
Supplementary Material for Sstack : An R Package for Stacking

with Applications to Scenarios Involving Sequential Addition of

Samples and Features.

1 Detailed Stacking Results

Gene Expression (GE) features and Area under the Dose-Response Curve (AUC) data have been retrieved
from the Cancer Cell Line Encyclopedia (CCLE) [Barretina et al., 2012] database for 490 samples. These
samples are distributed into datasets using the diagram shown in figure 1. To simulate a condition in which
sequential stacking is beneficial, features are distributed such that each Horizontal (Hi) model has an equal
number while the samples are distributed using two separate schema. In the first schema, samples are evenly
split among all Vertical (Vi) models while in the second schema, the lowest Vertical model (Vn) is biased such
that it is has a larger portion of the samples. To estimate the error of our model we leave out 20% of the
sample data for testing and use the remaining for training. After building both the individual and stacked
models, the mean-square error (MSE) is calculated for the hold out test data. This process is repeated 100
times, randomly reassigning the features and samples to different groups. The final reported error is the
average over all 100 iterations.
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Figure 1: Illustration of Stacking Heterogeneous Data Sets Problem.

1.1 Bootstrap Stacking

We randomly but evenly divide the chosen features into 4 separate data sets shown in Figure 1. The number
of bootstrap iteration, Nbs, is determined heuristically by randomly select 300 samples for training and
then another 100 for testing. After estimating the error this process is repeated 500 times with a new
training/testing set in each iteration before increasing Nbs and then repeating the experiment. The mean-
square error (MSE) estimates of the stacked model predictions for changing Nbs is shown in figure 2. We note
that horizontal stacking outperforms the other methods even for small Nbs and MSE reaches a saturation
point at around Nbs = 25. As such that an Nbs of 25 is chosen for the remaining experiments utilizing CCLE
alone.
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Figure 2: Mean square error (MSE) of 4-Layer Horizontal (Hs), Vertical (Vs), and L (Ls) Stacked Models
with varying number of Bootstrap Iterations.

1.2 Stacking of Unbiased Datasets

We start our analysis by evenly splitting samples among the vertical datasets. For example, for n = 2, 400
training samples and 300 features, there would be two Horizontal datasets, one with a maximum size of
400 × 150 and the second with a size of 200 × 150 while the two Vertical datasets have a size of 200 × 150
and 400× 300.

Results for n = 2 layer stacking is shown in figure 3. The sub figures show the estimated MSE for each
type of individual (H1, V 1, etc.) model as well as the different methods of stacking associated with the
corresponding set. In addition, sub-figure (d) provides a comparison of all the different methods of stacking
as well as a comparison with imputing the missing data with the KNN impute method [Liew et al., 2011].
For 2-layer stacking, the stacked model always provides an improvement to model accuracy, even with a
relatively small number of training samples. Additional comparisons for 4 and 6 layer stacking is given in
figures 4 and 5 respectively. Unlike in 2 layer stacking, we note that stacking does not always provide an
improvement in model accuracy without a sufficient number of training samples. The amount will heavily
depend on the number of datasets being stacked, for example in 4 layer stacking (figure 4a) improvement
can not be inferred until at least 280 training samples while in 6 layer stacking (figure 5a) approximately
380 samples are needed.

2



250 300 350

Training Samples

0.0135

0.014

0.0145

0.015

0.0155

0.016

M
S

E

Horizontal Stacking
H

1

H
2

H
s

(a) Horizontal

250 300 350

Training Samples

0.0135

0.014

0.0145

0.015

0.0155

0.016

M
S

E

Vertical Stacking
V

1

V
2

V
s

(b) Vertical
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(d) All Stacked

Figure 3: Mean-square Error analysis of individual stacking methods (a-c) as well as a comparison of stacked
models verses KNN impute (d) for 2-layer stacking of CCLE data. Samples are distributed evenly across the
layers.
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(b) Vertical
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(d) All Stacked

Figure 4: Mean-square Error analysis of individual stacking methods (a-c) as well as a comparison of stacked
models verses KNN impute (d) for 4-layer stacking of CCLE data. Samples are distributed evenly across the
layers.
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(d) All Stacked

Figure 5: Mean-square Error analysis of individual stacking methods (a-c) as well as a comparison of stacked
models verses KNN impute (d) for 6-layer stacking of CCLE data. Samples are distributed evenly across the
layers.
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1.3 Stacking of Biased Datasets

In contrast to section 1.2, the datasets have been biased in this section such that every vertical layer, with
the exception of the lowest layer, contains 1/(n+ 1) fraction of the samples while the lowest layer contains
the remaining 2/(n + 1) fraction of the samples. As a consequence of this the weights are generated with
a larger amount of samples, improving the number accuracy of the stacked model. To compare with the
previous example, for n = 2 and 400 training samples, our Vertical datasets would be of size of 133 × 150
and the second with a size of 266 × 300. With this partitioning method the number of samples used for
building our linear stacked model increases by a factor of 2n/(n+1). The results for this type of partitioning
for 2, 4, and 6 layer stacking is given in figures 6, 7, and 8 respectively. As anticipated, stacking of these
biased datasets provide a greater increased to performance when compared to the unbiased datasets. We see
that stacking provides improvement at a lower number of training samples and that the overall mean-square
error of the stacked models is lower. For example if we consider Horizontal stacking, in figure 5a we note
that there is no benefit to stacking even at the maximum number of training samples but in figure 8a we see
an approximate 10% decrease in the MSE. Finally, we take note that Horizontal stacking still consistently
outperforms the other methods of stacking.

250 300 350

Training Samples

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

M
S

E

Horizontal Stacking
H

1

H
2

H
s

(a) Horizontal

250 300 350

Training Samples

0.0135

0.014

0.0145

0.015

0.0155

0.016

0.0165

M
S

E

Vertical Stacking
V

1

V
2

V
s

(b) Vertical

250 300 350

Training Samples

0.0135

0.014

0.0145

0.015

0.0155

M
S

E

L Stacking
L

1

L
2

L
s

(c) L

250 300 350

Training Samples

0.013

0.0135

0.014

0.0145

0.015

M
S

E

Stacking Comparison
H

s

V
s

L
s

Knn

(d) All Stacked

Figure 6: Mean-square Error analysis of individual stacking methods (a-c) as well as a comparison of stacked
models verses KNN impute (d) for 2-layer stacking of CCLE data. Samples are biased such that the top
vertical layer has an increased number of samples compared to the remaining layers.
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Figure 7: Mean-square Error analysis of individual stacking methods (a-c) as well as a comparison of stacked
models verses KNN impute (d) for 4-layer stacking of CCLE data. Samples are biased such that the top
vertical layer has an increased number of samples compared to the remaining layers.
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Figure 8: Mean-square Error analysis of individual stacking methods (a-c) as well as a comparison of stacked
models verses KNN impute (d) for 6-layer stacking of CCLE data. Samples are biased such that the top
vertical layer has an increased number of samples compared to the remaining layers.
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2 Example of Stacking GE and RPPA Data

To show a more practical example of stacking, we next stack GE and RPPA data. From both the GE and
RRPA databases, we run RELIEFF to pick the top 150 features. We built the individual and stacked models
using Nbs = 50 to generate the weights. For error estimation, we perform Leave-One-Out cross validation
on the 194 cell lines that have GE and RPPA measurements. Results of performing this stacking is shown in
table 1. We see that all forms of stacking outperforms the best individual model. In addition, we observe as
before that Horizontal stacking outperforms the other two methods of stacking. Finally, simply estimating
the RPPA features with KNN Impute provides no benefit to prediction accuracy.

Table 1: Mean absolute error of predictions from combining GE and RPPA data to predict AUC response
for the drug 17-AAG. Results for individual and stacked models as well as a KNN Impute baseline is shown.
Error estimated utilizing Leave-One-Out validation on a set of 194 overlapping samples.

Horizontal Vertical L KNN Impute
H1/V1/L1 0.7826 0.8159 0.7741 NA
H2/V2/L2 0.8399 0.7797 0.8122 NA

Stacked 0.7381 0.7436 0.7440 0.7885

3 Package Application Example

In this section we demonstrate how a user may utilize the Sstack package with a example. This code stacks
two sets of GE data to predict the AUC for all samples that have been tested with the drug 17-AAG.
Stacking is simulated using an unbiased 2-layer model. The error for both individual and stacked models
are estimated using a held out set of sample (Xt). This data and sample code is included in the package.

# Load in Package and Data
l ibrary ( Sstack )
l ibrary ( d o P a r a l l e l )
data ( StackData )

# Form d i f f e r e n c e d a t a s e t s , on wi th a l l samples w h i l e the o th er on ly has h a l f the samples .
AUC=StackData [ [ 1 ] ]
GE=StackData [ [ 2 ] ]
X1 <− GE[ 1 : 4 0 0 , : ]
X2 <− GE[ 2 0 0 : 4 0 0 , 7 6 : 1 5 0 ]
Xt <− GE[ 4 0 1 : 4 8 7 , ]

# Random seed f o r r e p e a t a b i l i t y
set . seed (1 )

# R e g i s t e r p a r a l l e l c l u s t e r , o p t i o n a l but g r e a t l y i n c r e a s e s speed .
c l <− makeCluster (2 )
r e g i s t e r D o P a r a l l e l ( c l )

# Bui ld the model wi th 100 t r e e s and 50 Boots trap i t e r a t i o n s .
Hbs <− BSstack (T = 100 , i t e r = 50 , Y = AUC, X1 = X1 , X2 = X2)

# P r e d i c t on the t e s t s e t and measure mean a b s o l u t e erro r .
Yp <− BSstack predict (Hbs [ [ 1 ] ] , Xt)
maeH1 <− mean(abs (AUC[401 :487 , ] −Yp [ , 1 ] ) )
maeH2 <− mean(abs (AUC[401 :487 , ] −Yp [ , 2 ] ) )
maeHs <− mean(abs (AUC[401 :487 , ] −Yp [ , 3 ] ) )
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4 Parameter Selection Guidelines

Table 2 provides a summary of the major parameters that should be inputted in our stacking algorithm.
The first set (T, mtry, and nodesize) are the typical parameters found in a Random Forest implementation.
For these parameters, the user may submit only a single value in which case that parameter will apply to
all of the Random Forests that are being stacked; or the user can submit a list of values in which case each
Random Forest will be built with separate parameters. An additional parameter, iter, controls the number of
bootstrap-sampled stacked models used to estimate the weights. Finally, an optional cross-validation (CV )
parameter may be given in order to automatically estimate the error of both the individual and stacked
models utilizing the samples with full record.

Table 2: List of parameters utilized in the Sstack package. The variable type, range of values, default values
and a brief description is given.

Parameter Type Typical Range Default Description
T int [50 500] 100 Number of trees used in building each Random

Forest.
mtry int [5 250] nFeats/3 Number of variables used for splitting at each

tree node.
nodesize int [1 10] 5 Minimum size of terminal nodes.

iter int [10 200] 100 Number of bootstrap samples to take in order
to estimate the stacking weights. Large num-
ber produced more accurate model but with
high training time.

CV int [0 nSamp] NAN Number of folds to separate the overlapping
samples in order to perform cross-validation.
If 0 is given, then leave-one-out validation is
performed instead. If no value is given, then
no cross-validation is performed.

5 Runtime Comparisons

To measure the computational complexity of our package, we compare how the mean runtime of our stacked
models compare to just utilizing KNN impute to build a single Random Forest (RF) model. We perform our
experiments by stacking the 490× 150 GE data with the 194× 150 RPPA data. Tests were performed on a
desktop computer with an Intel Core i7-7700 3.60GHz CPU and 16GB of RAM and the results are shown in
table 3. As evident from this table, we see that the average runtime of our stacked model is approximately
n ∗Nbs/nCore where nCore is the number of cores available. The package has been parallelized using R’s
’parallel’ package but the user must first register the workers beforehand or only a single core implementation
will be used. Future implementations of the Sstack package could include the use of cluster computing
frameworks such as Apache Spark [Zaharia et al., 2016] to further reduce the runtime.

Table 3: Mean runtime of stacked models. Estimated taking the average runtime of 194 models created by
stacking a 490× 150 GE dataset with a 194× 150 RPPA dataset.

Cores nSamp (X1/X2) Nbs nTrees Horizontal Vertical L KNN Impute
2 (490/194) 100 100 59.0s 47.8s 69.7s 1.26s
4 (490/194) 100 100 35.7s 29.0s 42.6s 1.25s
8 (490/194) 100 100 27.8s 22.5s 32.7s 1.47s
8 (490/194) 50 100 14.8s 12.0s 17.3s 1.51s
8 (490/194) 50 50 7.53s 6.24s 9.10s 0.67s
8 (290/94) 100 100 17.6s 15.3s 20.0s 1.03s
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6 Analysis of Stacking

In this section we offer a heuristic reasoning on why we expect the Horizontal stacking to perform better
than its Vertical counterpart.

Denote the RF training dataset as DF = (Y,x). We can view RF prediction as a weighted average of the
individual tree prediction, i.e.,

Ȳ (x) =
1

T

T∑
j=1

n∑
i=1

wi(x,Θj)y(i) (1)

Define the random variable Zj(x,Θj) =
∑n
i=1 wi(x,Θj)y(i), j = 1, 2..., T as the prediction obtained from

the jth tree generated by the Θ− process. Let us assume that the Θ− process induces a valid distribution
on the finite collection

Z(x,Θ) = [Z1(x,Θ1), Z2(x,Θ2), ..., ZT (x,ΘT )] (2)

Now, observe that each tree attempts to predict the target µ(x) = E(Y |x) and the RF predictor, Ȳ (ob-
tained in 1), emerges as the sample average, Z̄ of Z(x). However, finite sample tree predictions are biased
[Zhang and Lu, 2012] resulting in E(Zj(x)) = αj(n) + βj(n)µ(x) and V ar(Zj(x)) = σ2

j j = 1, 2, .., T ,
where the additive and multiplicative biases (αj(n), βj(n), respectively) disappear as n → ∞ under some
smoothness condition on true µ(x) [Biau, 2012]. Note that, in this construction σ2

j can be interpreted as
the variance of individual tree estimates and, therefore, is of the order kn/n where kn is approximately the
number of terminal nodes and n is the number of samples on which the tree is built [Devroye et al., 1996].

For illustration purpose, we assume αj = 0, βj = β > 0 and σ2
j = σ2, j = 1, 2, ..., T . For notational

simplicity, we suppress the arguments n,Θ and x in relevant statistics henceforth. Under the assumption
of Gaussianity and conditional independence, the joint distribution of [Z|µ, β, σ2] is

∏T
j=1Normal(βµ, σ

2).
Next, suppose we have another model, M , potentially operating on a different set of inputs, xm, but
predicting the same response variable Y . We denote the training data for this model M as DM . The output
of this model is µm which is an estimator of E(Y |xm). Now to pool both RF and model M together to
generate predictions of Y , we impose a Normal(µm, τ

2) prior on µ. If M is another ensemble model, τ2 can
be computed in the same vein as σ2.

Therefore the hierarchical specification takes the form

[Z|µ, σ2, β][µ|µm, τ2][σ2, τ2, β] (3)

and the conditional posterior distribution of µ, [µ|σ2, τ2, β,DF ,DM ], turns out to be Normal
(
λ, ν2

)
, where,

ν2 =

(
1

τ2
+
Tβ2

σ2

)−1
, (4)

λ =
Tβτ2

σ2 + Tβ2τ2
Z̄ +

σ2

σ2 + Tβ2τ2
µm. (5)

Note that, the Bayes estimate under square error loss is the posterior mean λ which happens to have similar
form as the linear stacking estimator.

Observe that if σ2 � τ2 and β > 1 then λ ≈ 1
β Z̄. Thus, when the ensembles in RF overpredicts, the

stacking estimator downweighs the RF estimator (with negligible contribution from µm) thereby reducing the
bias. On the other hand, if σ2 � τ2 and 0 < β < 1 then λ ≈ Cβ

1+Cβ2 Z̄ + 1
1+Cβ2µm, where C = Tτ2/σ2 � 1.

In this situation RF ensemble underpredicts but stacking operation counteracts in the following way: (a)
When Cβ ≤ 1, the stacking estimate underweighs RF estimate but adds a non-trivial fraction of µm. In
an extreme situation, when β(∈ R+) is in the neighborhood of 0, the stacking estimator does not put any
weight on the RF estimate and solely uses µm as the prediction, thereby reducing the RF bias. (b) When
Cβ � 1 the stacking estimator upweighs the RF estimate with minimal contribution from µm. Clearly, in
all the three foregoing situation, stacking helps reducing the bias of RF estimates.

What happens when σ2 and τ2 are comparable or σ2 � τ2? Our argument from the previous paragraph
suggests that the debiasing characteristic of stacking operation will critically hinge on T . However, arbitrarily
large T is not useful because after a certain number of trees, individual tree outputs will be correlated hence
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violating the fundamental premise of conditional independence in our setup. Consequently, the effect of
stacking operation on debiasing RF output is ambiguous.

The fact that we need σ2 � τ2 to force the stacking estimator operate as a debiasing devise indicates
that we ought to design the stacking operation in such a way that the above condition is satisfied. Consider
a generic situation where DM consists of n1 independent samples and the feature matrix xm is of dimension
n1 × p1. DF consists on n2 samples and the corresponding feature matrix x is of dimension n2 × (p1 + p2),
such that DF includes all the features observed in DM and also p2 additional features. Since the additional
set of features available in DF may also contain important predictors, we must predict the response utilizing
the entire set of p1 + p2 features. One can easily combine these two training sets by simply stacking RFs
trained on DM and DF . This operation is nothing but vertical stacking. Since both are RF estimators σ2

is of order k./n2 and τ2 is of order k./n1. Since k. is typically user specifed and can be made to remain
constant in both RFs, the variances of the stacking components are essentially determined by the sample
sizes of the respective training set. Clearly, if n2 < n1 the above condition relating the variances of the
stacking components cannot be enforced. One can switch the generic label σ2 and τ2, but in this situation
the stacking operation would be more effective in debiasing the RF estimates obtained from DM - which is
counter-productive because DF contains more information as compared to DM and hence we would like to
put more weight on the RF trained on DF than the other way around.

With our conceptualization of horizontal stacking, we can enforce the variance condition regardless of
the sample sizes of DM and DF . We first partition the feature matrix associated with DF into two parts
xn2×(p1+p2) = (xn2×p1

p1 ,xn2×p2
p2 ). We then train an RF on n1 +n2 samples with feature matrix (xm,xp1)′. If

σ2 is the variance associated with this stacking component, then σ2 is of the order k./(n1 + n2). The other
model is also an RF but trained on n2 samples and feature matrix xp2 . If τ2 is the variance associated with
this stacking component, then τ2 is of the order k./n2. Keeping the number of terminal node constant, we
can easily see σ2 < τ2 and hence we expect horizontal stacking to be more efficient in debiasing than vertical
stacking. Furthermore, as n1, n2 →∞ and β → 1, it is easy to see, from (5), that the variance of horizontal
stacking estimator is smaller than its vertical counterpart.
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