocol to calculate the 

probability of a mutation classification versus the degree of wild-type conservation in 

sequence homologs.  

 

This protocol is capable of calculating:  

1) Basal rates of pact fitness datasets for given mutation classifications. 

2) The quantity of mutation classifications per PSSM bin (<0, 0 to 2, and ≥3). 

3) CSV dataset of location, wild-type residue, wild-type PSSM and percentage observed, 

maximum residue PSSM and percentage value, number of mutations above a PSSM value of 0 

and the number of mutations with a non-zero observed percentage, and binary output if wild-type 

is conserved. 

4) The wild-type PSSM and percentage observed value at the residue for each dataset mutation 

class (i.e. for mutation classification BEN the wild-type PSSM and percentage observed at that 

residue). 

5) Same as above but cross-comparing two different datasets. 

6) The count of mutation classifications at sites where wild-type is not conserved and the 

mutation is the conserved or any observed in sequence homologs. 

7) The count of mutation classifications at sites where wild-type is not conserved and the 

mutation is not observed in sequence homologs. 

8) Same as #6 above but separated by fraction burial of the residue. 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: back_to_consensus 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

combinepact: True 

basal_count: True 

blastp_align_filter: False 

pssm: False 
pssm_reader: True 

pdb_import: True 

consensus: True 

 

Combinepact is required and cannot be turned on or off. Basal_count will calculate the basal 

library counts of classification labels. Blastp_align_filter and pssm will perform the multiple 

sequence alignment (MSA), MSA similarity filtering, PSSM generation, and weighted 

observed percentages calculation. PSSM_reader will read a stored sequence homology 

dataset (i.e. blastp_align_filter and pssm steps can be disabled after generation). Pdb_import 

is not required but if enabled will calculate the sequence homology at surface versus buried 

residues. Consensus is required and constitutes the major workflow. 
 
[global] 

wtaa: MPIAT… 

directory: ./pact/tests/back_to_consensus/ 

output_prefix: enzyme_homology_lgk 
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The wild-type amino acid sequence, the working directory, and the output prefix are defined 

here. 
 

[combinepact] 

numdatasets: 2 

dataset_1: LGK_Triple 

dataset_2: LGK_wt 
[LGK_Triple] 

file1: fitness.pact 

file2: … 

[LGK_wt] 

file1: fitness.pact 

file2: … 

 

The [combinepact] section defines datasets constituted of multiple .pact files. The dataset 

names must match the [name] of the section with the files listed. 
 

[variant_classification] 

class_column: sd_from_wt 

class_threshold: 1.5 
 

Currently this protocol will classify mutations as BEN (beneficial), NEU (neutral), and DEL 

(deleterious) based on a ‘column’ output from the fitness dataset (for column names see the 

.tsv output however the two major ones are ‘fitness’ and ‘sd_from_wt’). The threshold 

defines the value from the column as a threshold (in the above example neutral is +/- 1.5 SD 

from zero). 
 

[blastp_align_filter] 

processes: 2 

cdhit_clustering_threshold: 0.98 

ncbi_xml: J88W49S1014-Alignment.xml 
minquerylen: 0.6 

minseqid: 0.35 

nummaxhits: 500 

[pssm] 

region_size: 20 

manual_regions: [[0, 19], [20, 39], [40, 59], [60, 79], [80, 99], [100, 119], [120, 139], [140, 159], [160, 179], [180, 

199], [200, 219], [220, 239], [240, 259], [260, 271]]  

 

This section defines parameters for the MSA generation, CD-Hit clustering, minimum length 

of query hit, minimum sequence identity, max number of hits to consider, pssm region size 

(if region_size has a value then the manual_regions will be ignored). 
 

[consensus] 

dataset_x: LGK_Triple 

dataset_y: LGK_wt 

pdb_file: 4zlu_cleanf2.pdb 

frac_burial: 0.85 

chain: A 

 

The consensus section defines which pdb file, chain, and fraction burial value (if pdb_import 

is enabled). This section also defines which two datasets to use when cross-comparing 

dataset mutation classifications and consensus values. 
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[pdb_import] 

numpdb: 1 

file_1: 4zlu_cleanf2.pdb 

 

This will import a pdb file. 
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Note S8: Workflow explanation for the pact_vs_pact protocol. 

 

This protocol is capable of:  

1) Plotting two PACT per-mutation datasets against each other. 

2) Color-coding plotted data points based on an analysis (currently fraction burial of residue). 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: pact_vs_pact 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 
[workflow] 

combinepact: True 

pdb_import: True 

classifier_color: True 

setvsset: True 

 

Neither combinepact nor setvsset section cannot be disabled. If coloring based on a structural 

features then pdb_import and classifier_color must be enabled. 
 

[global] 

wtaa: MPIATS… 

directory: ./pact/tests/pact_vs_pact/ 

output_prefix: pact_vs_pact 
 

This section defines the wild-type amino acid sequence, working directory, and the output 

prefix. 
 

[combinepact] 

numdatasets: 2 

dataset_1: LGK_Triple 

dataset_2: LGK_wt 

[LGK_Triple] 

file1: ./pact/tests/datasets/lgk.1/LGK_Triple_12_SSM_fitness.pact 

file2: …. 

[LGK_wt] 

file1: ./pact/tests/datasets/lgk_wt/LGK_WT_1_SSM_fitness.pact 
file2: …. 

 

The [combinepact] section defines datasets constituted of multiple .pact files. The dataset 

names must match the [name] of the section with the files listed. 
 

[pdb_import] 

numpdb: 1 

file_1: 4zlu_cleanf2.pdb 

 

This will import a pdb file. 
 

[classifier_color] 

dataset: LGK_wt 

classifier: pdb 
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pdb_file: 4zlu_cleanf2.pdb 

pdb_chain: A 

classifer_key: frac_burial 

burial_color: red 

burial_value: 0.85 
burial_equality: >= 

burial_othercolor: blue 

 

This section defines which PDB file to use, what property to classify on, the value and color 

for that value and the opposite value, and equality of that value. Future PACT releases will 

support other analyses offered by the distribution (such as contact number, burial distance, 

type of mutation, etc). 
 

[setvsset] 

dataset_x: LGK_Triple 

dataset_y: LGK_wt 

x_column: sd_from_wt 

y_column: sd_from_wt 

ref_threshold: 0 

sel_threshold: 0 
 

output_csv: false 

shared_counts: false 

regression: false 

 

xy_scatter: standard 

xy_scatter_type: standard 

x_axis_label: LGK_Triple FM 

x_axis_min: -10 

x_axis_max: 10 

y_axis_label: LGK_wt FM 

y_axis_min: -10 
y_axis_max: 10 

1to1line: true 

sd_boundaries: 1.5 

 

outlier_threshold: 2 

winner_threshold: 2 

amino_acid_highlight: * 

point_color: classifier_color 

 

headless: false 

 

This section defines how the scatterplot will be plotted. The X and Y datasets, data type, and 

count threshold can be modified. A CSV file of the (X,Y) data is able to be output. A 

regression line and 1-to-1 line can be plotted. SD_Boundaries will plot lines +/- zero to 

indicate neutral mutations.  

 

The option “point_color” will color the figure if the option is: 

 ‘classifier_color’ defined in the section [classifier_color]. 

 ‘amino’ will color the amino acids listed in ‘amino_acid_highlight’ red. 

 ‘outlier_sign’ will color mutations that change the sign of their fitness value red while 

no sign change will be blue, ‘winner’. 
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 ‘winner’ will color mutations red if the shared mutation is above the value in 

‘winner_threshold’. 

 ‘outlier’ will color mutations red if the difference in fitness values is greater than the 

threshold in ‘outlier_threshold’. 

If ‘xy_scatter_type’ is set to “grouped_location_outlier” will plot each point as the mean of 

fitness values at a location that the difference between the selections are greater than what is 

defined in ‘outlier_threshold.’ 
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Note S9: Workflow explanation for the pact_vs_feature protocol. 

 

This protocol is capable of calculating:  

1) Perform a T-Test of groups of amino acids. 

2) Count the number of mutations above a certain threshold within a dataset. 

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: pact_vs_feature 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 
[workflow] 

combinepact: True 

aa_compare_ttest: True 

threshold_count: True 

 

The combinepact cannot be disabled. 
 

[global] 

wtaa: MPIAT… 

directory: ./pact/tests/pact_vs_feature/ 

output_prefix: pact_vs_feature 

 

This section defines the wild-type amino acid sequence, working directory, and the output 

prefix. 
 

[combinepact] 

numdatasets: 1 

dataset_1: LGK_Triple 

[LGK_Triple] 

file1: ./pact/tests/datasets/lgk.1/LGK_Triple_12_SSM_fitness.pact 
file2: ./pact/tests/datasets/lgk.1/LGK_Triple_34_SSM_fitness.pact 

file3: ./pact/tests/datasets/lgk.1/LGK_Triple_56_SSM_fitness.pact 

file4: ./pact/tests/datasets/lgk.1/LGK_Triple_78_SSM_fitness.pact 

file5: ./pact/tests/datasets/lgk.1/LGK_Triple_910_SSM_fitness.pact 

file6: ./pact/tests/datasets/lgk.1/LGK_Triple_11_SSM_fitness.pact 

 

The [combinepact] section defines datasets constituted of multiple .pact files. The dataset 

names must match the [name] of the section with the files listed. 
 

[threshold_count] 

dataset: LGK_Triple 

column: fitness 

cutoff: 0.22 
 

This section is used to count the number of mutations above a cutoff value for a given 

‘column’ (fitness or sd_from_wt). 
 

[aa_compare_ttest] 

dataset: LGK_Triple 

group_a: * 
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group_b: FWYPMILVAGCSTNQDEHKR 

group_a_title: Nonsense 

group_b_title: Missense 

exclude_wt: True 

y_axis_label: Fitness metric of variant 
column: fitness 

headless: false 

 

This section will perform a unpaired parametric t-Test with Welch’s correction on two 

groups of amino acids. This is typically used to measure the probability of nonsense versus 

missense mutations distributions. 
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Note S10: Workflow explanation for the tools protocol for the additional tools included 

with the PACT software distribution. 

 

This protocol is capable of:  

1) Calculating degenerate codons that have the lowest amount of unwanted amino acids and stop 

codons. 

2) Swapping codons to optimized synonymous codons. 

3) Splitting FASTQ files based on a shared starting 10 amino acid sequence. 

4) Converting FASTQ files to FASTA format. 

5) Designing mutagenic primers for nicking mutagenesis. 

6) Converting CSV files with previously calculated fitness data to .pact format for analysis.  

 
[pact] 

pact_config_version: 2018.6 

pact_protocol: tools 

 

The [pact] section has the version of the software (the version of the config file must match 

the software), and which protocol to use (this list is kept in ./pact/pact_protocols.ini). 
 

[workflow] 

codon_condenser: True 

codon_swap: False 

fastq_split: False 

fastq_to_fasta: False 

primer_design: False 

convert_csv_to_pact: True 

 

The [workflow] section defines which steps to perform by either True or False. 
 

[global] 

directory: ./pact/tests/tools/ 

output_prefix: tools 

 

The [global] section defines the working directory and what the output prefix is. 
 

[codon_condenser] 

list_aminos: HKD 

codon: NNN 

 

Codon_condenser takes in two different inputs: 1) a specific codon (all base and degenerate 

codes are supported: GATCRYMKSWHBVDN), or 2) a list of amino acids desired at a 

particular site. If a codon is given then the script will output the total number of codons, 

amino acid encoding codons, and stop codons. It will then break down by amino acid and 

output the number, percentage of all possible codons, and the specific non-degenerate codon. 

If a list of amino acids is given then it will return the potential degenerate codons sorted by 

the highest percentage of codons with wanted amino acids and lowest percentage of stop 

codons. 

 

If a codon is given, the script will display the bases at each position of the codon, the total 

number of codons, and then list the amino acid to codon possibilities. 
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The Command line for codon_condenser when looking at a NNK codon. 

>python codon_condenser.py -c NNK 

 

If a list of amino acids is given, the list of degenerate codons are given that provides the 

lowest number of non-desired amino acids and stop codons. If a single amino acid is given 

then the fraction usage by yeast and human cells is given in the far right two columns. A tab 

character separates each column, and the columns are sorted by the highest percentage of 

codons of wanted amino acids and the lowest percentage of stop codons. 

 

Command line for codon_condenser when looking at either a single amino acid or multiple 

amino acids. 

python codon_condenser.py -a ASDK 
 

[codon_swap] 

dna_sequence:  

 

A DNA sequence is given as the input then a synonymous sequence is given as the output. 

Currently, the synonymous codon used is optimized for E. coli. 
 

[fastq_split] 

forward_fastq: R1.fastq 

reverse_fastq: R2.fastq 

directory: 

cutoff: True 
 

A forward and reverse FASTQ file is given as the input. The first 10 bases are used to split 

each read. If the cutoff is enabled, only 10-mer sequences with at least 400 reads will be 

saved in new FASTQ files. 
 

[fastq_to_fasta] 

fastq_file: File.fastq 

 

Each FASTQ read is converted to a uniquely numbered FASTA formatted read. No other 

quality filtering is performed. 
 
[primer_design] 

processes: 4 

dna_sequence:  

mutated_codons: [[1,'n',439]] 

constant_length: 60 

 

A training set of 750 primers (with NNN and NNK degenerate codons) successfully 

incorporated by nicking mutagenesis (Klesmith, et al., 2017; Wrenbeck, et al., 2016) was 

used to calculate classifiers for: overall primer length, overall GC content, length and GC 

content on each side of the degenerate codon, melting temperature and Phusion corrected 

melting temperature. Sequences that pass a filter and have the highest score based on the 

ideal primer properties are then accepted as the design. Primers with tied scores are then 

scored on the free energy cost of a mismatch versus a perfectly matched template based on 

the nearest neighbor approach (SantaLucia, 1998). Classifier equations, classifier range and 
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averages, and scoring weights are listed in Table S9. Within the config file the number of 

processes to use, the DNA sequence, the range of mutated codons can be defined, and a 

constant length if required (if defined it will set the required length to the defined value). 

 
[convert_csv_to_pact] 

numdatasets: 1 

dataset_1: dataset_name 

 

[dataset_name] 
file: <filename.csv> 

wtaa:  

location: location 

mutation: mutation 

fitness: normalized_fitness 

starting_index: 1 

 

To convert a CSV file with location/mutation/fitness data to .pact format the 

convert_csv_to_pact tool can be used. Similar to combinepact in other protocols, this 

protocol defines the number of datasets and names then looks at the [section] with the name 

for the details. The file is the full or relative path to the csv file; wtaa is the amino acid 

sequence; location/mutation/fitness is the column names to associate with; and starting_index 

is the first numbered location in the dataset.  
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Note S11: A list of external software packages required for individual classifiers and 

protocols. The path to external programs is kept within the pact_external_programs.ini file 

within the ./pact/ folder.  

 

Protocols: Any protocol that requires sequence homology. 

Programs: psiblast version 2.6.0+ (Altschul, et al., 2009) 

      cd-hit version 4.6.7 (Li and Godzik, 2006) 

                 muscle version 3.8.31 (Edgar, 2004) 

 

Protocols: Any protocol that requires structural information. 

Programs: DSSP 2.0.4 (Kabsch and Sander, 1983) 

 

Example config file: ./pact/pact_external_programs.ini 

[programs] 

dssp: ./external/Windows/dssp-2.0.4-win32.exe 

psiblast: ./external/Windows/ncbi-blast-2.6.0+/bin/psiblast.exe 

cdhit: ./external/Windows/cd-hit-v4.6.7-2017-0501/cd-hit.exe 

muscle: ./external/Windows/muscle3.8.31_i86win32.exe 
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Note S12: Explanation of mathematical equations incorporated by the fitness protocol. 

Fitness metrics 

The base metric of mutational function in most deep mutational scanning experiments is the log2 

enrichment of the frequency change of a variant in the selected (or final) population relative to 

the reference (or initial) population. Equation (1) is the frequency calculation for variant i where 

xfi is the number of sequenced counts of variant i in the selected population over the total 

sequenced counts (∑xfi) of the selected population. 

 𝑓𝑓𝑖 =
𝑥𝑓𝑖

∑ 𝑥𝑓𝑖
 (1) 

Equation (2) calculates the log2 enrichment of variant i (εi) by taking the log2 ratio of the 

frequency of variant i in the selected population (ƒƒi) over the frequency in the reference 

population (ƒoi). 

 𝜀𝑖 = log2
𝑓𝑓𝑖

𝑓𝑜𝑖
 (2) 

An alternate form of this equation can be written as: 

 𝜀𝑖  =  log2 (
𝑥𝑓𝑖

𝑥𝑜𝑖
) − log2 (

Σ𝑥𝑓𝑖

Σ𝑥𝑜𝑖
) (3) 

Three fitness metrics (ζ) are included within the PACT workflow. The fitness metric in Equation 

(4) is the is the log2 enrichment of a variant i (εi) minus the log2 enrichment of the wild-type (εwt) 

sequence (Klesmith, et al., 2017). This can be applied to all selections including growth or FACS 

based screens if the other fitness metrics are not desired. 

 𝜁𝑖  =  𝜀𝑖 − 𝜀𝑤𝑡  (4) 

For growth selections we can express the fitness metric as the growth rate of variant i in the 

population normalized to the growth rate of the wild-type variant in the population (Kowalsky, et 

al., 2015) 

 𝜁𝑖  =  log2 (
𝜇𝑖

𝜇𝑤𝑡
) (5) 

where the specific growth rate (µ) for variant i can be defined in Equation (6) as the natural log 

of the ratio of the final (xfi) to initial (xoi) variant cell concentration divided by the total time (t) 

of growth. 

 𝜇𝑖  =  ln (
𝑥𝑓𝑖

𝑥𝑜𝑖
)

1

𝑡
 (6) 
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Using the alternate form of the enrichment equation defined in (3) we can write the change of 

culture density as the number of average culture doublings (gp): 

 𝑔𝑝  =  log2 (
Σ𝑥𝑓𝑖

Σ𝑥𝑜𝑖
) (7) 

Combining Equations (6) and (3) and redefining time (t) as a function of gp (7) and the bulk 

average growth rate of the population (µp) we can write the specific growth rate for a variant as a 

function of its enrichment ratio: 

 𝜇𝑖  =  𝜇𝑝 (
𝜀𝑖

𝑔𝑝
+ 1) (8) 

Therefore, we can write metric (5) as a function of εi and εwt (the log2 enrichments of the variant 

and wild-type respectively) and gp. 

  (9) 

PACT will assign a fitness metric of -10 if εi is equal or less than -gp because the calculated 

growth rate of the variant is zero or negative under this condition and the degree of 

deleteriousness of the mutation cannot be resolved. 

 

For FACS screens, the fitness metric (10) relates the mean fluorescence of variant i (Fi) to the 

mean fluorescence of the wild-type sequence (Kowalsky, et al., 2015). 

 𝜁𝑖  =  log2 (
𝐹𝑖

𝐹𝑤𝑡
) (10) 

 In metric (6), (εi) is the enrichment ratio of the variant i, (εwt) is the wild-type enrichment ratio, 

(σ) is the standard deviation of the population, and ϕ is the percentage of cells collected of the 

gating population. 

  (11) 

For libraries with multiple mutations, it is more convenient to express the percent frequency 

change (%xij) of variant i between the selected (f) and reference (o) populations. Where (∑xf,ij) is 

the total count of mutation i at residue j and (∑xf,kj) is the total counts of all mutations k (from 

stop * to Tyr (Y)) at residue j. 

𝜁𝑖  =  log2 (

(
𝜀𝑖

𝑔𝑝
) + 1

(
𝜀𝑤𝑡

𝑔𝑝
) + 1

) 

𝜁𝑖  =  log2(𝑒)√2𝜎′[𝑒𝑟𝑓−1(1 − 𝜙2𝜀𝑤𝑡+1) − 𝑒𝑟𝑓−1(1 − 𝜙2𝜀𝑖+1)] 
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  (12) 

Alternately, the site-wise log2 enrichment for each amino acid mutation will be calculated from 

the sum of the mutation combinations. A normalized value using the metric in (4) will be 

reported where the per-site wild-type log2 enrichment is utilized instead of the full-length wild-

type enrichment. The reported output is the percent frequency change for all 20 amino acids and 

stop codons at each residue as a heatmap, and the unique mutation log2 enrichment from 

equation (2) in a TSV file. Additionally, pairwise analysis using mutual information will be 

calculated for mutation combination pairs (Dunn, et al., 2008): 

  (13) 

To reduce the bias associated with the entropy with this metric the average product correction 

(APC) is applied in equation 13 (Dunn, et al., 2008) where MI(x,*) is the average mutual 

information for mutation x versus the rest of the dataset and MI(*,*) is the overall dataset 

average MI. 

  (14) 

While approaches that look at the global correlations between residues (Hopf, et al., 2017) may 

avoid improper transitive conclusions from mutual information (A  B and B  C can 

improperly imply A  C); however, mutual information is appropriate given the limited size of 

the library sampling. 

 

Estimation of fitness metric variance 

The variance for any fitness metric can be defined as (Klesmith, et al., 2015): 

𝜎𝜁𝑖
2 = 𝜎𝜀𝑖

2 (
𝜕𝜁𝑖

𝜕𝜀𝑖
)

2

+ 𝜎𝜀𝑤𝑡
2 (

𝜕𝜁𝑖

𝜕𝜀𝑤𝑡
)

2

 (15) 

Where εi is the log2 enrichment ratio for variant i and εwt for the wild-type variant. The variance 

for εi can be estimated from Poisson noise: 

 𝜎𝜀𝑖
2 = (log2 𝑒)2 (

1

𝑥𝑓𝑖
+

1

𝑥𝑜𝑖
)  (16) 

%𝑥𝑖𝑗  =  (
∑ 𝑥𝑓,𝑖𝑗

∑ 𝑥𝑓,𝑘𝑗
𝑌
𝑘=∗

) − (
∑ 𝑥𝑜,𝑖𝑗

∑ 𝑥𝑜,𝑘𝑗
𝑌
𝑘=∗

) 

𝑀𝐼(𝑋, 𝑌)  =  Σ𝑖Σ𝑗𝑓(𝑥𝑖𝑦𝑗) log2

𝑓(𝑥𝑖𝑦𝑗)

𝑓(𝑥𝑖)𝑓(𝑦𝑗)
 

𝑀𝐼𝑝  =  𝑀𝐼(𝑥𝑖𝑦𝑗) −  
𝑀𝐼(𝑥,∗)𝑀𝐼(∗, 𝑦)

𝑀𝐼(∗,∗)
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Where xoi and xfi are the number of counts in the reference and selected populations respectively. 

If we combine these two equations into the fitness metric in equation (4) where the enrichment of 

the wild-type variant is subtracted from the enrichment of the variant i we get: 

 𝜎𝜁𝑖
2 = 𝜎𝜀𝑖

2 (1)2 + 𝜎𝜀𝑤𝑡
2 (−1)2 (17) 

For the growth fitness metric in equation (9), we can write the partial derivative with respect to εi 

as: 

 
𝜕𝜁𝑖

𝜕𝜀𝑖
=

𝜕

𝜕𝜀𝑖
(log2 (

𝜀𝑖

𝑔𝑝
+ 1))

2

−
𝜕

𝜕𝜀𝑖
(log2 (

𝜀𝑤𝑡

𝑔𝑝
+ 1))

2

 (18) 

Then solve: 

 
𝜕𝜁𝑖

𝜕𝜀𝑖
=

1

ln 2
(

1

𝜀𝑖+𝑔𝑝
) (19) 

This can be repeated for the partial derivative with respect to εwt and joined back into the 

variance equation. Similarly, for the FACS normalization equation the variance can be calculated 

for the metric in equation (11) (Kowalsky, et al., 2015): 

  (20) 

  

𝜎𝜁𝑖
2 = 𝜋𝜙2𝜎′2 {𝜎𝜀𝑖

2  [(2𝜀𝑖+
1
2) 𝑒𝑒𝑟𝑓−1(1−𝜙2𝜀𝑖+1)

2

]
2

+ 𝜎𝜀𝑤𝑡
2 [(−2𝜀𝑤𝑡+

1
2) 𝑒𝑒𝑟𝑓−1(1−𝜙2𝜀𝑤𝑡+1)

2

]
2

} 
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Note S13: Approximation of the number of experiments for a variant within a FACS 

screen. We wish to calculate the significance probability value of a variant from the synonymous 

wild-type codon enrichment distribution to determine if a variant is functionally neutral. Our 

main assumption is all wild-type synonymous genes have equal protein phenotype. Therefore, 

the distribution of synonymous codon enrichments can approximate functional neutrality. A 

useful calculation is an unpaired t-test with Welch’s correction of the distribution of the wild-

type synonymous codon enrichments versus any given nonsynonymous variant. The wild-type 

population has a mean (x̅), standard deviation (σ), and size (N) calculated from the list of 

synonymous codon enrichments. For the non-synonymous variant, we can use the enrichment for 

the mean (x̅) and the standard deviation (σ) from the enrichment variance (Note: S12). However, 

for the non-synonymous population we will calculate the expectation value for (N) via the 

number of experiments for any given variant. In this case, we are defining the number of 

experiments as the number of chances the variant has the opportunity of being collected. 

 

In any given FACS experiment, cells are typically gated on a given parameter such as binding or 

display. For example, we have one gate and two variants (A and B). Within the population the 

actual distribution of counts within and outside the gate were: 

 Within Gate Outside Gate Total 

Variant A 167 3 170 

Variant B 2 72 74 

Total 169 75  

 

Each variant has an associated frequency within the collected population: 

 Counts Frequency (foi) 

Variant A 167/169 0.99 

Variant B 2/169 0.01 

 

If we know the frequency of A and B within the starting population from deep sequencing 

(xoi/∑xoi) and the total number of cells that passed through the detector that had the opportunity 

of being collected, we can calculate the expectation value for any variant. Alternately, we could 

approximate the expectation value for a given variant by the input library design codon 

frequency and the total number of cells that had the opportunity of being collected. 

Therefore, the expectation value for FACS (21) can be defined as either: 
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𝑒𝑓𝑎𝑐𝑠,𝑖 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑) ∗ 𝑓𝑜𝑖  (21) 

Where foi is either: 

𝑓𝑜𝑖 =
𝑥𝑓𝑖

∑ 𝑥𝑓𝑖
         (22) 

𝑓𝑜𝑖 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑙𝑖𝑏𝑟𝑎𝑟𝑦   (23) 
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Note S14: Approximation of the number of experiments for a variant within a growth 

selection. We wish to calculate the probability of observing the data by random chance rather 

than an underlying difference (i.e. statistical significance) in the variant versus synonymous 

wild-type genes to determine if a variant is functionally neutral. Our main assumption is that the 

all wild-type synonymous genes have equal protein phenotype. Therefore, the distribution of 

synonymous codon enrichments can approximate functional neutrality. A useful calculation is an 

unpaired t-test with Welch’s correction of the distribution of the wild-type synonymous codon 

enrichments versus any given non-synonymous variant. The wild-type population has a mean 

(x̅), standard deviation (σ), and size (N) from the list of synonymous codon enrichments. For the 

non-synonymous variant, we can use the enrichment for the mean and the standard deviation 

from the enrichment variance (Note: S12). However, for the nonsynonymous population we will 

calculate the expectation value for (N) via the number of experiments for any given variant. In 

this case, we are defining the number of experiments as the number of chances the variant has 

the opportunity of doubling (probability of an experiment or p(e)). 

 

The probability of a cell doubling in one generation is defined as p. This can be written as a 

function of the final cell count (xf) and the number of generations (gp): 

 𝑝 =  𝑥𝑓

1

𝑔𝑝 − 1 (25) 

The likelihood of the cell existing in the next generation is the product of p and the cell’s 

likelihood of existing in the previous generation.  

𝑝𝑔𝑒𝑛 𝑛+1 = 𝑝 ∙ 𝑝𝑔𝑒𝑛 𝑛  

Thus, the expected numbers of cells can be tracked at each generation. 
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Interestingly, the coefficients of probabilities of cells existing follow Pascal’s triangle. Therefore, 

because the number of cells in each generation equals the number of experiments for that 

generation, we can write our expected number of total experiments as: 

  (26) 

Where the starting number of cells is (xoi), the number of generations is (gp), and Pascal’s 

number is (P). Where Pascal’s number is: 

𝑒𝑔𝑟𝑜𝑤𝑡ℎ,𝑖  =  𝑥𝑜𝑖 ∑ ∑ 𝑃𝑚,𝑘+1𝑝𝑘

𝑚−1

𝑘=0

𝑔𝑝

𝑚=1
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  (27) 

  

𝑃𝑚,𝑘+1  =  (
𝑔𝑝 − 1

𝑘
) =

(𝑔𝑝 − 1)!

𝑘! (𝑔𝑝 − 1 − 𝑘)!
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Fig. S1: Poisson statistics can help guide deep sequencing and FACS methods. Poisson 

statistics can be used to calculate the standard deviation of the count of DNA sequences 

(Whitehead, et al., 2012) or cells collected within a gate (Roederer, 2008). The standard 

deviation for any single variant is the square root of the number of events of that variant. The 

relative precision of the frequency ( N1/2 / N ) is plotted below (diamonds). Assay variation is 

typically greater than ±30% (Roederer, 2008) (dashed line), thus with 12 and greater counts for a 

given variant the error is more of a consequence of assay errors and less of counting errors. 
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Fig. S2: The percent change of the growth rate of a variant in the sequenced population 

relative to the wild-type sequence for a given growth fitness metric value. A locally-

weighted scatterplot smoothed (LOWESS) curve is fitted to guide the reader. 
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Fig. S3: The per-mutation number of standard deviations from wild-type (z-score) of LGK-

WT versus LGK.1 selections. Mutations that have a fraction burial of ≥ 0.85 (core) are in red 

while others (surface) are in blue. Thresholds at ±1.5 wild-type synonymous SDs are in purple 

dashed lines. A y = x line is in gray. Mutations are classified as beneficial (>+1.5 z-score, BEN), 

neutral (within ±1.5 z-score, NEU), or deleterious (<–1.5 z-score, DEL). Deep sequencing 

datasets on LGK-WT and LGK.1 from (Klesmith, et al., 2015) was reprocessed with the fitness 

protocol followed by the pact_vs_pact protocol for graphing and color coding fraction burial. 

Each point is the z-score an individual mutation shared between the two selections. The z-scores 

were calculated from the neutral variance as calculated from a Gaussian distribution of 

synonymous wild-type genes. 
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Fig. S4: Frequency of beneficial (BEN, red), neutral (NEU, gray), or deleterious (DEL, 

blue) versus different consensus features. Deep sequencing datasets on LGK-WT and LGK.1 

from (Klesmith, et al., 2015) was reprocessed with the fitness protocol. Homologous LGK 

sequences from a BlastP search (e-value 10-4, CD-Hit clustering threshold 0.98, minimum query 

length of 0.6, and minimum sequence identity of 0.35) were processed using the 

back_to_consensus protocol to calculate and build a PSSM and sequence frequency dataset of all 

mutations. The first column lists the results for all mutants. The next column pair are the 

mutation type frequency for all mutants with PSSM value ≥ 0 or non-zero natural sequence 

frequency. The following column pairs are limited to sites where wild-type is not consensus. The 

final column pair considers only the consensus mutations. 
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Fig. S5: Frequency of beneficial (BEN, red), neutral (NEU, gray), or deleterious (DEL, 

blue) versus different consensus features. Deep sequencing datasets on LGK-WT and LGK.1 

from (Klesmith, et al., 2015) was reprocessed with the fitness protocol. Homologous LGK 

sequences from a BlastP search (e-value 10-4, CD-Hit clustering threshold 0.98, minimum query 

length of 0.6, and minimum sequence identity of 0.35) were processed using the 

back_to_consensus protocol to calculate and build a PSSM and sequence frequency dataset of all 

mutations. The first column lists the results for all mutants. The next column pair are the 

mutation type frequency for all mutants with PSSM value ≥ 0 or non-zero natural sequence 

frequency. The following column pairs are limited to sites where wild-type is not consensus. The 

final column pair considers only the consensus mutations. The top figure is at residues with 

fraction burial < 0.85 (surface exposed) and the bottom are residues ≥ 0.85 (core). 
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Fig. S6: Optimizing combinations of Bayesian feature probabilities. The predictive 

performance of all 210 combinations of feature Bayesian probabilities. Each point is a 

combination of Bayesian feature probabilities (Table S4). The combinations in red squares are 

shared between all subfigures and in Fig. 2 and Tables S6-8. A) The fraction of finding a truly 

beneficial mutation versus the fraction of a truly deleterious mutation for propionamide if a 

predicted beneficial or neutral predicted mutation is selected. B) The fraction of truly beneficial 

mutations if a predicted beneficial or neutral mutation is selected for both selections. 
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Fig. S7: The number of beneficial mutations found within Bayesian classifications from 

combinations of features. Each data point is a combination of feature Bayesian probabilities. 

The two amidase datasets are binned on if a mutation is predicted to be beneficial (BEN) and 

beneficial or neutral (BEN + NEU). The 5 to 95 percentile is plotted. 
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Table S1: Summary of fitness metrics included within the fitness protocol and multi-site 

frequency change. Three fitness metrics (ζ) are included within the pact fitness protocol and can 

be used on single-site and multiple-site library types. For multiple-site libraries a second 

calculation is utilized to get the percent frequency change of a mutation using all mutation 

combinations. 

Equation Inputs 

(Any screen type) The log2 enrichment of variant 

i normalized to the wild-type enrichment. 

𝜁𝑖  =  𝜀𝑖 − 𝜀𝑤𝑡 
Citation: (Klesmith, et al., 2017) 

εi = log2 enrichment of variant i 

εwt = log2 enrichment of wild-type 

(Growth selections) The growth rate of variant i 

normalized to the wild-type growth rate. 

 
Citation: (Kowalsky, et al., 2015) 

εi = log2 enrichment of variant i 

εwt = log2 enrichment of wild-type 

gp = number of culture doublings 

(Flow cytometry screens) The mean fluorescence 

of variant i versus the mean fluorescence of the 

wild-type sequence. 

 
Citation: (Kowalsky, et al., 2015) 

εi = log2 enrichment of variant i 

εwt = log2 enrichment of wild-type  

σ = standard deviation of collected 

population 

ϕ = percentage of cells collected of the 

gating population 

(Multi-site only) The percent frequency change of 

variant i between the selected and reference 

population. 

 

∑xf,ij = Sum of mutation i counts at 

location j in the selected population 

∑xf,kj = Sum of all mutations k counts at 

location j in the selected population 

xf = final population 

xo = reference population 

 

  

𝜁𝑖  =  log2 (

(
𝜀𝑖

𝑔𝑝
) + 1

(
𝜀𝑤𝑡

𝑔𝑝
) + 1

) 

𝜁𝑖  =  log2(𝑒)√2𝜎′ [
𝑒𝑟𝑓−1(1 − 𝜙2𝜀𝑤𝑡+1)

−𝑒𝑟𝑓−1(1 − 𝜙2𝜀𝑖+1)
] 

%𝑥𝑖𝑗  =  (
∑ 𝑥𝑓,𝑖𝑗

∑ 𝑥𝑓,𝑘𝑗
𝑌
𝑘=∗

) − (
∑ 𝑥𝑜,𝑖𝑗

∑ 𝑥𝑜,𝑘𝑗
𝑌
𝑘=∗

) 
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Table S2: Deep sequencing coverage of LGK-WT and LGK.1 for the reference and selected 

libraries for synonymous and nonsynonymous variants. LGK-WT tile sizes are in 40 amino 

acid lengths and LGK.1 in 80 amino acid lengths. Datasets were taken from (Klesmith, et al., 

2015) and processed using the fitness protocol. 

 

  

SD of Synonymous Wild-Type 

Codons at different reference 

read thresholds Synonymous Reads 

Nonsynonymous 

Reads 

Fold 

Nonsynonymous 

Codon Coverage 

Tile Log2 WT All ≥12 Reads ≥30 Reads Ref Sel Ref Sel Ref Sel 

LGK-WT 

1 -1.256 0.15 0.10 0.10 33,755 34,537 97,615 288,101 38.7 114.3 

2 -0.724 0.11 0.10 0.09 30,494 48,542 84,992 254,433 33.7 101.0 

3 -0.776 0.12 0.11 0.08 33,789 41,599 104,585 266,130 41.5 105.6 

4 -0.444 0.12 0.12 0.08 30,401 50,332 97,341 238,073 38.6 94.5 

5 -1.013 0.14 0.11 0.08 19,580 29,353 74,293 243,789 29.5 96.7 

6 -0.828 0.12 0.10 0.09 42,613 47,640 119,690 267,040 47.5 106.0 

7 -0.147 0.10 0.11 0.04 29,296 29,990 104,307 115,809 41.4 46.0 

8 -0.537 0.08 0.08 0.07 35,675 46,299 110,760 223,323 44.0 88.6 

9 -0.708 0.07 0.07 0.06 40,606 45,289 90,307 185,031 35.8 73.4 

10 -0.959 0.09 0.09 0.07 40,275 43,723 120,769 283,344 47.9 112.4 

11 -0.555 0.10 0.09 0.08 44,043 66,444 119,270 277,891 48.5 113.1 

LGK.1 

1 0.835 0.10 0.07 0.07 96,126 396,858 160,933 197,692 31.9 39.2 

2 1.253 0.15 0.07 0.07 78,849 556,319 194,698 252,631 38.6 50.1 

3 1.033 0.09 0.06 0.05 206,635 604,288 279,183 91,998 55.4 18.3 

4 1.142 0.13 0.08 0.07 144,633 648,652 248,378 150,906 49.3 29.9 

5 1.184 0.11 0.08 0.08 123,522 547,553 213,408 110,968 42.3 22.0 

6 0.659 0.11 0.08 0.07 87,393 453,643 142,253 301,597 57.9 122.8 
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Table S3: Thermal and catalytic measurements of published LGK mutants individually produced and tested (Klesmith, et al., 

2015). Mutations that are included in LGK.1 are marked with an asterisk. The active site residue is D212 for this enzyme. Mutations 

are classified as beneficial (BEN), neutral (NEU), or deleterious (DEL) depending on the mutation’s z-score with neutral defined 

within ± 1.5 SD. Fitness metric values and number of standard deviations from wild-type are listed. Mutations indicated by asterisks 

are the three mutations that form the LGK.1 variant.   

 

Variant 
∆Tm,app 

(°C) 

Catalytic Efficiency 

Rel. To LGK-WT 

LGK-WT 

fitness metric 

LGK-WT 

z-score 

LGK.1 fitness 

metric 

LGK.1 

z-score 

LGK-WT 

Class 

LGK.1 

Class 

Matches categorical 

expectations? (Fig. S3) 

LGK-WT 0 1        

LGK.1 5.1 1.07 ± 0.08        

Predicted mutations that improve stability and activity 

G359R 1.1 1.86 ± 0.10 0.74 9.88 0.31 2.79 BEN BEN YES 

Predicted mutations that improve stability at the cost of activity 

H113G 4.9 0.01 ± 0.00 0.49 4.07 -1.52 -9.93 BEN DEL YES 

I167H 9.8 0.17 ± 0.01 0.99 7.10 -0.57 -6.36 BEN DEL YES 

T268C 4 0.35 ± 0.04 0.85 8.25 -0.61 -4.79 BEN DEL YES 

Q369L 3.4 0.09 ± 0.01 0.69 7.52 -0.43 -3.94 BEN DEL YES 

Predicted mutations that improve stability that are neutral on activity 

V11P 0.1 1.06 ± 0.19 0.90 6.10 -0.03 -0.28 BEN NEU YES 

R94H 1.9 1.10 ± 0.12 0.92 7.66 0.15 0.99 BEN NEU YES 

L140I* 2.2 1.11 ± 0.15 0.86 7.14 0.00 0.00 BEN NEU YES 

S142A* 0.8 1.26 ± 0.14 0.86 7.12 0.00 0.00 BEN NEU NO 

C194T 6 0.70 ± 0.11 0.91 6.53 -0.09 -1.03 BEN NEU NO 

M257H -0.4 1.43 ± 0.08 0.91 8.78 -0.14 -1.09 BEN NEU NO 

A373C* 0.5 1.33 ± 0.09 0.83 9.01 0.00 0.00 BEN NEU NO 

Predicted mutations that are neutral on stability but are deleterious on activity 

I167N 2.1 0.01 ± 0.00 -0.12 -0.87 -0.44 -4.96 NEU DEL NO 

Predicted mutations that are deleterious on stability or deleterious on activity 

D212A 1.4 0.00 ± 0.00 -0.64 -5.20 -0.85 -9.47 DEL DEL YES 

N217S 0.6 0.44 ± 0.04 -0.20 -1.60 -0.46 -5.13 DEL DEL YES 
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Table S4: Feature counts for LGK-WT versus LGK.1. The basal rate was used for the prior, p(evidence) and p(likelihood) was 

calculated from the counts for each feature to form the naïve Bayes classifier. We excluded analysis on residues M1 to 9D as these 

residues were not part of the crystal structure nor potentially the main structure therefore fitness values could be affected by 5’ 

portions of mRNA transcripts (Firnberg, et al., 2014) and not protein characteristics. 

 N BEN NEU DEL   N BEN NEU DEL   N BEN NEU DEL   N BEN NEU DEL 

Basal Rate 7324 167 1368 5789  Residue Fraction Burial (%)  PSSM  Homolog Mutation Percentage 

Percentage   2% 19% 79%  ≥0 <30 369 10 215 144  ≥ 3 338 35 138 165  0 4247 33 474 3740 

Contact Number  Percentage  3% 58% 39%  Percentage  10% 41% 49%  Percentage  1% 11% 88% 

≥0 <10 358 22 187 149  ≥30 <60 851 48 387 416  < 3 & ≥ 0 1184 53 432 699  1-15 2726 91 747 1888 

Percentage  6% 52% 42%  Percentage  6% 45% 49%  Percentage  4% 36% 59%  Percentage  3% 27% 69% 

≥11 <20 3297 102 933 2262  ≥60 <90 1660 60 432 1168  < 0 5465 56 686 4723  16-30 253 24 111 118 

Percentage  3% 28% 69%  Percentage  4% 26% 70%  Percentage   1% 13% 86%  Percentage  9% 44% 47% 

20+ 3669 43 248 3378  90 to 100 4444 49 334 4061  WT Consensus at Site?  31-45 57 10 23 24 

Percentage   1% 7% 92%  Percentage   1% 8% 91%  FALSE 2490 124 664 1702  Percentage  18% 40% 42% 

Contact Number (20+)  Distance to Active Site  (Å)  Percentage  5% 27% 68%  46-60 24 6 8 10 

Non PRO 3494 167 234 3093  ≥0 <5 294 3 37 254  TRUE 4834 43 704 4087  Percentage  25% 33% 42% 

Percentage  5% 7% 89%  Percentage  1% 13% 86%  Percentage   1% 15% 85%  60+ 17 3 5 9 

To/From PRO 300 1 14 285  ≥5 <10 1063 18 86 959  Mutation Consensus at Site?  Percentage   18% 29% 53% 

Percentage  0% 5% 95%  Percentage  2% 8% 90%  FALSE 7182 142 1307 5733  Max Site Homolog Percentage 

Contact Number (11-20)  ≥10 <15 1375 20 198 1157  Percentage  2% 18% 80%  0-15 48 3 14 31 

Non PRO 2809 92 797 1920  Percentage  1% 14% 84%  TRUE 142 25 61 56  Percentage  6% 29% 65% 

Percentage  3% 28% 68%  ≥15 <20 1812 41 324 1447  Percentage   18% 43% 39%  16-30 1695 83 644 968 

To/From PRO 311 5 24 282  Percentage  2% 18% 80%  Homolog Wild-Type Percentage  Percentage  5% 38% 57% 

Percentage  2% 8% 91%  ≥20 <25 1467 34 382 1051  0-15 1313 100 417 796  31-45 1619 34 285 1300 

Contact Number (0-10)  Percentage  2% 26% 72%  Percentage  8% 32% 61%  Percentage  2% 18% 80% 

Non PRO 472 21 276 175  ≥25 <30 768 41 294 433  16-30 1720 42 501 1177  46-60 1226 31 166 1029 

Percentage  4% 58% 37%  Percentage  5% 38% 56%  Percentage  2% 29% 68%  Percentage  3% 14% 84% 

To/From PRO 63 6 23 34  ≥30 145 10 47 88  31-45 966 6 131 829  60+ 2736 16 259 2461 

Percentage   10% 37% 54%  Percentage   7% 32% 61%  Percentage  1% 14% 86%  Percentage   1% 9% 90% 

            46-60 879 7 100 772       

            Percentage  1% 11% 88%       

            60+ 2446 12 219 2215       

            Percentage   0% 9% 91%       
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Table S5: Basal rate of library mutations for all single selections. For LGK-WT and LGK.1 the approximation of neutral (NEU) is 

± 1.5 SD (therefore >+1.5SD is beneficial (BEN), <-1.5SD is deleterious (DEL)). While for AmiE neutral is approximated for +/- 10% 

change in growth which is ± 0.15 fitness metric. Alternately, mutations can be ranked as ≥80% of wild-type as neutral (NEU: ≥ 80% 

of wild-type), ≥50% of wild-type to be classified as slightly deleterious (S. DEL: ≥ 50% of wild-type), or deleterious (DEL < 50% of 

wild-type). This classification is included for comparison to previous work (Klesmith, et al., 2017). 

 

 N BEN NEU DEL   N NEU S.DEL DEL 

LGK.1 7478 56 1610 5812  LGK.1 7478 2350 2550 2578 

Percentage  1% 22% 78%  Percentage  31% 34% 34% 

           

 N BEN NEU DEL   N NEU S.DEL DEL 

LGK-WT 6783 209 416 6158  LGK-WT 6783 1066 5270 447 

Percentage  3% 6% 91%  Percentage  16% 78% 7% 

           

 N BEN NEU DEL   N NEU S.DEL DEL 

AmiE-ACE 6289 88 646 5555  AmiE-ACE 6289 1291 1977 3021 

Percentage  1% 10% 88%  Percentage  21% 31% 48% 

           

 N BEN NEU DEL   N NEU S.DEL DEL 

AmiE-PRO 6291 120 678 5493  AmiE-PRO 6291 1412 2186 2693 

Percentage  2% 11% 87%  Percentage  22% 35% 43% 
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Table S6: Bayesian feature combinations identified as putatively higher performing. The feature columns match the features 

listed in Table S4. These combinations were identified as potentially higher performing based on low rate of deleterious mutation and 

high fraction of true beneficial mutations (Fig. 2). The combinations listed in this table match the combinations listed in Table S7. 

True or False is if the probability for that feature was considered. 

 

 

Feature Combinations from Table S4 Identified as Higher Performing (Fig. 2) 

(TRUE = Enabled, FALSE = Not Enabled) 

Combination 

Number 
PSSM 

Fraction 

Burial 

Contact 

Number 

Wild-Type 

Consensus? 

Mutation 

Consensus? 

Distance 

to 

Active 

Site 

Mutation 

Percent 

Max Site 

Percent 

Wild-

Type 

Percent 

Contact 

Number/ 

Prolines 

1 FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE 

2 FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE 

3 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE 

4 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE 

5 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE 

6 FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE 

7 FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE 

8 FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE 

9 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE 

10 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE 

11 FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE 

12 FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE 
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Table S7: Naïve Bayes optimization via testing of combinations of features. Feature combinations that had zero correctly predicted 

beneficial mutations in the Bayesian predicted BEN class were discarded (N = 11 out of 23). The combination number matches the 

ones in Table S6. All tables are sorted on the number of beneficial mutations per deleterious mutation if a predicted BEN and NEU 

mutation is selected for the acetamide dataset. 

 
 Dataset      

 Beneficial Neutral Deleterious      
 Bayesian Prediction      

Combination 

Number 
BEN NEU DEL BEN NEU DEL BEN NEU DEL 

# Beneficial 

per Deleterious 

in BEN+NEU 

% Beneficial 

in 

BEN+NEU 

% Deleterious 

in BEN+NEU 

% 

Beneficial 

in BEN 

% 

Deleterious 

in BEN 

 
Acetamide 

1 7 2 79 10 15 621 4 8 5543 0.75 20% 26% 33% 19% 

2 8 1 79 20 6 620 11 2 5542 0.69 19% 27% 21% 28% 

3 1 8 79 1 25 620 1 12 5542 0.69 19% 27% 33% 33% 

4 4 10 74 6 25 615 3 18 5534 0.67 21% 32% 31% 23% 

5 4 9 75 6 23 617 3 17 5535 0.65 21% 32% 31% 23% 

6 7 1 80 11 15 620 5 8 5542 0.62 17% 28% 30% 22% 

7 9 5 74 25 14 607 12 11 5532 0.61 18% 30% 20% 26% 

8 9 5 74 26 14 606 13 10 5532 0.61 18% 30% 19% 27% 

9 2 11 75 8 28 610 7 15 5533 0.59 18% 31% 12% 41% 

10 3 9 76 11 26 609 7 15 5533 0.55 17% 31% 14% 33% 

11 9 5 74 15 25 606 7 19 5529 0.54 18% 33% 29% 23% 

12 8 6 74 13 26 607 8 18 5529 0.54 18% 33% 28% 28% 

 Propionamide 

1 2 5 113 13 12 653 6 8 5479 0.50 15% 30% 10% 29% 

2 6 1 113 21 5 652 12 3 5478 0.47 15% 31% 15% 31% 

3 2 5 113 0 26 652 1 14 5478 0.47 15% 31% 67% 33% 

4 2 7 111 7 27 644 4 19 5470 0.39 14% 35% 15% 31% 

5 2 5 113 7 26 645 4 18 5471 0.32 11% 35% 15% 31% 

6 3 3 114 13 13 652 7 8 5478 0.40 13% 32% 13% 30% 

7 7 4 109 25 15 638 14 11 5468 0.44 14% 33% 15% 30% 

8 7 4 109 26 15 637 15 10 5468 0.44 14% 32% 15% 31% 

9 2 5 113 7 33 638 8 16 5469 0.29 10% 34% 12% 47% 

10 2 6 112 10 28 640 9 16 5468 0.32 11% 35% 10% 43% 

11 4 7 109 18 23 637 9 19 5465 0.39 14% 35% 13% 29% 

12 4 7 109 16 24 638 9 19 5465 0.39 14% 35% 14% 31% 
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Table S8: Number of variants predicted, input classification, and false positive rate of finding a deleterious mutation. For 

LGK-WT and LGK.1 the approximation of neutral (NEU) is ±1.5 SD (therefore >+1.5SD is beneficial (BEN), <-1.5SD is deleterious 

(DEL)). While for AmiE neutral is approximated for ±10% change in growth which is ±0.15 fitness metric. Alternately, mutations can 

be ranked as ≥80% of wild-type as neutral (NEU: ≥ 80% of wild-type), ≥50% of wild-type to be classified as slightly deleterious (S. 

DEL: ≥ 50% of wild-type), or deleterious (DEL < 50% of wild-type). This classification is included for comparison to previous work 

(Klesmith, et al., 2017). The deleterious mutation rate p(DEL) is based off of finding a deleterious mutation predicted to be beneficial 

or neutral (BEN+NEU), just beneficial (BEN), or accepted by the filter (Accept). The naïve Bayes classifier assesses the feature 

probabilities from combination number 1 (Table S6). 

 

 Dataset Classification Neutral (NEU) Slight DEL (S. DEL) Deleterious (DEL) 

p(DEL) 
BEN+NEU 

p(DEL) 
BEN 

Classifier Predicted Classification BEN NEU DEL BEN NEU DEL BEN NEU DEL   

Naïve Bayes AmiE ACE 18 22 1251 3 2 1972 0 1 3020 2.2% 0.0% 

 Dataset Classification Beneficial (BEN) Neutral (NEU) Deleterious (DEL) 

p(DEL) 
Accept 

Filter Filter Classification Accept Reject Accept Reject Accept Reject  

Old Filter LGK.1/LGK-WT 59 108 354 1014 225 5564 35% 

Old Filter AmiE ACE 26 62 155 491 249 5306 58% 

New Filter LGK.1/LGK-WT 9 158 55 1313 7 5782 9.9% 

New Filter AmiE ACE 6 82 32 614 17 5538 31% 
         

 Dataset Classification Neutral (NEU) Slight Del (S. DEL) Deleterious (DEL) 

p(DEL) 
Accept 

Filter Filter Classification Accept Reject Accept Reject Accept Reject  

Old Filter LGK.1 496 1712 119 2423 23 2551 3.6% 

Old Filter AmiE ACE 265 1026 126 1851 39 2982 9.1% 

New Filter LGK.1 68 2140 2 2540 1 2573 1.4% 

New Filter AmiE ACE 47 1244 7 1970 1 3020 1.8% 
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Table S9: Feature equations, feature range and averages, and scoring weights used in the 

primer_design script. 750 primers used with Nicking mutagenesis (Wrenbeck, et al., 2016) with 

NNN, NNK degenerate codons was used as a training set. A filter is a value that the script will 

reject the sequence if crossed. A weight is a value given to the sequence if at the mean or within 

a certain SD. Primers with tied scores are ranked by the nearest neighbor lowest free energy cost 

of the mismatches versus a perfect matched template calculated at 68°C (SantaLucia, 1998). 

Feature and Equation Min 
Max 

Mean (SD) 

Filter (F) or Weight (W) 

Total length of oligo (Ntotal) 23 

60* 
36 ± 5 

F: Must be at or greater  

F: Must be at or lower  
W: +1 if w/in -1SD and +1.5SD 

Length of the side 

 

5’ Side 
3’ Side 

10‡ 

39 

16 ± 4 
17 ± 3 

F: Must be at or greater  

F: Must be at or lower  

W: +0.5 w/in 1SD 
W: +0.5 w/in 1SD 

Difference in length between 5’ and 3’ sides 0 ± 4# W: +2 w/in 1SD 

% total GC content 

(NG + NC)/Ntotal * 100 

30 

75 
51 ± 7 

F: Must be at or greater  

F: Must be at or lower  
W: +1 if w/in -1SD and +1.5SD 

% GC of the side 

 
5’ Side 

3’ Side 

21 

100 
57 ± 13 

56 ± 12 

F: Must be at or greater  

F: Must be at or lower  
W: +0.5 w/in 1SD 

W: +0.5 w/in 1SD 

Total sequence Tm (°C) 

81.5+0.41*%GC-(675/Ntotal)-%Mismatch 

63 

82 
Mode: 78 ± 3 

F: Must be at or greater  

F: Must be at or lower  
W: +1 if w/in 1SD 

% total GC content lower bound (Fig. S2) 

(185.7 * e^(-0.06797 * Ntotal) + 21.65 
- F: Must be at or greater 

% total GC content upper bound (Fig. S2) 
(205.1 * e^(-0.05125 * Ntotal) + 28.64 

- F: Must be at or lower 

% side GC content lower bound 

(148.9 * e^(-0.1929 * Ntotal) + 18.11 
- F: Must be at or greater 

% side GC content upper bound 
(193.4 * e^(-0.03400 * Ntotal) - 24.26 

- F: Must be at or lower 

Phusion Tm (°C) 

Breslauer Equation (Breslauer, et al., 1986) 
-10.8 cal/Mol helix initiation correction 

Nicking primer equation of 0.0003524 uM 
†Monovalent cation concentration 0.28 M 

60^ 
78 

Median: 68 ± 4 

F: Must be at or greater 
- 

W: +1 if w/in 1SD 

Last base in the primer is G or C - W: +0.5 if G or C 

*59 bases was observed but 60 is set as the theoretical. 
‡6 bases was observed in rare high GC cases but 10 is set for safety. 
^
50°C observed however for safety the lower filter is set at 60 as the Nicking reaction anneals at 55°C. 

†Value calculated from the NEB website from a test set of primer sequences. 
#
Actual value is -1 ± 4.6 bases but set at zero as centering the degenerate codon is important for stability. 

The Tm values are measured at the mode or median as they are left skewed.  
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