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Introduction

This tutorial shows how to use the CluMSID package to help annotate MS? spectra from untargeted LC-MS/MS
data. C1uMSID works with MS? data generated by data-dependent acquisition and requires an mzXML file (like in
this example) or any other file that can be parsed by mzR, like mzML, mzTab or netCDF, as input. It can be used
both stand-alone and together with the XCMS suite of preprocessing tools.

CluMSID extracts and merges MS? spectra and generates neutral loss patterns for each feature. Additionally, it
can make use of information from the CAMERA package to generate pseudospectra from MS? level data. The tool
uses cosine similarity to generate distance matrices from MS? spectra, neutral loss patterns and pseudospectra.

These distance matrices are the basis for multivariate statistics methods such as multidimensional scaling, density-
based clustering, hierarchical clustering and correlation networks. The CluMSID package provides functions for
these methods including (interactive) visualisation but the distance/similarity data can also be analysed with other
R functions.

For the demonstrations in this tutorial, we will mainly use data from pooled Pseudomonas aeruginosa cell extracts,
measured in ESI-(+) mode with auto-MS/MS on a Bruker maxis"P qTOF after reversed phase separation by
UPLC. For details, please refer to the Depke et al. 2017 publication (doi: 10.1016/j.jchromb.2017.06.002.).

To be able to access the example data, we also need the related package CluMSIDdata. Both packages are
available from Bioconductor, starting from version 3.9, and can be installed as follows:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager: :install(c("CluMSIDdata", "CluMSID"))

Before the release of R 3.6 in April/May 2019, the installation from Bioconductor requires the user to install the
development versions of R and Bioconductor. For those who wish to avoid working with devel version, R 3.5
compatible versions of C1uMSID and CluMSIDdata are available from GitHub and can be installed as follows:

if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
devtools::install_github("tdepke/CluMSIDdata", ref = '"pkg")
devtools::install_github("tdepke/CluMSID", ref = "pkg")

Once installed, both packages are loaded, along with tidyverse which we will use later.

library (CluMSID)
library(CluMSIDdata)
library(tidyverse)

MS2spectrum and pseudospectrum classes

CluMSID uses a custom S4 class named MS2spectrum to store spectral information in the following slots:

= id: a character string similar to the ID used by XCMSonline or the ID given in a predefined peak list

= annotation: a character string containing a user-defined annotation, defaults to empty

= precursor: (median) m/z of the spectrum’s precursor ion

= rt: (median) retention time of the spectrum’s precursor ion

= polarity: the polarity with which the spectrum was recorded, either positive or negative

» spectrum: the actual MS? spectrum as two-column matrix (column 1 is (median) m/z, column 2 is (median)
intensity of the product ions)

= neutral_losses: a neutral loss pattern generated by subtracting the product ion mass-to-charge ratios
from the precursor m/z in a matrix format analogous to the spectrum slot

The pseudospectrum class is very similar but it contains no information on precursor m/z and therefore no
neutral loss pattern, either. By default, the id slot contains the “pcgroup” number assigned by CAMERA.
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The individual slots of MS2spectrum and pseudospectrum objects can be accessed via the standard S4 way using
object@slot, e.g. object@annotation or by using an accessor function. These exist for all slots and are called
accessFoo (), where Foo is the slot name (not exactly, though, because Bioconductor does not allow to mix
snake_case and camelCase in function names):

= accessID(object)

= accessAnnotation(object)

= accessPrecursor(object)

= accessRT(object)

= accessPolarity(object)

= accessSpectrum(object)

= accessNeutralLosses(object).

Extract MS? spectra from *.mzXML file

The first step in the CLuMSID workflow is to extract MS? spectra from the raw data file (in mzXML format). This
is done by the extractMS2spectra function which internally uses several functions from the mzR package. The
function offers the possibility to filter spectra that contain less a defined number of peaks and/or do not fall in a
defined retention time window. Setting the recalibrate_precursor argument to TRUE activates a correction
process for uncalibrated precursor m/z data that existed in older version of Bruker's Compass Xport (cf. Depke et
al. 2017). It is not necessary to use it with files generated by other software but does not corrupt the data, either.

Please be aware that mzR often throws warnings concerning the Rcpp version that can usually be ignored.

ms2list <- extractMS2spectra(system.file("extdata",
"PoolA R_SE.mzXML",
package = "CluMSIDdata"),
min_peaks = 2,
recalibrate_precursor = TRUE,
RTlims = c(0,25))

This operation has now extracted all the MS? spectra from the raw data file and stored them in a list. Each list
entry is an object of class MS2spectrum. The list is quite long because it still contains a lot of spectra that derive
from the same chromatographic peak.

length(ms2list)
#> [1] 2290

In our example, the first two spectra in the list derive from the same peak and thus have the same precursor ion
and almost the same retention time.

head(ms2list, 4)

#> [[1]]

#> An object of class "MS2spectrum"

#> id:

#> annotation:

#> precursor: 146.1652

#> retention time: 56.266

#> polarity: postitive

#> MS2 spectrum with 2 fragment peaks
#> mneutral loss pattern with O neutral losses
#> [[2]]

#> An object of class "MSZ2spectrum"

#>  id:

#> annotation:
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#> precursor: 146.1653

#> retention time: 57.292

#> polarity: positive

#> MS2 spectrum with 3 fragment peaks

#> mneutral loss pattern with O neutral losses
#> [[3]]

#> An object of class "MSZ2spectrum"

#> 4d:

#> annotation:

#> precursor: 129.1387

#> retention time: 57.545

#> polarity: positive

#> MS2 spectrum with 2 fragment peaks

#> mneutral loss pattern with O neutral losses
#> [[41]

#> An object of class "MSZ2spectrum"

#>  4d:

#> annotation:

#> precursor: 112.1119

#> retention time: 57.797

#> polarity: positive

#> MS2 spectrum with 2 fragment peaks

#> mneutral loss pattern with O neutral losses

From the output above, you also see that the MS2spectrum class has a show() generic that summarises the MS?
spectrum and neutral loss pattern data. To show the default output, use showDefault (). Be aware that neutral
loss patterns have not been calculated in this step.

showDefault (ms2list[[2]])
#> An object of class "MSZ2spectrum"

#> Slot "4id":
#> character(0)
#>

#> Slot "annotation":
#> character(0)

#>

#> Slot "precursor”:
#> [1] 146.1653

#>
#> Slot "rt":
#> [1] 57.292
#>

#> Slot "polarity":
#> [1] "positive"”

#>
#> Slot "spectrum":
#> [,1] [,2]

#> [1,] 72.08064 2448
#> [2,] 84.08077 328
#> [3,] 112.11228 843
#>

#> Slot "neutral_losses":
#> <0 z 0 matriz>
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Merge MS? spectra that derive from the same peak/feature

To reduce the amount of redundant MS? spectra, the mergeMS2spectra() function is used to generate consensus
spectra from the MS? spectra that derive from the same precursor. CluMSID offers two possibilities to do so:

Merge spectra without external peaktable

This possibility is the standard method for stand-alone use of CluMSID and is equivalent to what has been
described in Depke et al. 2017. It does not need additional input and summarises consecutive spectra that have
the same precursor m/z if their retention time fall within a defined threshold (rt_tolerance, defaults to 30s). A
retention time difference between consecutive spectra larger than rt_tolerance is interpreted as chromatographic
separation and respective spectra will be assigned to a new feature. The mz_tolerance argument should be set
according to your instruments m/z precision, the default is 1 * 10 (10ppm, equivalent to +5ppm instrument
precision). The peaktable and exclude_unmatched arguments are not used in this method and are to be left at
their default.

featlist <- mergeMS2spectra(ms2list)

length(featlist)
#> [1] 518

head(featlist, 4)

#> [[1]]

#> An object of class "MSZ2spectrum"

#> did: M146.17T59.35

#> annotation:

#> precursor: 146.1653

#> retention time: 59.35

#> polarity: positive

#> MS2 spectrum with 8 fragment peaks
#> mneutral loss pattern with 7 neutral losses
#> [[2]]

#> An object of class "MSZ2spectrum"

#> did: M129.14T58.57

#> annotation:

#> precursor: 129.1387

#> retention time: 58.57

#> polarity: positive

#> MS2 spectrum with 4 fragment peaks
#> mneutral loss pattern with 3 neutral losses
#> [[3]]

#> An object of class "MS2spectrum"

#> dd: M112.11T57.8

#> annotation:

#> precursor: 112.1119

#> retention time: 57.8

#> polarity: positive

#> MS2 spectrum with 2 fragment peaks
#> mneutral loss pattern with 1 neutral losses
#> [[4]1]

#> An object of class "MSZ2spectrum"
#> did: M251.16T60.64

#> annotation:
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#> precursor: 251.1603

#> retention time: 60.64

#> polarity: positive

#> MS2 spectrum with 9 fragment peaks

#> mneutral loss pattern with 8 neutral losses

The total amount of spectra was reduced from 2290 to 518 and as many other, the redundant spectra #1 and #2
in the raw list are now merged to one consensus spectrum (#1 in the merged list).

In this step, neutral loss patterns have been generated that look like this:

accessNeutralLosses(featlist[[1]])
#> [,1] [,2]
#> [1,] 74.08475 6429
#> [2,] 73.08163 262
#> [3,] 71.07394 239
#> [4,] 62.08476 1044
#> [5,] 34.05341 2363
#> [6,] 33.05024 144
#> [7,] 17.02688 852

Merge spectra with external peaktable, e.g. from XCMS

The second possibility is to supply a peaktable, i.e. a list of picked peaks with their mass-to-charge ratios and
retention times. This is particularly useful if you want to annotate a complete metabolomics data set. In our
example, we have a metabolomics dataset called “TD035" in which we have measured a range of samples in MS?
mode for relative quantification. Additionally, we have measured a pooled QC sample in MS? mode for annotation.
The MS! data were analysed using XCMSonline and we want to group the MS? spectra so that they match the
XCMSonline peak picking.

The spectra are extracted as shown above:

ms2list2 <- extractMS2spectra(system.file("extdata",
"TDO35-Pool1MSMS2.mzXML",
package = "CluMSIDdata"),
min_peaks = 2,
recalibrate_precursor = TRUE,
RTlims = c(0,25))

The peaklist is imported from the XCMSonline output. The list has to contain at least 3 columns:

= column 1: name/identifier of the feature
= column 2: m/z
= column 3: retention time

Shown below is an easy way of getting from an XCMSonline annotated diffreport to a suitable peaktable using
tidyverse functions. Of course, you can achieve the same goal with base R functions or even in Excel. Depending
on the retention time format in your *.mzXML file, you might have to convert from minutes to seconds or vice
versa. Here, we have minutes in the XCMSonline output but seconds in the MS? file, so we multiply by 60.

ptable <- read_delim(file = system.file("extdata",
"TDO35_XCMS.annotated.diffreport.tsv",
package = "CluMSIDdata"),
delim = "\t") %>%
select(c(name, mzmed, rtmed)) %>%
mutate(rtmed = rtmed * 60)
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head(ptable)
#> # A tibble: 6 ¢ 3

#> name mzmed Trtmed
#> <chr> <dbl> <dbl>
#> 1 M245T2  245. 100.
#> 2 M440T2_1 440. 107.
#> 3 M578T2  578. 104.
#> 4 M85T1 85.0 60.8
#> 5 M126T1_1 126. 61.0
#> 6 M688T24 688. 1468.

We can now use this peaktable as an argument for mergeMS2spectra(). You can choose whether you want to
keep or exclude MS? spectra that do not match any peak in the peaktable. These can occur in regions of the
chromatogramm where there are no clear peaks but the auto-MS/MS still fragments the most abundant ions.
These unmatched spectra are merged following the same rules as described above (method without peaktable). In
this example, we keep the unmatched spectra. We use the default values for m/z and retention time tolerance
and thus do not need to specify them.

featlist2 <- mergeMS2spectra(ms2list2,
peaktable = ptable,
exclude_unmatched = FALSE)

head(featlist2, 4)

#> [[1]]

#> An object of class "MS2spectrum"

#> 4d: M213T0

#> annotation:

#> precursor: 213.1462

#> retention time: 6.04

#> polarity: positive

#> MS2 spectrum with 5 fragment peaks
#> mneutral loss pattern with 3 neutral losses
#> [[2]]

#> An object of class "MS2spectrum"

#> 4d: x©M158T31.17

#> annotation:

#> precursor: 158.0027

#> retention time: 31.17

#> polarity: postitive

#> MS2 spectrum with 3 fragment peaks
#> mneutral loss pattern with 3 neutral losses
#> [[3]]

#> An object of class "MSZ2spectrum"

#> id: M146T1_3

#> annotation:

#> precursor: 146.1650

#> retention time: 61.15

#> polarity: positive

#> MS2 spectrum with 7 fragment peaks
#> mneutral loss pattern with 6 neutral losses
#> [[4]]

#> An object of class "MS2spectrum”

#> 4d: M129T1_4

#> annotation:

A-7



#> precursor: 129.1384

#> retention time: 60.74

#> polarity: positive

#> MS2 spectrum with 2 fragment peaks

#> mneutral loss pattern with 2 neutral losses

Note that the 2" entry in featlist2 is marked with an ‘x’ which means that it could not be assigned to a feature
in the peaktable.

For the sake of simplicity, only the data generated from the stand-alone procedure will be used for the following
examples. Be assured that all of them would also work with the data generated with the help of an external
peaktable (featlist2).

Add annotations

The next step is to add (external) annotations to the list of features, e.g. from a spectral library that you curate
in-house or one that has been supplied by your instrument manufacturer. If you do not (want to) annotate your
features at all, this step can be skipped completely, leaving the annotation slot of the MS2spectrum objects
empty.

Manual procedure

CLuMSID offers several possibilities to add annotations to your feature list. The most basic one first generates a
list of features and saves it as *.csv file. For that you use the writeFeaturelist() function and only have to
specify your list of spectra and a file name for the output file (here: pre_anno.csv). You can then manually fill
in your annotations in a new column in the table, save it (in this example under the name post_anno.csv) and
reload it to R:

writeFeaturelist(featlist, "pre_anno.csv")

annotatedSpeclist <- addAnnotations(featlist,
system.file("extdata",
"post_anno.csv",
package = "CluMSIDdata"))

annotatedSpeclist will then be equivalent to featlist with annotations added to the annotation slot of the
list entries.

Alternative procedures

You can add annotations without leaving the R environment, too. addAnnotations() also accepts objects of
class data.frame as annolist argument. Be aware that addAnnotations() assigns the annotation based on
the position in the feature list. |.e., if the order of the features in your list of features (featlist) and your list of
annotations (annolist) is different, you will get nonsense results.

The savest ways to addAnnotations () with a data.frame is to use Featurelist () to generate a data.frame
that is formatted in the same way as the file output from writeFeaturelist () and then match your identifications
against this data.frame and use the result as argument for addAnnotations().

Say you have an object called annos that contains feature IDs (the same as in featlist) and annotations in a
two-column data.frame with "id" and "annotation" as column names. It could look like this:
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str(annos)

#> 'data. frame': 154 obs. of 2 wariables:

#  $ id : chr "M146.17T59.35" "M129.14T58.57" "M112.11T57.8" "M148.06T69.65" ...

#> § annotation: chr ‘"spermidine" "spermidine (fragment)" "spermidine (fragment)" "glutamate" ...
head (annos)

#> 1d annotation

#> 1 M146.17T59.35 spermidine

#> 2 M129.14T58.57 spermidine (fragment)
#> 3 M112.11T57.8 spermidine (fragment)

#> 4 M148.06T69.65 glutamate
#> 5 M130.05T69.64 glutamate (fragment)
#> 6 M179.06T71.32 gluconolactone

addAnnotations(featlist, annos, annotationColumn = 2) will throw an error because featlist and
annos are of different length. Instead, you need to do the following:

fl <- featurelList(featlist)
f1l_annos <- dplyr::left_join(fl, annos, by = "id")

Now, you can annotate your list of spectra using addAnnotations(featlist, fl_annos, annotationColumn
= 4).

An analogous procedure works if you have your annotations stored in a peaktable that you have used for
mergeMSspectra(). As the order of spectra in the list will not be same as the order of features in your peaktable,
you need to do a matching with the output of featureList() as well.

Generate distance matrices

Once we have a list of MS2spectrum objects containing all the required information with or without annotation,
we can generate distance matrices from (product ion) MS? spectra as well as from neutral loss patterns. These
distance matrices serve as the basis for further analysis of the data. Both for MS? spectra and neutral loss patterns,
cosine similarity is used as similarity metric:

>oiaibi

OIS ST

cos() =

Distance matrix for product ion spectra

For most applications, analysing the similarity of product ion MS? spectra will be most useful. The generation of
the distance matrix is done by just one simple command but it can take some time to calculate.

distmat <- distanceMatrix(annotatedSpeclist)

Distance matrix for neutral loss patterns

Common neutral losses and neutral loss patterns can convey information about structural similarity, as well,
e.g. with nucleotides or glykosylated secondary metabolites. C1uMSID offers the possibility to study neutral loss
patterns independently from product ion spectra. The generation of a distance matrix is analogous, you just need
to set the type argument to "neutral_losses":
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nlmat <- distanceMatrix(annotatedSpeclist, type = "neutral_losses")

Visualise distance/similarity data using multidimensional scaling (MDS)

One rather simple possibility to visually analyse the spectral similarity data is multidimensional scaling, a dimension
reduction method that simplifies distances in n-dimensional space to those in two-dimensional space (n in this case
being the number of consensus spectra or neutral loss patterns that were used to generate the distance matrix in
the previous step). CLuMSID offers a simple function to produce an MDS plot from the distance matrix with the
option to highlight annotated metabolites and the possibility to generate an interactive plot using plotly.

Standard MDS plots are generated as follows:
For MS? spectra:
MDSplot(distmat, highlight_annotated = TRUE)
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Figure A-1: Multidimensional scaling plot as a visualisation of MS? spectra similarities of the example data set. Red dots
signify annotated spectra, black dots spectra from unknown metabolites.

A-10



For neutral loss patterns:

MDSplot(nlmat, highlight_annotated = TRUE)
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Figure A-2: Multidimensional scaling plot as a visualisation of neutral loss similarities of the example data set. Red dots
signify annotated spectra, black dots spectra from unknown metabolites.

Interactive plots are zoomable and show feature names upon mouse-over. They are generated like normal MDS

plots and can be viewed within RStudio or—after saving as html file using htmlwidgets—displayed in a normal
web browser.

my_mds <- MDSplot(distmat, interactive = TRUE, highlight_annotated = TRUE)

htmlwidgets: :saveWidget (my_mds, "mds.html")
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This is how it looks like if you open the html file in Firefox and mouse over a feature:
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Figure A-3: Screenshot of the interactive version of the Multidimensional scaling plot visualising MS? spectra similarities of
the example data set (cf Figure 1). Zoomed image section with tooltip displaying feature information upon mouse-over.

Perform density-based clustering using the OPTICS algorithm

For density-based clustering with CLuMSID, the ‘OPTICS' algorithm and its implementation in the dbscan package
is used. Density-based clustering is a useful clustering method that often yields different results than hierarchical
clustering and can thus provide additional insight into the data. C1luMSID has two functions to perform density-
based clustering, one for the reachability plot which is the most useful visualisation of OPTICS results and one
that outputs a data.frame containing the cluster assignations for every feature.

Both functions require as arguments a distance matrix as well as three parameters for the underlying functions
dbscan: :optics and dbscan: : extractDBSCAN: eps, minPts and eps_cl. Lowering the eps parameter (default
is 10000) limits the size of the epsilon neighbourhood which from experience has very little effect on the results.
minPts defaults to 3 in C1uMSID. It defines how many points are considered for reachability distance calculation
between clusters. The dbscan: :optics default for minPts is 5. Users are encourage to experiment with this
parameter. eps_cl is the reachability threshold to identify clusters and can be varied based on your data. Lowering
eps_cl leads to a larger number of smaller clusters and vice versa for raising the value. In general, it is advisable to
chose a higher eps_c1 for MS? spectra than for neutral loss patterns, since the latter tend to show less similarity to
each other. For details, please refer to the dbscan help for the dbscan: :optics and dbscan: : extractDBSCAN
functions.

If the default parameters are used, the generation of an OPTICS reachability plots is very simple, shown here for
MS? spectra and neutral loss patterns:



OPTICSplot(distmat)
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Figure A-4: Reachability distance plot resulting from OPTICS density based clustering of the MS? spectra similarities of
the example data set. Bars represent features in OPTICS order with heights corresponding to the reachability distance to
the next feature. The dashed horizontal line marks the reachability threshold that separates clusters. The resulting clusters
are colour-coded with black representing noise, i.e. features not assigned to any cluster.

OPTICSplot (nlmat, eps_cl = 0.7)
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Figure A-5: Reachability distance plot resulting from OPTICS density based clustering of the neutral loss similarities of the
example data set (cf Figure 4).
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In the reachability plots, every line represents a feature and the height of the line is the reachability distance to
the next feature in the OPTICS order. Thus, valleys represent groups of similar spectra or neutral loss patterns.
The order and the cluster assignment can be studied using the OPTICStbl function that outputs a three-column
data.frame with feature id, cluster assignment and OPTICS order. The order of features in the data.frame
corresponds to the original order in the input distance matrix. Features that were not assigned to a cluster are
black in the reachability plot and have the cluster ID 0. OPTICStbl takes the same arguments as OPTICSplot.
The two functions have to be run with exactly the same parameters to assure compatibility of results.

OPTICStable <- OPTICStbl(distmat)

head (OPTICStable)

#> feature cluster_ID OPTICS_order
#> 1 M146.17T59.35 - spermidine 1 1
#> 2 M129.14T58.57 - spermidine (fragment) 1 3
#> 3 M112.11T57.8 - spermidine (fragment) 1 4
#> 4 M251.16T60. 64 0 185
#> 5 M212.85T65. 02 0 518
#> 6 M290.85T64.76 0 517

Perform hierarchical clustering

In Depke et al. 2017, hierarchical clustering proved the most useful method to unveil structural similarities
between features. analogous to density-based clustering, CLuMSID offers two functions, one for plots and one for a
data.frame with cluster assignments, both taking a distance matrix as the only compulsory argument. The other
two parameters are h (defaults to 0.95), the height where the tree should be cut (see stats: :cutree for details)
and type that determines the type visualisation:

= heatmap: a heatmap displaying pairwise similarities/distances along with cluster dendrograms
= dendrogram (default): a circular dendrogram with colour code for cluster assignment

Create a heatmap

Heatmaps of our example data for MS? and neutral loss pattern similarity are created as follows (with reduced
label font size by changing cexRow and cexCol as well as margins of the underlying heatmap.2 function):

HCplot(distmat, type = "heatmap",
cexRow = 0.06, cexCol = 0.06,
margins = c(5,5))
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Figure A-6: Symmetric heat map of the distance matrix displaying MS? spectra similarities of the example data set along
with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour encoding is shown in the
top-left insert.

HCplot(nlmat, type = "heatmap",
cexRow = 0.06, cexCol = 0.06,
margins = c(5,5))
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Figure A-7: Symmetric heat map of the distance matrix displaying neutral loss similarities of the example data set along
with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour encoding is shown in the
top-left insert.

Obviously, it makes sense to export the plots to larger pdf or png files (e.g. 2000 x 2000 pixels) to examine them
closely. If exported to pdf, the feature names remain searchable (Ctrl+F in Windows).

Create a dendrogram

With the dendrogram, too, it is advisable to export is to pdf in a large format, e.g. as follows:

pdf(file = "CluMSID_dendro.pdf", width = 20, height = 20)
HCplot(distmat)
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dev.off ()

The plot from our example data looks like this:
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Figure A-8: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS? spectra similarities of the example data set. Each leaf represents one feature and colours encode
cluster affiliation of the features. Leaf labels display feature IDs, along with feature annotations, if existent. Distance from
the central point is indicative of the height of the dendrogram.
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The clusters are colour-coded and if exported to pdf, the tip labels containing feature ID and annotation are
searchable.The height of the dendrogram’s branching points serves as another piece of information when interpreting
the clustered data as it signifies similarity of features.

For a detailed example of how to interpret, please refer to Depke et al. 2017, where CLuMSID helped to identify
new members of several classes of secondary metabolites in Pseudomonas aeruginosa.

Like with density-based clustering, it is also possible to generate a list of features with respective cluster assignments
using HCtbl. As mentioned above for OPTISplot and OPTICStbl, it is crucial to run HCplot and HCtbl using
the same parameters.

HCtable <- HCtbl(distmat)

head (HCtable)

#> feature cluster_ID
#> 1 M146.17T59.35 — spermidine 1
#> 2 M129.14T58.57 - spermidine (fragment) 1
#> 3 M112.11T57.8 - spermidine (fragment) 1
#> 4 M251.16T60. 64 1
#> 5 M212.85T65. 02 2
#> 6 M290.85T64 .76 3

Generate a correlation network

As a new functionality, CLuMSID offers the possibility to analyse the similarity data using weighted correlation
networks. These networks offer some advantages with respect to standard clustering methods, most notably that
they do not strictly assign every feature to a distinct cluster but also represent similarities between features that
would fall into different clusters in hierarchical or density-based clustering. Thus, correlation networks potentially
contain more useful information for data interpretation. On the downside, the interpretation is also complicated
by this lack of concrete cluster assignments. E.g., we cannot simply look up which features belong to the same
cluster in order to examine their spectra closely but we have to go back to the correlation network visualisation
and search for connected features manually.

networkplot requires some arguments:

» distmat: matrix; a distance matrix like for all other functions described above

= interactive: logical; Similar to MDSplot, correlation network can be generate as interactive plots that are
zoomable and display feature IDs on mouse-over. If that is desired, set interactive to TRUE (default is
FALSE).

= show_labels: logical; whether to display feature IDs in the (non-interactive) plot (default is FALSE, ignored
if interacive = TRUE)

= label_size: numeric; font size of feature ID labels (default is 1.5, which is way smaller than the default
in GGally: :ggnet?2, 4.5)

= highlight_annotated: logical; whether to plot dots for features with annotation in a different colour
(same as in MDSplot, default is FALSE)

» min_similarity: numeric; the minimum similarity (1 — distance) threshold (similarities below this threshold
will be ignored, default is 0.1)

= exclude_singletons: logical; whether to exclude features from the plot that do not have connections to
other features, particularly useful with data sets containing very dissimilar spectra, e.g. neutral loss patterns
or MS! pseudospectra (default is FALSE)
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A standard non-interactive correlation network for the MS? example data can be plotted like this:

networkplot(distmat, highlight_annotated = TRUE,
show_labels = TRUE, interactive = FALSE)

MS57.

m ojxanthoprerine
M311. w M309) 01
M227‘ M99 ’21 65 M194.wxs
M195.09T43 caﬂeme"”g%‘%‘ mm’Ao 17 1.61
Mze2 7M§4.40 15 o
M601,‘07.16 MST7. ’0135 M633. M673.38T966.68 - 'Rha— PC10+Nay ‘25 2

MSZO‘SZ 513, ‘20 a4 M425 w@dMQﬁQQ Ogézmcs +Na M3o7. Q o
54 600 71

MAQQ‘SG 54 Mas‘ss 6
2o ‘85 o MzQOS M25 w 4. 98M275 36.04
01 45 4385 31T AR U.012 /Rha-C12-C10 + Na
‘ . Q M1 25‘55.99
169 3[;\/!‘3’)56;“ - %95 98 3 073.79
M39§“ M699.39T1013.83 - Rha-Rha- c /Rna5 RjanC12: mg;g &§ 20 we21 @ ez.04
?8 -ha] “ﬁngRha C12-C12:1+Na
Msowg‘&m 1/0:0) + Na oL .297 2

M8 6. :
M488. ‘70.53 A 4‘67 o
M207. osmmmwﬂ“ﬂm ISTD + Na ‘8
M;
Mmagh, 9059 Mmm wsss@ilhs2.53
. (18:1/0:0) + Na M353, ‘BA 86
86.65 MA13‘163 6

M2 935 00.22

. " " M413.27T1297.03 - Els.ly\he)%\
M113 50! M2RR07 HRI%BAT DROiEATide
PE(16:0/0:0) 57‘11-04 LeLEE
henazi carboxylic acid (fragment)
7.29 M291. 09T462.007&W” T .‘ Y| (fragment) MQSI.‘ZO 54

PG(16:1/0:0) M913‘47 39
MABo.sﬂm.g@g 1/0:0) M33‘.24v4 MGES‘SS 74
MAsul&Al -
213'52.92 M41s‘74 32

M191.09T676.49 - n.y\ine 1STD (fragment) &14.43 Mae‘gsg
508 wsoa@orer | aod SQEQ 7 MSG(‘ZS.Y
M729MZ$‘7 UQR 2-C12 +Ne
@i 02.26

09
M291.15T444 8! wgs.was
_ M178|
V679 431288839 0-C12/ Rha-Rha-C12- 01'3211 \ serD) Msaa.mgg
. e (itagment) —~ 76
M705.44T1095.83 - Rha-Rha: W2 s 3 4 93-825 iptyRpesS TP roxen (fragment) Mzgg.‘lg s
g 07

1559.! 3 T3
24.66 M397..269 79
M19
M182‘41v05
M693]

e \ M4A3,‘15.55
M179.06T71. luconolacion Do
M2 3 i 0 m202(@R07.81
M324. os.z -cmp R b c ‘ c7-Q M4A1.’59 15

MSl0.0UEA
04 89,
M364.07.9 ST MWW% 50 u‘uvMﬁﬁ o
M325.041 - UMP
8. 3M232‘95 36
3 (o]

M326, ‘m.az
M308 05'.§ M341..JBA 63

M §§ i -y ) M31“42.2
AT : . ’ R e Mazs.o?w..%%\
wasa @p36.97  M123.06T10: $ M ~Glu

Msoo‘u 72
‘13 67

R 9535
39.43; 82.73 M732.83.U7

M694‘76 97

Ala
M186| 66.88

M354.’DO 38 M3; -~ pyochelin
wig iise g
M568| 38.32

M323‘85 42
MEIGQQE‘
1734 56.41 M324| 67.42

M485.12,56
Msso‘sa.m

Figure A-9: Correlation network plot based on MS? spectra similarities of the example data set. Grey dots indicate
non-identified features, orange dots identified ones. Labels display feature IDs, along with feature annotations, if existent.
Edge widths are proportional to spectral similarity of the connected features.
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As you can guess from this busy plot, it makes sense to use the interactive visualisation. Just like with MDSplot,
you can view the interactive plot within RStudio or save it as html and view it in web browser.

my_net <- networkplot(distmat, interactive = TRUE,
highlight_annotated = TRUE)

htmlwidgets: :saveWidget (my_net, "net.html")

This is how it looks like if you open the html file in Firefox, zoom in on a cluster and mouse over a feature:
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Figure A-10: Screenshot of the interactive version of the Correlation network plot based on MS? spectra similarities of the
example data set (cf Figure 9). Zoomed image section with tooltip displaying feature information upon mouse-over.

Please be aware that the spatial arrangement of the data points in the plot has a random component, i.e. while
the relative position of the points (the distance to each other) is always the same, the absolute position varies and
will not be the same even if the same command is executed twice.

The pairwise similarity of spectra or neutral loss patterns of features expressed by the cosine score is signified by
the width of the line connecting the two features. All pairwise similarities greater than min_similarity result in
a connecting line in the plot. The spatial proximity in which the features are mapped onto the plot is determined
by the multivariate method underlying the network generation.

As we have already noticed after inspection of the heatmaps on p.13-14, the neutral loss patterns show much less
similarity to each other than the MS? spectra data. Thus, we expect quite a few neutral loss patterns that do not
show any similarity to another neutral loss pattern. This expectation justifies the exclusion of these ‘singletons’
from the correlation network analysis. To do so, just set exclude_singletons to TRUE:
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networkplot (nlmat, highlight_annotated = TRUE,
show_labels = TRUE, exclude_singletons = TRUE)
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Figure A-11: Correlation network plot based on neutral loss similarities of the example data set. Grey dots indicate
non-identified features, orange dots identified ones. Labels display feature IDs, along with feature annotations, if existent.
Edge widths are proportional to spectral similarity of the connected features.
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Additional functionalities

Multidimensional scaling, density-based clustering, hierarchical clustering and correlation network analysis are
the main CLuMSID tools to analyse MS? spectra or neutral loss pattern similarity data, however, the package
contains some additional functionalities that may facilitate data analysis in some cases and can also be used in
other contexts with or without the above-mentioned unsupervised methods.

Access individual spectra from a list of spectra by various slot entries

Accessing S4 objects within lists is not trivial. Therefore, CLuMSID offers a function to access individual or several
MS2spectrum objects by their slot entries. getSpectrum() requires the following arguments:

= featlist: a list that contains only objects of class MS2spectrum
= slot: the slot to be searched (invalid slot arguments will produce errors):
- id
— annotation
— precursor (m/z of precursor ion)
— rt (retention time of precursor)
= what: the search term or number, must be character for id and annotation and numeric for precursor
and rt
» mz.tol: the tolerance used for precursor ion m/z searches, defaults to 1E-05 (10ppm)
= rt.tol: the tolerance used for precursor ion retention time searches, defaults to 30s; high values can be
used to specify retention time ranges (see example)

Some examples will demonstrate the use of getSpectrum():

1. Accessing a spectrum by its ID. For this, the exact feature ID must be known:

getSpectrum(annotatedSpeclist, "id", "M244.17T796.4")
#> An object of class "MSZ2spectrum"

#>  id: M244.17T796.4

#> annotation: HH(

#> precursor: 244.1700

#> retention time: 796.4

#> polarity: positive

#> MS2 spectrum with 98 fragment peaks

#> mneutral loss pattern with 81 neutral losses

2. Accessing a spectrum by its annotation. For this, the exact annotation has to be known as well, other
annotations will produce a message:

getSpectrum(annotatedSpeclist, "annotation", "HHQ")
#> An object of class "MSZ2spectrum"

#> did: M244.17T796.4

#> annotation: HHY

#> precursor: 244.1700

#> retention time: 796.4

#> polarity: positive

#> MS2 spectrum with 98 fragment peaks

#> mneutral loss pattern with 81 neutral losses

getSpectrum(annotatedSpeclist, "annotation", "C7-HQ")
#> No spectrum with that annotation.

A-22



3. Accessing spectra by their precursor ion m/z. If the list contains more than one spectrum with a precursor
ion m/z within the tolerance, the output is again a list of MS2spectrum objects that meet the specified criterion:

getSpectrum(annotatedSpeclist, "precursor", 286.18, mz.tol = 1E-03)
#> [[1]]

#> An object of class "MSZ2spectrum"

#> did: M286.18T728.73

#> annotation: C9:1-QNO

#> precursor: 286.1799

#> retention time: 728.73

#> polarity: positive

#> MS2 spectrum with 4 fragment peaks

#> mneutral loss pattern with 2 neutral losses
#> [[2]]

#> An object of class "MS2spectrum"

#> did: M286.18T808.85

#> annotation: C9:1-QNO

#> precursor: 286.1804

#> retention time: 808.85

#> polarity: postitive

#> MS2 spectrum with 7 fragment peaks

#> mneutral loss pattern with 5 neutral losses
#> [[3]]

#> An object of class "MSZ2spectrum"

#> did: M286.18T864.03

#> annotation: C9:1-(NO

#> precursor: 286.1808

#> retention time: 864.03

#> polarity: positive

#> MS2 spectrum with 183 fragment peaks

#> mneutral loss pattern with 167 neutral losses
#> [[4]]

#> An object of class "MS2spectrum"

#> 4d: M286.18T921.6

#> annotation: C9:1-PQS

#> precursor: 286.1808

#> retention time: 921.6

#> polarity: positive

#> MS2 spectrum with 3 fragment peaks

#> mneutral loss pattern with 1 neutral losses

4. Accessing spectra by their precursor retention time. Here, too, we can extract several MS2spectrum
objects by setting a larger retention time tolerance. If we want to extract the spectra of all compounds that elute
from 6min (360s) to 8min (480s), we proceed as follows:

six_eight <- getSpectrum(annotatedSpeclist, "rt", 420, rt.tol = 60)
length(six_eight)
#> [1] 75
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Find spectra that contain a specific fragment or neutral loss

Another pair of accessory functions is findFragment () and £indNL() which are used to find spectra that
contain a specific fragment ion or neutral loss. Analogous to getSpectrum(), they need as arguments a list of
MS2spectrum objects, the m/z of the fragment or neutral loss of interest and the respective m/z tolerance in ppm
(default is 10ppm). The two functions can be useful in many situation, e.g. when working with lipid data where
head groups and fatty acids often give characteristic fragments or neutral losses. In the world of P. aeruginosa
secondary metabolites, alkylquinolones (AQs) play an important role and most of the AQ MS? spectra contain a
signature fragment with an m/z of 159.068. Based on this fragment m/z, we can create a list of putative AQs:

putativeAQs <- findFragment(annotatedSpeclist, 159.068)
#> 70 spectra were found that contain a fragment of m/z 159.068 +/- 10 ppm.

An example for common neutral losses are nucleoside monophospates that all loose ribose-5'-monophosphate,
resulting in a neutral loss of 212.009 in ESI-(4). Using £indNL() we find CMP, UMP, AMP and GMP.

findNL (annotatedSpeclist, 212.009)

#> 4 neutral loss patterns were found that contain a neutral loss of m/z 212.009 +/- 10 ppm.
#> [[1]]

#> An object of class "MSZ2spectrum"

#> id: M324.06T75.32

#> annotation: CMP

#> precursor: 324.0591

#> retention time: 75.32

#> polarity: positive

#> MS2 spectrum with 8 fragment peaks

#> mneutral loss pattern with 8 neutral losses
#> [[2]]

#> An object of class "MSZ2spectrum"

#>  dd: M325.04T78.94

#> annotation: UMP

#> precursor: 325.0429

#> retention time: 78.94

#> polarity: positive

#> MS2 spectrum with 5 fragment peaks

#> mneutral loss pattern with 5 neutral losses
#> [[3]]

#> An object of class "MSZ2spectrum"

#> did: M348.07T90.34

#> annotation: AMP

#> precursor: 348.0707

#> retention time: 90.34

#> polarity: positive

#> MS2 spectrum with 21 fragment peaks

#> mneutral loss pattern with 19 neutral losses
#> [[4]]

#> An object of class "MS2spectrum"

#> 4d: M364.07T97.19

#> annotation: GMP

#> precursor: 364.0659

#> retention time: 97.19

#> polarity: positive

#> MS2 spectrum with 6 fragment peaks

#> mneutral loss pattern with 6 neutral losses
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Match one spectrum against a set of spectra

If you are mainly interested in one or a few number of spectra or neutral loss patterns, it may be sufficient to
match one feature at a time against a larger set of spectra. This set of spectra can be all spectra contained in one
mzXML file like in all the examples in this tutorial or they could be a spectral library, as long as its format in R is a
list of MS2spectrum objects.

The getSimilarities() function requires several arguments:

= spec: The spectrum to be compared to other spectra. Can be either an object of class MS2spectrum or a
two-column numerical matrix that contains fragment mass-to-charge ratios in the first and intensities in the
second column.

= speclist: The set of spectra to which spec is to be compared. Must be a list where every entry is an
object of class MS2spectrum. Can be generated from an mzXML file as shown above or constructed using
new ("MS2spectrum", ...) for every list entry (see example).

= type: Specifies whether MS? spectra or neutral loss patterns are to be compared. Must be either ‘spectrum’
(default) or ‘neutral_losses’.

= hits_only: Logical that indicates whether the result should contain only similarities greater than zero (see
example).

In the first example, we want to find all MS? spectra in our example data set that are similar to the spectrum of
pyocyanin, an important secondary metabolite from Pseudomonas aeruginosa and therefore match the pyocyanin
spectrum against our annotatedSpeclist. Because we have already identified pyocyanin in the data set, we can
use getSpectrum to extract the MS2spectrum object from annotatedSpeclist. We do not want to search all
518 elements of the result vector, so we set hits_only to TRUE to exclude spectra that have 0 similarity to the

pyocyanin spectrum.

pyo <- getSpectrum(annotatedSpeclist, "annotation", "pyocyanin')

sim_pyo <- getSimilarities(pyo, annotatedSpeclist, hits_only = TRUE)
sim_pyo

#>
#>
#>

M110.06T100.45
0.0235166588
M182.08T125. 93

M123.06T103.31
0.0071763662
M166.09T233. 22

M332.56T107.48
0.0032575891
M120.08T233. 48

M332.08T113.21
0.0035153018
M103.05T235.3

#>  0.0414005385  0.0394723541  0.0492390806  0.0826780036
#> M174.06T277.59 M220.12T336.88 M525.18T352.51  M243.08T362.4
#>  0.0391004892  0.0205482303  0.0060019991  0.0145904545
#> M188.07T371.25 M205.1T370.99 M211.09T382.17 M187.12T391.55
#>  0.0176900909  0.0179895663  1.0000000000  0.0210280136
#> M188.12T399.72 M254.09T400.89 M160.08T433.66 M291.15T444.85
#>  0.0105392131  0.2071528536  0.0489638040  0.0106479317
#> M120.04T450.56 M138.06T451.33 M176.07T465.7 M491.29T496.41
#>  0.0287432023  0.0202198052  0.0275059908  0.0610208210
#> M255.08T482.73 M245.59T495.11 M145.08T508.11 M163.09T512.6/
#>  0.6451546287  0.2583432230  0.0473127795  0.0034167239
#> M188.11T535.78  M321.1T537.6 M243.09T558.67 M136.08T584 .09
#>  0.0057005179  0.0293635312  0.0116275804  0.0132716679
#> M118.06T585.64 M215.12T626.24 M224.08T640.69 M213.07T652.92
#>  0.0203921366  0.3252546561  0.0325490977  0.0083842257
#> M216.14T670.01 M227.08T670.26 M264.18T675.46 M233.13T676.23
#>  0.0009299928  0.0034818309  0.0172023762  0.0143332573
#> M225.07T698.07 M207.06T699.1  M257.06T704.3 M226.18T703.76
#>  0.0253940205  0.0230298767  0.0028192053  0.0255571995
#> M325.07T739.09 M181.08T724.14  M330.19T724.4 M255.08T740.91
#>  0.0010572974  0.1283755709  0.5019236568  0.2030839014
#> M46.19T745.32 M321.1T746.09 M891.36T747.39 M231.1T763.28
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#>  0.0750793676  0.1017149711  0.0714108632  0.0070294838
#> M185.1T763.53 M288.2T765.88 M258.15T768.47 M328.14T772.12
#>  0.0094225379  0.0018840838  0.0168976240  0.0009052790
#>  M242.15T789.6 M304.19T786.75 M260.16T796.66 M244.17T796.4
#>  0.0071606643  0.0066966285  0.0141834395  0.0106077162
#> M159.07T795.61 M314.21T825.99 M326.18T833.85 M286.18T864.03
#>  0.0124577125  0.0006167122  0.0023434969  0.0205024121
#> M270.19T873.15 M268.17T875.49 M178.05T867.16 M198.09T874.45
#>  0.0089744139  0.0011687551  0.0413446455  0.0064665757
#>  M170.1T885.9  M288.2T902.1 M184.08T908.6  M272.2T910.42
#>  0.0062571323  0.0100270721  0.0036517997  0.0086043375
#>  M312.2T929.44 M314.21T944.87 M296.2T958.11 M298.22T984.33
#>  0.0085388744  0.0128215188  0.0054678320  0.0065812089
#> M500.22T974.72 M304.19T977.83 M303.19T979.65 M340.23T1007.62
#>  0.0396920510  0.0059045590  0.0049045093  0.0052002486
#> M32/4.23T1025.79 M314.21T1034.15 M326.25T1043.73 M679.43T1051.39

#> 0.0005826366 0.0030626495 0.0005424581 0.0008290325

We get 84 spectra that have a non-zero similarity to the pyocyanin spectrum, including pyocyanin itself with a
similarity of 1. Of course, we can further filter the data by subsetting the result vector in order to exclude spectra
that have only minimal similarity, e.g. M679.43T1051.39 with a cosine similarity of only 0.0008 (the last element
in the vector).

In the second example, we generate a new speclist, e.g. from a spectral library. We look at the unknown feature
that has most similarity to pyocyanin. As pyocyanin is contained in annotatedSpeclist itself, we have to look
at the second highest similarity. Again, we use getSpectrum() to extract the object from annotatedSpeclist:

highest_sim <- sort(sim_pyo, decreasing = TRUE) [2]

sim_spec <- getSpectrum(annotatedSpeclist, "id", names(highest_sim))
sim_spec

#> An object of class "MSZ2spectrum"

#> id: M255.08T482.73

#> annotation:

#> precursor: 255.0761

#> retention time: 482.73

#> polarity: positive

#> MS2 spectrum with 5 fragment peaks

#> mneutral loss pattern with 3 neutral losses

We see that the feature is not annotated. We are interested whether this feature also shows similarity to other
members of the phenazine family of P. aeruginosa secondary metabolites. Some phenazines are contained in
annotatedSpeclist but some are not, so we make a new speclist called phenazines and add the missing
spectra manually from an in-house library:

phenazines <- list()
phenazines[[1]] <- getSpectrum(annotatedSpeclist,

"annotation", "pyocyanin")
getSpectrum(annotatedSpeclist,

"annotation", "phenazine-1-carboxamide")
getSpectrum(annotatedSpeclist,

phenazines[[2]] <-

phenazines[[3]] <-

"annotation", "phenazine-1-carboxylic acid")
phenazines[[4]] <- getSpectrum(annotatedSpeclist,
"annotation", "phenazine-1,6-dicarboxylic acid")

phenazines[[5]] <- new("MS2spectrum", id = "lib_entry_1",
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annotation = "l1-hydroxyphenazine",
spectrum = matrix(c(168.0632, 14,
169.0711, 288,
170.0743, 33,
179.0551, 62,
197.0653, 999),
byrow = TRUE,

ncol = 2))
phenazines[[6]] <- new("MS2spectrum", id = "lib_entry_2",
annotation = "2-hydroxy-phenazine-1-carboxylic acid",

spectrum = matrix(c(167.0621, 43,
179.0619, 93,
180.0650, 12,
195.0564, 40,
223.0509, 999,
224.0541, 142,
241.0611, 60),
byrow = TRUE,

ncol = 2))
phenazines[[7]] <- new("MS2spectrum", id = "lib_entry_3",
annotation = "pyocyanin (library spectrum)",

spectrum = matrix(c(168.0690, 58,

183.0927, 152,
184.0958, 19,
196.0640, 118,
197.0674, 15,
211.0873, 999,
212.0905, 145),

byrow = TRUE,

ncol = 2))

getSimilarities(sim_spec, phenazines, hits_only = FALSE)
#> M211.09T382.17 M224.08T640.69 M225.07T698.07 M269.06T708.74 Lib_entry_1

#> 0.6451546 0.0000000 0.0000000 0.0000000 0.0000000
#> lib_entry_2 lib_entry_3
#> 0.0000000 0.6375061

As a result, we get the interesting information that the MS? spectra similarity of our unknown feature seems to be
specific to pyocyanin (both the experimental and the library spectrum).

Convert MSnbase objects to class MS2spectrum

The MSnbase package—which is commonly used for proteomics applications and is also associated with XCMS3—
has two classes for (MS?) spectra, Spectrum and Spectrum2 which contain spectra along with metainformation.
These metainformation differ from those contained in MS2spectrum objects and are not very well suited for
metabolomics applications. Still, it is possible to use CLuMSID functions with objects of those two classes by
converting them to MS2spectrum objects using as.MS2spectrum():

CluMSID_object <- as.MS2spectrum(MSnbase_object)
# or alternatively
CluMSID_object <- as(MSnbase_object, "MS2spectrum")
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Split polarities from polarity-switching runs

As polarity-switching and similar methords are gaining importance in LC-MS/MS metabolomics, CLuMSID offers
the possibility to process LC-MS/MS data containing spectra of different polarities. As spectra from positive and
negative ionisation show different fragmentation mechanisms and patterns, it does not appear to be useful to
compare spectra of different polarity to each other. Therefore, CLuMSID provides a function to separate positive
and negative spectra from each other. This has to be done in the very beginning of the analysis to not interfere
with spectral merging. Positive and negative spectra can than be processed independently from each other as
shown above.

A schematic workflow would look like this:

raw_list_mixedpolarities <- extractMS2spectra('raw_file_mixedpolarities.mzXML")

raw_list_positive <- splitPolarities(raw_list_mixedpolarities, "positive")
raw_list_negative <- splitPolarities(raw_list_mixedpolarities, "negative")

speclist_positive <- mergeMS2spectra(raw_list_positive)
speclist_negative <- mergeMS2spectra(raw_list_negative)

. and so on as described in this tutorial.

Use MS! pseudospectra instead of or in addition to MS? data

MS?! pseudospectra are groups of peaks/ions that derive or are assumed to derive from the same compound. They
consist of peaks for in-source fragment, adducts etc. Pseudospectra can contain structural information about
analytes, e.g. about moieties that easily fragment even in MS! mode without CID. Thus, it might sometimes be
useful to study similarities between pseudospectra analogously to those between MS? spectra. C1uMSID makes use
of the CAMERA package to assign peaks to pseudospectra. A custom S4 class named pseudospectrum is used
which is very similar to the MS2spectrum class. For obvious reasons, it does not contain a precursor ion m/z slot
and thus no neutral loss pattern, either. The pcgroup defined by CAMERA is used as ID, an annotation can be
added if desired.

Extract pseudospectra

To extract pseudospectra, you first have to process your data using the CAMERA package, either in R or via
XCMSonline, where this is done automatically. There are two possibilities to use the extractPseudospectra()
function in CLuMSID: either with an xsAnnotate object which you generate with CAMERA in R or with a data.frame
that contains data on m/z, retention time, intensity and pcgroup, e.g. the results table from XCMSonline.

The latter is demonstrated with the XCMSonline results table already used to generate a peak table. If the column
names are not changed, the data.frame can be supplied as-is and intensity_columns does not have to be
specified. We want to exclude pseudospectra that have only one peak, so we set min_peaks = 2.

pstable <-
read_delim(file = system.file("extdata",
"TDO35_XCMS.annotated.diffreport.tsv",
package = "CluMSIDdata"),
delim = "\t")

pseudospeclist <- extractPseudospectra(pstable, min_peaks = 2)

As a result, we get a list with 198 pseudospectra that we can now process further.
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Create distance matrix for pseudospectra

The creation of a distance matrix is analogous to the procedure for MS? spectra:

pseudodistmat <- distanceMatrix(pseudospeclist)

Generate a correlation network for pseudospectra

The distance matrix can now be used for MDS, clustering and correlation networks just like described above. For
demonstration, we generate a correlation network:

networkplot (pseudodistmat, show_labels = TRUE, exclude_singletons = TRUE)

Figure A-12: Correlation network plot based on similarities of pseudospectra of the example data set. Grey dots indicate
non-identified features, orange dots identified ones. Labels display CAMERA's pseudospectra IDs. Edge widths are proportional
to spectral similarity of the connected features.

With the exclusion of singletons, we get a much less busy plot than for MS? data but we still find quite a few
connections that may prove informative.
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Introduction

Although originally developed for high resolution LC-MS/MS data, CluMSID can also be used to find similarities
in GC-EI-MS data, i.e. data from hard ionisation mass spectrometry.

As the peak picking and spectral merging differs considerably from data dependent ESI-MS/MS, we cannot use
the standard C1uMSID functions extractMS2spectra() and mergeMS2spectra(). In fact, the analysis of mass
spectra from hard ionisation mass spectrometry resembles the one of MS! pseudospectra in ESI-MS. Thus, we can
use the CluMSID function extractPseudospectra() in conjunction with pseudspectra generated by the CAMERA
package.

Since xcms and CAMERA sometimes have difficulties in handling GC-EI-MS data, we use the metaMS package that
enables workflows specialised to the analysis of such data. We also require the metaMSdata package from which
we import the FEMSsettings object that contains xcms and CAMERA settings for GC-EI-MS data.

library (CluMSID)
library(CluMSIDdata)
library (metaMS)
library(metaMSdata)
data(FEMsettings)

Data import and preprocessing

As example data, we use GC-EI-MS metabolomics data from pooled cell extracts of Pseudomonas aeruginosa
measured on a Thermo Scientific ITQ linear ion trap that has been converted to netCDF using Thermo Xcalibur.
A netCDF file is available in the CluMSIDdata package:

pool <- system.file("extdata",
"1800802_TD_pool_total_1.cdf",
package = "CluMSIDdata")

To generate a list of (pseudo)spectra, we first need an xsAnnotate object as generated by CAMERA. In the case of
GC-MS data, it is more convenient to use to use the metaMS function runCAMERA () than actual CAMERA functions.
metalMS: : TunCAMERA requires an xcmsSet object which we generate by using xcms: : xcmsSet on our netCDF
file (we can do that in one go). We used standard GC-MS settings for runCAMERA () as they are proposed in the
metaMs vignette.
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xA <- runCAMERA (xcmsSet (pool),
chrom = "GC",
settings = metaSetting(TSQXLS.GC, "CAMERA"))

Extraction and annotation of spectra

From the xsAnnotate object, we can now extract the (pseudo)spectra using the CluMSID function
extractPseudospectra() function as we would do for MS! pseudospectra from LC-ESI-MS data.

pslist <- extractPseudospectra(xA, min_peaks = 0)

Adding annotations is not as easy as with LC-(DDA-)MS/MS data, because only the retention time and the
spectrum itself describe the feature and no precursor m/z is available. Thus, feature annotations/identifications
made in a different programme, in this case MetaboliteDetector, have to be compared to the spectra in the pslist
object.

Like with LC-(DDA-)MS/MS data, we can use writeFeaturelist() and addAnnotations() to add external
annotations. The table output from writeFeaturelist () will give NA for all precursor m/z.

writeFeaturelist(pslist, "GC_pre.csv")

To facilitate manual annotation, it helps to plot the spectra along with the relevant information for every
feature/pseudospectrum. That can be done by CluMSID's specplot function:

specplot(pslist[[27]1])

id: 27 - rt: 1688.462

169.1001

0.8 1.0
|

0.6
|

0.4

315.0071

170.p127 360.983

intensity relative to base peak

0.0

0 100 200 300

m/z

Figure B-1: Barplot for pseudospectrum 27, displaying fragment m/z on the x-axis and intensity normalised to the
maximum intensity on the y-axis.
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In this example, we load the list of feature annotations from CluMSIDdata:

apslist <- addAnnotations(featlist
annolist

pslist,
system.file("extdata",
"GC_post.csv",
package = "CluMSIDdata"))

Generation of distance matrix

This list of spectra in turn serves as an input for distanceMatrix (). As we are dealing with low resolution data,
we have to adjust the m/z tolerance. The default value, 10ppm, is suitable for time-of-flight mass spectrometers
while linear ion traps or single quadrupoles which are commonly used in GC-EI-MS only have unit mass resolution,
equivalent to a relative mass error of 0.02 to 0.001 depending on the m/z of the analyte. We chose 0.02 to be
tolerant enough for low molecular weight analytes:

pseudodistmat <- distanceMatrix(apslist, mz_tolerance = 0.02)

Data exploration

Starting from this distance matrix, we can use all the data exploration functions that C1uMSID offers. In this
example workflow, we look at a cluster dendrogram:

HCplot(pseudodistmat, type = "heatmap",
cexRow = 0.3, cexCol = 0.3,
margins = c(7,7))
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Figure B-2: Symmetric heat map of the distance matrix displaying pseudospectra similarities of the GC-EI-MS example
data set along with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour encoding is
shown in the top-left insert.

It is directly visible that the resulting clusters are not as dense as with the LC-MS/MS example data. In turn,
there are more between-cluster similarities.
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This also shows in the correlation network, resulting in a chaotic plot when used with the default minimal similarity
of 0.1:

networkplot (pseudodistmat, highlight_annotated = TRUE,
show_labels = TRUE, exclude_singletons = TRUE)
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Figure B-3: Correlation network plot based on pseudospectra similarities of the GC-EI-MS example data set, generated
with the default similarity threshold of 0.1. Grey dots indicate non-identified features, orange dots identified ones. Labels
display feature IDs, along with feature annotations, if existent. Edge widths are proportional to spectral similarity of the

connected features.
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By choosing a higher similarity threshold of e.g. 0.4, it is far easier to identify clusters:
networkplot (pseudodistmat, highlight_annotated = TRUE,

show_labels = TRUE, exclude_singletons = TRUE,
min_similarity = 0.4)
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Figure B-4: Correlation network plot based on pseudospectra similarities of the GC-EI-MS example data set, generated
with the custom similarity threshold of 0.4. Grey dots indicate non-identified features, orange dots identified ones. Labels
display feature IDs, along with feature annotations, if existent. Edge widths are proportional to spectral similarity of the

connected features.

Presumably, the high between-cluster similarities are due to the low resolution data and the resulting fact, that

fragment with different chemical composition but same unit resolution mass cannot be distinguished.

B-6



We can also use hierarchical clustering to identify clusters of similar (pseudo-)spectra. Here, too, we have to adjust
h to account for higher between-cluster similarities:
HCplot (pseudodistmat, h = 0.7)
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Figure B-5: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on pseudospectra similarities of the GC-EI-MS example data set. Each leaf represents one feature and

colours encode cluster affiliation of the features. Leaf labels display feature IDs, along with feature annotations, if existent
Distance from the central point is indicative of the height of the dendrogram.

We see that e.g. octadecanoic acid, hexadecanoic acid and dodecanoic acid form a nice cluster as well as the
phosphorate containing metabolites phosphoenolpyruvic acid, glyceric acid-3-phosphate, glycerol-3-phosphate and
phosphoric acid itself.
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It is also apparent that some features have a similarity of 1 and could therefore represent the same compound, like
e.g. the features 98, 67 and 72. Those three features cluster together with AMP and UMP, suggesting that they
could be nucleotides as well.

To illustrate the use of CluMSID's accessory function with this type of data, we take another look at nucleotides:
A signature fragment for nucleotides in GC-EI-MS is m/z 315 that derives from pentose-5-phosphates. We see
this fragment in Figure 1, the spectrum of UMP (derivatised with 5 TMS groups). We can use findFragment to
see if there are more spectra outside the cluster that freature this fragment. As we deal with unit masses, we
would like to find m/z of 315 4+ 0.5 which we can do by setting tolerance = 0.5/315:

fragmentlist <- findFragment(apslist, mz = 315, tolerance = 0.5/315)
#> 6 spectra were found that contain a fragment of m/z 315 +/- 1587.30158730159 ppm.

vapply(X = fragmentlist, FUN = accessID, FUN.VALUE = integer(1))
#> [1] 2 14 20 21 27 35

We find four more spectra that contain a 315 fragment that could be investigated closer.

Conclusion
In conclusion, every annotation method is extremely limited if only low resolution data is available and so is

CluMSID. Still, we see that the tool works independently of chromatography and mass spectrometry method and
even has the potential to give some good hints for feature annotation in GC-EI-MS metabolomics.
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Introduction

Although originally developed for liquid chromatography-tandem mass spectrometry (LC-MS/MS) data, CLuMSID
can also be used with direct infusion-tandem mass spectrometry (DI-MS/MS) data.

Generally, the missing retention time dimension makes feature annotation in metabolomics harder but if only direct
infusion data is at hand, C1luMSID can help to get an overview of the chemodiversity of a sample measured by
DI-MS/MS.

In this example, we will use a similar sample (1L Pseudomonas aeruginosa PA14 cell extract) as in the General
Tutorial, measured on the same machine, a Bruker maxisHP qTOF operated in ESI-(+) mode with auto-MS/MS
but without chromatographic separation.

Data import

We load the file from the CluMSIDdata package:

library (CluMSID)
library(CluMSIDdata)

DIfile <- system.file("extdata",
"PA14 maxis DI.mzXML",
package = "CluMSIDdata")

Data preprocessing

The extraction of spectra works the same way as with LC-MS/MS data:

ms2list <- extractMS2spectra(DIfile)
length(ms2list)
#> [1] 373

Merging of redundant spectra is less straightforward when retention time is not available. Depending on the

MS/MS method it can be next to impossible to decide whether two spectra with the same precursor m/z and
similar fragmentation patterns derive from the same analyte or from two different but structurally similar ones.
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In this example, we would like to merge spectra with identical precursor ions only if they were recorded one right
after another. We can do so by setting rt_tolerance to 1 second:

featlist <- mergeMS2spectra(ms2list, rt_tolerance = 1)
length(featlist)
#> [1] 349

We see that we have hardly reduced the number of spectra in the list. If we would decide to merge all spectra
with identical precursor m/z from the entire run, we could do so by setting rt_tolerance to the duration of the
run, in this case approx. 250 seconds:

testlist <- mergeMS2spectra(ms2list, rt_tolerance = 250)
length(testlist)
#> [1] 75

The resulting number of spectra is drastically lower but the danger of merging spectra that do not actually derive
from the same analyte is also very big.

Generation of distance matrix

In this very explorative example, we skip the integration of previous knowledge on feature identities and generate a
distance matrix right away:

distmat <- distanceMatrix(featlist)

Data exploration

Starting from this distance matrix, we can use all the data exploration functions that CluMSID offers. In this
example workflow, we look at a cluster dendrogram:

HCplot(distmat)
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Figure C-1: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS? spectra similarities of the DI-MS/MS example data set. Each leaf represents one feature and colours
encode cluster affiliation of the features. Leaf labels display feature IDs, along with feature annotations, if existent. Distance
from the central point is indicative of the height of the dendrogram.

It is directly obvious that we have some spectra that are nearly identical and thus most likely derive from the
same analyte, e.g. the many spectra with a precursor m/z of 270.19. But we still see nice clustering of similar
spectra with different precursor m/z, e.g. the huge gray cluster that contains a lot of different alkylquinolone type
metabolites (see General Tutorial).
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Conclusion

In conclusion, C1uMSID is very useful to provide an overview of spectral similarities within DI-MS/MS runs but
wherever annotation is in the focus, one should not do without the additional layer of information created by

chromatographic separation.
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Introduction

As described in the GC-EI-MS tutorial, CluMSID can also be used to analyse low resolution data—although using
low resolution data comes at a cost.

In this example, we will use a similar sample (1pL Pseudomonas aeruginosa PA14 cell extract) as in the General
Tutorial, measured with similar chromatography but on a different mass spectrometer, a Bruker amaZon ion trap
instrument operated in ESI-(4+) mode with auto-MS/MS. In addition to introducing a workflow for low resolution
LC-MS/MS data, this example also demonstrates that CluMSID can work with data from different types of mass
spectrometers.

Data import

We load the file from the CluMSIDdata package:

library (CluMSID)
library(CluMSIDdata)

lowresfile <- system.file("extdata',
"PA14 amazon_lowres.mzXML",
package = "CluMSIDdata")

Data preprocessing

The extraction of spectra works the same way as with high resolution LC-MS/MS data:

ms2list <- extractMS2spectra(lowresfile)
length(ms2list)
#> [1] 1989

Like in the GC-EI-MS example, we have to adjust mz_tolerance to a much higher value compared to high
resolution data, while the retention time tolerance can remain unchanged.

featlist <- mergeMS2spectra(ms2list, mz_tolerance = 0.02)
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length(featlist)
#> [1] 525

We see that we have similar numbers of spectra as in the General Tutorial, because we tried to keep all parameters
except for the mass spectrometer type comparable.

Generation of distance matrix

As we do not have low resolution spectral libraries at hand, we skip the integration of previous knowledge on
feature identities in this example and generate a distance matrix right away:

distmat <- distanceMatrix(featlist)

Data exploration

Starting from this distance matrix, we can use all the data exploration functions that CLuMSID offers.

When we now make an MDS plot, we learn that the similarity data is very different from the comparable high
resolution data:

MDSplot(distmat)
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Figure D-1: Multidimensional scaling plot as a visualisation of MS? spectra similarities of the low resolution LC-MS/MS
example data set. Black dots signify spectra from unknown metabolites.
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To get a better overview of the data and the general similarity behaviour, we create a heat map of the distance
matrix:

HCplot(distmat, type = "heatmap",
cexRow = 0.1, cexCol = 0.1,

m W W 1T
il i

Color Key

le+05

Count
60000

,f“| M iﬁ M

0 20000

T T T T
0.2 0.4 0.6 0.8 1
1 - spectral similarity

o

Figure D-2: Symmetric heat map of the distance matrix displaying MS? spectra similarities of the low resolution LC-MS/MS
example data set. along with dendrograms resulting from hierarchical clustering based on the distance matrix. The colour
encoding is shown in the top-left insert.

We clearly see that the heat map is generally a lot “warmer” than in the General Tutorial (an intuition that is
supported by the histogram in the top-left corner), i.e. we have a higher general degree of similarity between
spectra. That is not surprising as the m/z information has much fewer levels than in high resolution data and
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fragments of different sum formula are more likely to have indistinguishable mass-to-charge ratios.

We also see that some more or less compact clusters can be identified. This is easier to inspect in the dendrogram
visualisation:

HCplot(distmat, h = 0.8, cex = 0.5)
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Figure D-3: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS? spectra similarities of the low resolution LC-MS/MS example data set. Each leaf represents one
feature and colours encode cluster affiliation of the features. Leaf labels display feature IDs. Distance from the central
point is indicative of the height of the dendrogram.
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Conclusion

In conclusion, CluMSID is capable of processing low resolution LC-MS/MS data and if high resolution data is not
available, it can be very useful to provide an overview of spectral similarities in low resolution data, thereby helping
metabolite annotation if some individual metabolites can be identified by comparison to authentic standards.
However, concerning feature annotation, high resolution methods should always be favoured for the many benefits
they provide.
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Introduction

In this tutorial, we would like to demonstate the use of CluMSID with a publicly available LC-MS/MS data set
deposited on MetabolLights. We chose data set MTBLS433 that can be accessed on the Metabolights web page
(https://www.ebi.ac.uk/metabolights/MTBLS433) and which has been published in the following article:

Kalogiouri, N. P., Alygizakis, N. A., Aalizadeh, R., & Thomaidis, N. S. (2016). Olive oil authenticity studies by
target and nontarget LC-QTOF-MS combined with advanced chemometric techniques. Analytical and bioanalytical
chemistry, 408(28), 7955-7970.

The authors analysed olive oil of various providence using reversed-phase ultra high performance liquid
chromatography-electrospray ionisation quadrupole time of flight tandem mass spectrometry in negative mode
with auto-MS/MS fragmentation.

As a representative pooled sample is not provided, we will combine MS? data from several runs and use the peak
picking done by the authors of the study for the merging of MS? spectra. Some metabolite annotations are also
included in the MTBLS433 data set which we will integrate into our analysis.

library(CluMSID)
library(CluMSIDdata)
library(tidyverse)

Extract MS? spectra from multiple *.mzML files

For demonstration, not all files from the analysis will be included into the analysis. Four data files from the data
set have been chosen that represent olive oil samples from different regions in Greece:

= YH1_GA7_01_10463.mzML: YH1, from Komi

= AX1_GB5_01_10470.mzML: AX1, from Megaloxori

= LP1_GB3_01_10467.mzML: LP1, from Moria

= BR1_GB6_01_10471.mzML: BR1, from Agia Paraskevi

Note that these are mzML files that can be processed the exact same way as mzXML files.
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Furthermore, we would like to use the peak picking and annotation data from the original authors which we can
read from the file m_mtbls433_metabolite_profiling mass_spectrometry_v2_maf.tsv.

First, we extract MS? spectra from the respective files separately by using extractMS2spectra(). Then, we just
combine the resulting lists into one list using base R functionality:

YH1 <- system.file("extdata", "YH1_GA7_01_10463.mzML",
package = "CluMSIDdata")

AX1 <- system.file("extdata", "AX1_GB5_01_10470.mzML",
package = "CluMSIDdata")

LP1 <- system.file("extdata", "LP1_GB3_01_10467.mzML",
package = "CluMSIDdata")

BR1 <- system.file("extdata", "BR1_GB6_01_10471.mzML",
package = "CluMSIDdata")

YH1list <- extractMS2spectra(YH1)
AX1list <- extractMS2spectra(AX1)
LP1list <- extractMS2spectra(LP1)
BR1list <- extractMS2spectra(BR1)

raw_oillist <- c(YH1list, AX1list, LP1list, BR1list)

Merge spectra with external peak list

First, we import the peak list by reading the respective table and filtering for the relevant information. We only
need the columns metabolite_identification, mass_to_charge and rentention_time and we would like
to replace "unknown" with an empty field in the metabolite_identification column. Plus, the features do
not have a unique identifier in the table but we can easily generate that from m/z and RT. Note that the retention
time in the raw data is given in seconds and in the data table it is in minutes, so we have to convert. For the sake
of consistency, we also change the column names. We use tidyverse syntax but users can do as they prefer.

raw_mtbls_df <- system.file("extdata",
"m_mtbls433_metabolite_profiling_mass_spectrometry_v2_maf.tsv",
package = "CluMSIDdata")

mtbls_df <- readr::read_delim(raw_mtbls_df, "\t") %>%
mutate (metabolite_identification =
str_replace(metabolite_identification, "unknown", "")) %>%
mutate(id = pasteO0("M", mass_to_charge, "T", retention_time)) %>’
mutate(retention_time = retention_time * 60) %>
select(id,
mass_to_charge,
retention_time,
metabolite_identification) %>%
rename(mz = mass_to_charge,
rt = retention_time,
annotation = metabolite_identification)

This peak list, or its first three columns, can now be used to merge spectra. We exclude spectra that do not
match to any of the peaks in the peak list. As we are not very familiar with instrumental setup, we set the limits
for retention time and m/z deviation a little wider. To make an educated guess on mass accuracy, we take a
look at an identified metabolite, its measured m/z and its theoretical m/z. We use arachidic acid [M-H]~, whose
theoretical m/z is 311.2956:
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## Define theoretical m/z
th <- 311.2956

## Get measured m/z for arachidic acid data from mtbls_df
ac <- mtbls_df %>%

filter (annotation == "Arachidic acid") %>%

select (mz) %>%

as.numeric()

## Calculate relative m/z difference in ppm
abs(th - ac)/th * 1e6
#> [1] 28.91143

So, we will work with an an m/z tolerance of £30ppm (which seems rather high for a high resolution mass
spectrometer).

0illist <- mergeMS2spectra(raw_oillist,
peaktable = mtbls_df[,1:3],
exclude_unmatched = TRUE,
rt_tolerance = 60,
mz_tolerance = 3e-5)

Add annotations

To add annotations, we use mtbls_df as well, as described in the General Tutorial:

fl <- featureList(oillist)
f1_annos <- dplyr::left_join(fl, mtbls_df, by = "id")

annolist <- addAnnotations(oillist, fl_annos, annotationColumn = 6)

Generate distance matrix

For the generation of the distance matrix, too, we use an m/z tolerance of £30ppm:

distmat <- distanceMatrix(annolist, mz_tolerance = 3e-5)

Explore data

To explore the data, we have a look at a cluster dendrogram:

HCplot(distmat, h = 0.7, cex = 1)
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Figure E-1: Circularised dendrogram as a result of agglomerative hierarchical clustering with average linkage as agglomeration
criterion based on MS? spectra similarities of the MTBLS433 LC-MS/MS example data set. Each leaf represents one
feature and colours encode cluster affiliation of the features. Leaf labels display feature IDs. Distance from the central
point is indicative of the height of the dendrogram.

Since it was not in the focus of their study, the authors identified only a few metabolites. If we look at the positions
of these metabolites in the cluster dendrogram, we see that the poly-unsaturated fatty acids alpha-linolenic acid
and alpha-linolenic acid are nicely separated from the saturated fatty acids stearic acid and arachidic acid. We

would expect the latter to cluster together but a look at the spectra reveals that stearic acid barely produces any
fragment ions and mainly contains the unfragmented [M—H]~ parent ion:
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specplot(getSpectrum(annolist, "annotation", "Stearic acid"))
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Figure E-2: Barplot for the feature M283.2642T14.62, identified as stearic acid, displaying fragment m/z on the x-axis and
intensity normalised to the maximum intensity on the y-axis.

In contrast, arachidic acid produces a much richer spectrum:

specplot(getSpectrum(annolist, "annotation", "Arachidic acid"))
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Figure E-3: Barplot for the feature M311.3046T15.1, identified as arachidic acid, displaying fragment m/z on the x-axis
and intensity normalised to the maximum intensity on the y-axis.

Inspecting the features that cluster close to arachidic acid shows that many of them have an exact m/z that
conforms with other fatty acids of different chain length or saturation (within the m/z tolerance), e.g. the
neighbouring feature M339.2125T15.32 that could be arachidonic acid [M+CI|".

Looking at oleic acid [M—H]~, we see that it clusters very closely to M563.5254T13.93, whose m/z is consistent
with oleic acid [2M-H]" and some other possible adducts.
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As a last example, the only identified metabolite that does not belong to the class of fatty acids is acetosyringone,
a phenolic secondary plant metabolite. It forms part of a rather dense cluster in the dendrogram, suggesting high
spectral similarities to the other members of the cluster. It would be interesting to try to annotate more of these
metabolite to find out if they are also phenolic compounds.

Conclusion

In conclusion, we demonstrated how to use CLuMSID with a publicly available data set from the MetabolLights
repository and how to include external information such as peak lists or feature annotations into a CluMSID
workflow. In doing so, we had a look on a few example findings that could help to annotate more of the features in
the data set and thereby showed the usefulness of C1uMSID for samples very different from the ones in the other
tutorials.
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