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1 Box 1 

 A stepwise example 

showing how 

HetergoGenesis and w-

Wessim can be used to 

simulate spatiotemporal 

sampling from 

heterogeneous tumours. 
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2 HeteroGenesis 

2.1 Improvements over existing simulation methods  

Methods for investigating the subclonal architecture and progression of tumours from genome 

sequencing data require testing on realistically complex simulated datasets. However, existing 

simulation tools lack the ability to model certain scenarios frequently observed in real tumours 

(Supplementary Table 1), but which are included in HeteroGenesis. These include:  

i. Multi-level subclone phylogenies: Subclones in tumours have complex phylogenetic 

architectures(Sottoriva et al., 2013; McPherson et al., 2016; Watkins and Schwarz, 2018) 

Current simulation tools create: no subclones(Hosny, 2017; Mu et al., 2015a), single layer 

phylogenies(Qin, Liu, Conroy, Morrison, Hu, et al., 2015; Xia et al., 2017), or hierarchical 

structures but with no access to intermediate level genomes(Ivakhno et al., 2017). More 

complex phylogenies can be created through iterative running of these tools, however this 

creates issues with keeping track of variant positions with respect to a stable reference. 

Xome-Blender(Semeraro et al., 2018) SVEngine(Xia et al., 2018) and the ICGC-TCGA 

DREAM BAMSurgeon wrap around script(Salcedo et al., 2018) are exceptions to this, 

being able to create complex phylogenies, but instead succumb to other points mentioned 

below. 

With HeteroGenesis, the user has full control over the subclonal architecture of tumours by 

defining two parameters per clone: parent clone and the evolutionary distance from it. 

Varied and complex evolutionary trajectories can therefore be modelled.  

 

ii. Individual chromosome and whole-genome aneuploidy: Both individual chromosome 

and whole-genome aneuploid events are common in cancer(Baysan et al., 2017; Hu et al., 

2013) but are not included in many existing tumour genome simulators, particularly for 

individual chromosomes. 
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HeteroGenesis simulates a user defined number of aneuploid events, with a user defined 

probability that each will be for a single chromosome or the whole genome. New copies of 

chromosomes inherit the existing variants on the parent chromosome, and then acquire 

further variants unique to each copy.  

 

iii. Overlapping copy number variants (CNVs): Given that tumours contain numerous 

CNVs, often reaching 10s of megabases in length(Krijgsman et al., 2014; Tan et al., 2014) it 

is likely that many will overlap, either i) nested within the same copy of a chromosome, ii) 

partially or fully on different copies within the same cell, or iii) partially or fully on copies 

in separate subclones. Many existing simulation tools do not allow for this.  

In HeteroGenesis, overlapping CNVs are made possible by splitting the genome at every 

breakpoint into blocks that can be sequentially replicated or removed with each CNV.  

 

iv. Variants occurring in a flexible order: Real genomes acquire different types of variants in 

a flexible and varied order. As a result, a single nucleotide variant (SNV) may appear in 

only one, or in multiple copies of a replicated region, depending on whether it occurred 

before or after a copy number variant (CNV) or aneuploid event. However, existing tools 

incorporate different types of variants in separate stages. For example, Pysim-sv(Xia et al., 

2017) generates all aneuploid events prior to SNVs, and all SNVs prior to CNVs. Therefore, 

aneuploid copies of a chromosome in a clone won’t share any common variants, and SNVs 

will always be present in every copy of an overlapping CNV region on a chromosome.  

In order to accommodate flexible orders of variant incorporation by HeteroGenesis, the 

number of occurrences of each SNV and InDel in a genome are calculated from CNVs that 

occur subsequently over each variant. This requires keeping track of CNV break points to 

determine whether a new CNV falls within or around an existing CNV, and therefore how 

many existing copies should be multiplied by the new CNV copy number. 
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v. Distinct germline and somatic variants: The majority of SNVs and insertions and 

deletions (InDels) in human germline genomes are at known polymorphic loci(1000 

Genomes Project Consortium et al., 2015), recorded in dbSNP(Sherry et al., 2001). Some 

somatic SNV callers make use of this information in determining the confidence with which 

an apparently tumour specific variant is assigned as somatic(Fan et al., 2016; Cibulskis et 

al., 2013). Such callers will be biased against when applied to simulated germline genomes 

without a proportion of variants at polymorphic loci. Likewise, the approach used by Xome-

Blender(Semeraro et al., 2018), which simulates tumour genome sequencing reads by re-

assigning true germline variants as somatic, would result in biased metrics for SNV calling. 

Other simulation tools do not include somatic SNVs at all(Qin, Liu, Conroy, Morrison, Hu, 

et al., 2015; Xia et al., 2018). 

With HeteroGenesis, the user has the option to take a proportion of the germline SNVs and 

InDels from known variants in dbSNP and, unlike any previous method, weights them by 

their frequency in the population. 

Furthermore, some existing somatic genome simulators(Semeraro et al., 2018; Ivakhno et al., 2017; 

Ewing et al., 2015; Salcedo et al., 2018) incorporate somatic variants directly into real sequencing 

data, as opposed to generating genome sequences. While this avoids the need for in silco 

sequencing, the effect that variants have on library preparation, particularly in WES probe 

hybridisation, is not taken into account. In addition, further problems are introduced due to the 

ground truth of existing variants in the real data not being known, as well as being limited in the 

copy number of simulated CNVs by the coverage depth of the inputted data. 

One such method is BAMSurgeon. The ICGC-TCGA-DREAM team have used this tool to create 

datasets for crowd-sourced benchmarking of subclonal deconvolution methods in their ‘Somatic 
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Mutation Calling Challenge --Tumor Heterogeneity and Evolution’. For this, they developed a wrap 

around script for BAMSurgeon that adds features such as including aneuploid events(Salcedo et al., 

2018). However, we found it difficult to find sufficient details to determine if it enables certain 

other features, such as overlapping CNVs. In addition, BAMSurgeon has a known issue in that 

SNVs/InDels in CNV regions tend to have inaccurate VAFs and therefore it is recommended to 

mask those regions from variant calling. This impairs its suitability for use in testing methods that 

investigate tumour evolution. 

Supplementary Table S1. Features modelled by existing somatic simulation tools. ‘X?’ indicates 

that the feature is not mentioned in the accompanying documentation and we could find no 

evidence of it within the programme, so is highly likely not to be included. 

Feature SCNVSim
(Qin, et 
al., 2015) 

VarSim 

(Mu et 
al., 
2015b) 

tHapMix 

(Ivakhno 
et al., 
2017) 

Pysim-sv  

(Xia et 
al., 2017) 

Xome-
Blender 

(Semera
ro et al., 
2018) 

SVEngine 

(Xia et al., 
2018) 

BAMSurgeon 
wrapper 

(Salcedo et 
al., 2018) 

Multi-level 
phylogenies 

X X X 
 

X ✓ 
 

✓ 
 

✓ 
 

Flexible 
variant order 

X X? X? X X? X? ✓ 

Overlapping 
CNVs 

X X? X? X X? X? X? 

Individual 
chrom & 
genome 
aneuploidy 

✓ 
 

X? ✓ 
 

✓ 
 

X ✓ 
 

✓ 
 

Distinct 
germline and 
somatic 
SNVs/InDels 

X ✓ 
 

✓ ✓ 
 

X X? ✓ 
 

Generates 
genome 
sequences 

✓ 
 

✓ 
 

X ✓ 
 

X ✓ 
 

X 
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2.2 Workflow  

 

Supplementary Figure S1. The workflow of HeteroGenesis. heterogenesis_vargen first 

generates lists of variants for the germline and each somatic clone in the tumour. 

heterogenesis_varincorp then incorporates these variants into a reference genome and calculates 

variant frequencies and copy numbers along the genome for a given clone. freqcalc can then be 

used to calculate overall bulk tumour variant profiles. 

An overview of the HeteroGenesis workflow is provided here, with more detailed information on 

the coding logic available at https://github.com/GeorgetteTanner/HeteroGenesis.  
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HeteroGenesis consists of three consecutive python programs: 

2.2.1 heterogenesis_vargen 

heterogenesis_vargen generates lists of variants (single nucleotide variants (SNVs), 

insertions/deletions (InDels), CNVs and aneuploid events) to be incorporated into the genomes for 

each clone in a tumour, along with a matched germline. It takes as input: i) a reference FASTA 

genome sequence, ii) an optional file containing known germline SNV and InDel locations and 

minor allele frequencies formatted from dbSNP, and iii) a JSON file containing a set of parameters. 

It outputs a JSON file with lists of variants for each clone (herein also referring to the matched 

germline, which is considered the germline ’clone’) in the simulated tumour, as well as files 

containing the order that mutations occurred. The user is able to define the: i) subclonal structure, 

ii) number of somatic aneuploid events, iii) rates of SNVs and InDels, iv) length distributions of 

InDels, and v) number and length distributions of CNVs. Separate parameter values are set for 

germline and total somatic variants. Users can also choose whether, and to what extent, to 

incorporate known germline variation into the simulated germline genome, weighted by minor 

allele frequency.  

The clone structure of a tumour is defined by giving, for each clone (𝐶"), its direct parent clone and 

a value representing the evolutionary distance from it (𝐷"). These values are used to determine what 

proportions of the total somatic variants, (T), are assigned as new variants in each clone, thereby 

reflecting how far a clone has evolved from its parent. Therefore the number of new somatic 

variants in a clone, 𝐶", are defined by T &'
&'(

)
	. This allows the user full control over the mode of 

evolution in each tumour. (See Box 1.)  

CNV (>50 bases) and InDel (≤50 bases) lengths follow scaled log normal distributions, which have 

been observed in real data from both ours and other groups(Droop et al., 2018; Krijgsman et al., 

2014), with user defined parameters for the mean and variance of the underlying normal 
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distribution, and a scaling factor. All default values for variant parameters are chosen to reflect 

estimates from real human germline(Mills et al., 2006; 1000 Genomes Project Consortium et al., 

2015; Durbin et al., 2010) and tumour genomes (specifically from glioblastoma)(Baysan et al., 

2017; Hu et al., 2013; Kandoth et al., 2013; Krijgsman et al., 2014; Xi et al., 2011). 

The program first determines the total numbers of each type of somatic variant required in the final 

tumour and randomly splits these between somatic clones, based on the evolutionary distances 

between them from the provided parameters. Variants are then generated for each clone, starting 

with the germline clone. Each clone is initiated with all the variation inherited from its parent clone 

(with the root clone inheriting variation from the germline) and new variants are then added in a 

random order with respect to variant type.  Only the following are disallowed for pragmatic 

reasons: i) SNVs and InDels cannot occur more than once at a base on the same copy of a 

chromosome in a clone, ii) CNVs or InDel deletions cannot partially overlap on the same copy of a 

chromosome in a clone (fully overlapping on the same chromosome, or partially/fully overlapping 

on different copies of a chromosome, can occur), and iii) no variant can occur within a deleted 

region, even if there are additional copies of the region on the chromosome (from a CNV) that 

haven’t been deleted (though these may contain variants that precede the deletion). Chromosomes 

are selected at random for placing variants, taking length into account, except for aneuploid events 

where all chromosomes are selected with equal probability. Variants are initially placed on either of 

two sets of chromosomes, thereby simulating a diploid genome. However, after an aneuploid 

replication event has occurred, additional copies of that chromosome, containing the same set of 

existing variants, are then available for further variants to be incorporated. Similarly, when a 

deletion aneuploid event has occurred, the deleted chromosome is no longer available for variant 

placement and is not written to the outputs. 

heterogenesis_vargen takes 2hrs and 4GB RAM on a single thread to run under default parameters, 

which includes a germline and 2 somatic clones.  
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2.2.2 heterogenesis_varincorp  

heterogenesis_varincorp is run separately for each clone. It takes the lists of variants generated by 

heterogenesis_vargen and incorporates them into a reference genome sequence, as well as 

calculating copy numbers and variant frequencies along the genome. This is done by sequentially 

using the variants in the list to update three items:  
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ii. cnblocks. Lists of chromosomal regions (herein referred to as blocks) for each copy of a 

chromosome, used to calculate copy numbers. Each list is initiated with a single block equal 

to the length of the chromosome. It is updated each time a new CNV is incorporated by 

splitting blocks at CNV breakpoints and either replicating all blocks within the breakpoints 

(CNV replication) or removing them (CNV deletion). As direction is not relevant to copy 

number calculations, inversion information is ignored. After all variants have been 

incorporated, the number of blocks in all copies of a chromosome that correspond to each 

region are combined. This gives the overall copy number status along each chromosome, 

which is then written to a tab-delimited file. (Supplementary Fig. S2) 

 

 

SNV:	copy=B	pos=39	
base=C>A

CNV:	copy=A	pos=61	
length=8	number=0

1----------------------------------------------------60 69--------------------100

CNV:	copy=B	pos=31	
length=20	number=3	
inverted=[N,Y,N]

1----------------------------------------------------60 69--------------------100

1------------------------------------------------------------------------------------------100

1------------------------------------------------------------------------------------------100

1----------------------------------------------------60 69--------------------100

1-------------------30	 							35-------42	 35------42	 							31----------------50	 	31----------------50	 51-------------------------------------100

CNV:	copy=B	pos=35	
length=8	number=2	
inverted=[Y,N]

31
-3
4

43
-5
0

1--------------------30	 31----------------50	 	31----------------50	 31----------------50	 51-------------------------------------100

A

B-1

A

B-1

A

B-1

A

B-1

1------------------------------------------------------------------------------------------100

1------------------------------------------------------------------------------------------100
B-2

No	change

1------------------------------------------------------------------------------------------100
B-2

1--------------------30	 31----------------50	 	31----------------50	 31----------------50	 51-------------------------------------100
B-2

1-------------------30	 							35-------42	 35------42	 							31----------------50	 	31----------------50	 51-------------------------------------10031
-3
4

43
-5
0

B-2
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Supplementary Figure S2. An illustration of how cnblocks is updated and used to 

calculate copy number along a chromosome given a list of variants. 
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41
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35
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41
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43
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CNV:	copy=B-1	pos=33	
length=12	number=2	
inverted=[Y,Y]

InDel:	copy=B-1	
pos=36	ref=T	
alt=TGTAC

1----------------------------------------------------60 69--------------------100

1-------------------30	 																							35-----42	 																						35-----42 31----------------50	 	31----------------50	 51-------------------------------------100
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-4
2

43
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B-2

Aneuploid:	copy=B	
number=2

No	change

No	need	to	do	anything	as	aneuploid events	are	taken	into	account	by	starting	with	
the	final	number	of	copies	of	each	chromosome.	But	after	this	point,	variants	occur	
on	a	specific	copy	of	the	replicated	chromosome.

1-------------------30	 																					35------42	 							31----------------50	 	31----------------50	 51-------------------------------------10031
-3
4

35
-3
7	

41
-4
2

43
-5
0

B-2
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iii. allblocks. Analogous to cnblocks, but also includes blocks representing SNVs and InDels, 

and flags for starts and ends of inverted regions are recorded. The genome sequence for each 

copy of each chromosome is generated using the allblocks lists, which act as blueprints for 

constructing the genome sequences from the reference sequence. For each block in 

allblocks, the genome sequence is extended with either the corresponding reference 

sequence at the given positions or the alternate allele sequence. When an inversion start flag 

appears, the succeeding sequence is held separately until an end flag appears, at which point 

the held sequence is inverted, translated into the complimentary sequence, and added onto 

the main sequence, or to a previously held sequence if there is an overlapping inverted 

sequence. After all blocks for a chromosome have been passed, the sequence is written to a 

FASTA file. (Supplementary Fig S3) 
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Supplementary Figure S3. An illustration of how allblocks is updated and used to 

generate a FASTA sequence given a list of variants. Bold boxes indicate the latest 

variant incorporation. ‘start’ and ‘end’ flags indicate where inversions occur. 

Underlined bold sequences indicate regions that have been inverted, where the 

complementary base sequence will be written in the FASTA file. Regions that have 

been inverted twice, from overlapping inversions, are written in the forward 

direction. 
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iv. vcfcounts: Lists of incorporated SNVs and InDels for each copy of a chromosome, with the 

number of occurrences recorded for each. Each SNV/InDel also has information recorded on 

the position of CNVs that overlap them. This enables calculation of how many occurrences 

of an SNV/InDel to replicate/remove based on whether a new CNV falls within or around a 

previous CNV. Once all variants have been incorporated, the vcfcounts list for all copies of 

a chromosome are combined, with shared SNV/InDels' numbers of occurrences added 

together. The overall copy number at each SNV/InDel position is taken from the combined 

cnblocks list and used with the total number of occurrences to calculate variant allele 

frequencies. These are then written to a variant call format (VCF) file. (Supplementary Fig. 

S4) 
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Supplementary Figure S4. An illustration of how vcfcounts is updated and used to 

calculate VAFs given a list of variants. The tree diagrams represent the information 

that is contained in the ‘branches’ slot for each variant listed in vcfcounts. 
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inverted=[Y,N]

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},’counts’]],	B-2:[[39,C,A,{branches},’counts’]]]

CNV:	copy=B	pos=38	

length=3	number=0	

inverted=[]

CNV:	copy=B-1	pos=33	

length=12	number=2	

inverted=[Y,Y]
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[	]

39			39
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‘var’
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35			42
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[	]

InDel:	copy=B-1	pos=36	

ref=T	alt=TGTAC

No	need	to	do	anything	as	aneuploid events	are	taken	into	account	by	starting	with	

the	final	number	of	copies	of	each	chromosome.	But	after	this	point,	variants	occur	

on	a	specific	copy	of	the	replicated	chromosome.
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[	]
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31			50
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[	]
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39			39
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31			50

35			42

33			44

35			42

‘var’

39			39

[	]

39			39

‘var’

39			39

[	]

39			39

vcfcounts:	[A:[],	B-1:[[39,C,A,{branches},4],[36,T,TGTAC,{branches},2]],	B-2:[[39,C,A,{branches},3]]]
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Downward lines represent a copy of the region, with values giving the start and end 

positions. Each succeeding level shows either the presence of one variant (‘var’), an 

absence of a variant from a deletion (‘[ ]’), or the CNVs contained within the above 

region. 

 

heterogenesis_varincorp takes 1hr and 7GB RAM on a single thread to run ’clone1’ of the output 

from heterogenesis_vargen ran under default parameters.  

2.2.3 freqcalc 

freqcalc is provided as an accessory tool within HeteroGenesis and is used to calculate overall bulk 

tumour variant profiles. It takes the VCF and copy number outputs for each clone from 

heterogenesis_varincorp, along with a file specifying proportions of each somatic clone and the 

germline in a sample. freqcalc then calculates and outputs equivalent information for a bulk tumour 

that contains the given clone proportions. 

3 w-Wessim 

3.1 Wessim 

Wessim(Kim et al., 2013) is an in silico WES tool that combines fragment selection from target 

regions with the whole genome in silico sequencing tool, GemSIM(McElroy et al., 2012). Target 

regions are determined through a Blat(Kent, 2002) alignment of exon capture hybridization probe 

sequences to a genome. Selected fragments are taken from these regions and filtered based on 

length and GC-content to reproduce realistic biases. These are then used to generate sequencing 

reads from, while incorporating realistic error rates, by a module from GemSIM. 

3.2 Improvements from Wessim 
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We adapted Wessim to create weighted-Wessim (w-Wessim), and combine it with an altered 

protocol. Together these allow: 

i. Weighted probe selection. Wessim aims to mimic exome capture, during sequencing 

library preparation, through the use of BLAT(Kent, 2002) alignments of capture probe 

(primer) sequences to a genome in order to define regions for sequencing. However, the 

program selects probes at random for in silico hybridisation each time it creates a read, 

negating the modelling of copy number variation. We modified the code to weight probe 

selection by the number of times each probe aligns to a genome, thereby increasing the 

coverage in replicated regions.  

 

ii. Probe sequences taken from real WES reads. The use of exome capture kit probes for in 

silico sequencing results in unrealistic read coverage between targeted and off-target regions 

(Supplementary Fig. S5-S6). The Agilent SureSelect Human All Exon V5+UTRs kit is 

estimated by the manufactures to capture reads with only approximately 65% aligning to 

target regions and 77% aligning ± 100bp. Additionally, three WES datasets from the NCBI 

Sequence Read Archive, that had been created independently with this kit and sequenced by 

an Illumina HiSeq 2500, were found to have 56.5%-61.0% of bases aligning on, and 67.9%-

77.3% bases aligning on or near target regions (Supplementary Fig. S6). Furthermore, when 

visualising alignments of these real reads, a background level of off target reads is seen 

between the larger (and generally on target) peaks (Supplementary Fig. S5A). However, 

using the probe sequences for the V4+UTRs exon capture kit (the most recent kit for which 

the sequences have been made available, and estimated to have 80% reads aligning on target 

and 86% aligning on target ± 100bp) with w-Wessim/Wessim, resulted in very high 

proportions of bases aligning near to, or on, target regions; 90.6% and 90.0% on target and 

99.6% and 98.1% on or near target for w-Wessim and Wessim respectively (Supplementary 

Fig. S5-S6). In addition, the mode coverages for the three real WES datasets, when 
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subsampled down to 70m reads, were 8x, 28x and 29x, whereas the mode coverages for the 

same number of reads generated by w-Wessim and Wessim, was 66x and 80x, respectively 

(Supplementary Fig. S6B). 

We instead provide a set of 101,846,922 probes taken from 99bp reads in real WES data 

from the Sequence Read Archive (SRR2103613 - frozen normal adult male lung, 61.0% and 

75.8% of bases on, and on or near, target respectively) as the probes in the BLAT alignment. 

This dataset had the median percentage of on target reads of the three datasets we found that 

were created with the Agilent V5+UTRs kit and Illumina HiSeq 2500. Filtering the reads for 

those which aligned with a mapping score of 60 in paired-end mode by BWA-MEM(Li, 

2013) to the Hg38 reference genome, was needed to prevent too many off-target bases. 

However, after converting these to single end reads with a top quality score for every base, 

only 96.24% of reads had a mapping quality of 60, which is similar to the proportion of 

probes in the V4+UTRs exon capture kit that have a mapping quality of 60 (96.54%).  

We also increased the stringency of the BLAT from default parameters by increasing the 

minimum score and minimum percentage identity for alignments, both to 95. This further 

reduced the number of off-target reads, and is also likely to more accurately reflect real exon 

capture hybridisation in the lab, thereby resulting in more realistic modelling of the affect 

that variants have on exon capture. The final proportion of on, and on or near, target bases 

generated by w- Wessim, using the filtered real data reads and increased stringency BLAT 

alignment, was 61.1% and 79.7% respectively, and with a mode coverage of 28x for 70m 

reads (Supplementary Fig. S5D and S6).  
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Supplementary Figure S5. Distributions of real and simulated WES reads along a 

region of chromosome 22, with linear scales of coverage depth (A to D, enabling 

copy numbers to become apparent) and log scales (E to H, enabling off target 

coverage to become apparent). Simulated data was generated from the hg38 human 

reference genome that had a CNV with a copy number of 3 inserted at position 

chr22:24,917,701-24,926,065. A+E) Real reads from the SRR2103613 data set. 
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kit probe sequences. C+G) Reads generated by w-Wessim using the original Wessim 

recommended protocol with a BLAT alignment of Agilent SureSelect Human All 

Exon V4+UTRs kit probe sequences. D+H) Reads generated by w-Wessim using our 

modified protocol with a BLAT alignment of real reads from the SRR2103613 data 

set. I) Position of exon and intron locations, shown as boxes and lines respectively.  
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Supplementary Figure S6. Coverage metrics for three publically available real 

WES datasets (named by their SRA accession number) created with the Agilent 

SureSelect Human All Exon V5+UTRs kit, and three simulation methods that use 
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either the Agilent SureSelect Human All Exon V4 kit probe sequences or real reads 

from the SRR2103613 dataset as probes. All datasets contained 70m reads. 

iii. Read lengths to be taken from a distribution, instead of a fixed length. Wessim uses 

error models trained by GemSIM(McElroy et al.,2012) on aligned real sequencing reads to 

guide error incorporation. Quality and adapter trimming of the training reads allows for a 

more accurate alignment, however this means that many errors (which tend to be at higher 

frequencies towards the end of reads) will have been removed and not incorporated into the 

error model. This can be taken into account by modelling the effect of trimming through 

simulating reads that follow the same length distributions as the trimmed training set. We 

therefore allow w-Wessim to use the read length distributions in the GemSIM error model; 

this was achieved using code taken from GemSIM.  

 

iv. Generation of sequencing fragments with a length distribution that, in some cases, falls 

below the specified read length. We wished to allow modelling of formaldehyde-fixed, 

paraffin embedded (FFPE) samples, which generally contain shorter fragment lengths. 

However, lowering the length distribution for fragments in Wessim can results in lengths 

being selected that fall below the chosen read lengths. We therefore modified the code to 

handle such scenarios when they occur in w-Wessim.  

3.3 Requirements 

w-Wessim takes 9h/threads and 72GB RAM x threads to generate 1 × 107 pairs of reads when 

using probes taken from real WES reads. The large memory requirement results from the high 

number of real reads used as probes, which can be downsampled if needed. A BLAT alignment of 

the probes to the genome being sequenced is necessary prior to running w-Wessim. For the full set 

of 1x108 probes used in our example, this would take ~700h/threads. However, this can be ran 

across multiple nodes in separate runs by splitting the read number, probes or genome sequence. 
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Alternatively, probe sequences for the exome capture kits can be used to significantly speed up 

runtime and reduce the memory requirement. However, this does not result in the realistic read 

distribution seen when using probes taken from real WES reads. 

3.4 Additional methods 

Exome sequencing metrics, used to compare our simulated sequences with real data, were assessed 

using Picard HsMetrics(Broad Institute) with the ‘Covered.bed’ target files downloaded from the 

Agilent website (https://earray.chem.agilent.com/suredesign/index.htm). The percentages of bases 

aligning to target regions was calculated by dividing the number of aligned bases (with a mapping 

quality > 0) in bait regions, by the total number of aligned bases (also with a mapping quality > 0). 

“Bait”, not “target”, values from HsMetrics were used for on/off target calculations as these do not 

exclude low quality reads. “Target” values were used for coverage metrics as “bait” values were not 

available. 

4 Demonstration of HeteroGenesis with w-Wessim 

Heterogenesis was used to simulate a tumour, which was then sequenced by w-Wessim to create 

datasets of 100,000,000 read pairs per clone. These were aligned to the hg38 reference genome with 

BWA-MEM. Supplementary Fig. S7-S8 shows the germline and clone1 datasets viewed in IGV. 
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Supplementary Figure S7. Sequencing datasets for the germline and clone1 of a tumour 

simulated by HeteroGenesis and in silico sequenced by w-Wessim, viewed on IGV. Read 

counts for each region are divided by the expected copy number and then divided by the 

number of reads in the first region to get the ratio of reads between regions. Equal ratios 

across regions, between the germline and clone1 samples indicate appropriate modelling of 

copy numbers. 

 

Position	on	chr3 183260000-
183297264

183297265-
183320356

183320357-
183340000

184030000-
184039445

184039446-
184084390

184084391-
184110000

Expected	
copy	

number

Germline 2 7 2 2 2 2

Clone1 3 13 3 3 5 3

Read	count
Germline 11064 12315 5433 5776 9105 9892

Clone1 18391 24772 8782 9664 25664 16481

Read	
count/copy	

number

Germline 5532 1759 2717 2888 4552 4946

Clone1 6130 1906 2927 3221 5133 5494

Ratio	
across	
regions

Germline 1 0.318 0.491 1 1.57 1.71

Clone1 1 0.311 0.477 1 1.59 1.71

Germline

Clone1

Exon	positions

CNV events	in	region	chr3:183260000-184110000

Germline copy=B, position=	183297265-183320357,	number=6,	order=20256

Clone1
(In	addition	to	germline	variants)

copy=A, position=	184039447-184084390,	number=3,	order=509940

whole-chromosome	aneuploid	event,	copy=B, number=2,	order=563034
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Supplementary Figure S8. Examples of variants in sequencing datasets for the germline and 

clone1 of a tumour simulated by HeteroGenesis and in silico sequenced by w-Wessim, viewed on 

IGV.  

 

 

Position	on	chr3 183311543 183311639 183310515 183762321
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Expected	

frequency
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mapped	deletions),

TGTTG=15-16	
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frequency
0.135 0 0.824 0.4

Clone	1

Expected	

frequency
0.15385 0.07692 0.92308 0.66667

Allele	

counts
C=664,	A=102 C=1673,	A=96,	G=1 C=11,	T=82

T=25,	TT=2(mis-

mapped	deletions),

TGTTG=22-23	

Observed	

frequency
0.134 0.0542 0.882 0.54

Germline

Clone1

Examples	of	variants	in	region	chr3:183260000-184110000

Germline

copy=B,	position=183310515,	variant=C>T, order=19218

copy=B, position=183297265-183320357,	number=6,	order=20256

copy=B, position=183762321,	variant=TGTTG>T,	order=108654

Clone1

(In	addition	

to	germline	

variants)

copy=B,	position=183311543,	variant=C>T, order=440382

copy=A, position=184039447-184084390,	number=3,	order=509940

whole-chromosome	aneuploid	event,	copy=B, number=2,	order=563034

copy=B-2,	position=183311639,	variant=C>A, order=565763
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