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Computing solvent accessible topological distances

The computationally intensive part of the calculation is the evaluation of topological distances.

The topological distances are obtained, here, by the solution of an optimization problem

consisting on the minimization of a linker length subject subject to not overlapping with the

protein atoms. A sketch of the model used for the definition of the optimization problem is

shown in Figure 1. This strategy to compute surface-accessible distances retains the physical

character of the linker in terms of atoms and, as we will discuss, is adaptive to specific

structural properties of different types of residues.

Reactive atom 2

Reactive atom 1

Linker beads

Structural model atoms

Linker bonds

Figure 1: Representation of the model used for topological distance determination. The

linker is represented by a series of beads attached on extremities to the reactive atoms.

The beads are sequentially bound by harmonic bonds, and repel the protein atoms at

overlapping distances.

.

The linker is computationally defined as a series of beads in space, that is, a series of



points with associated radii. The beads are attached to the reactive atoms defined by the

linktype keyword, and attached to each other, by distance-dependent harmonic potentials.

We use the following functional form for the bond “energy” between beads:

Ubond
ij =

{
k1d

2 if d ≤ d0

k1d
2 + k2(d− d0)

2 if d > d0
(1)

where i and j are the indexes of consecutive beads of the linker, d is the distance between

beads, d0 is a distance parameter of the order of a covalent bond length, and k1 and k2 are

constants, with k2 greater than k1.

The definition of this bond energy has the following justification: The distance d0 is such

that (nb+1)×d0, where nb is the number of beads, is the maximum length of the linker (there

are nb + 1 consecutive bonds between nb beads plus the two reference atoms). Therefore,

if the length is greater than nb + 1 × d0, there must be a penalty for the distention of the

linker, and this penalty might have physical meaning. For instance, if we think of the linked

beads as a simplified representation of the actual linker molecule, the penalty for distension

of the linker must be of the order of the penalty of the distention of the molecule. That

is, with d0 being a distance of the order of a covalent bond, k1 must be of the order of

the force constant of a covalent bond. Stretching the linker more than its maximum length

will be similar to distending the covalent bonds of an actual molecule which has assumed its

maximum length. Typically, this penalization is high. The functional form of the bonds could

be, therefore, simply k2(d − d0)
2 for all distances. However, in this case, the linker length

would always be close to the maximum linker length, and at best one would find linkers with

zero penalty, without obtaining an actual knowledge of the minimum topological distance.

Therefore, there must be a component of energy that promotes the shortening of the linker.

This is guaranteed by, first, eliminating the k2 penalty for pairwise distances smaller than d0,

and using in this case a softer penalty (with constant k1) which is smaller as the distance

between beads decreases. The constant k1 must be soft, because large penalties tighten the

linker and perturb the optimization by frequently causing undesirable overlaps between beads

and model atoms (see below). Finally, the term k1d
2 persists at distances greater than d0 to

preserve the smoothness of the function. The calculation of this energy depends linearly on

the number of atoms of the linker.

The linker beads must not overlap with the model atoms. Here, this restriction is incor-

porated into the objective function. The overlap energy between a linker bead and an atom

is defined as

Uoverlap
ik =

{
koverlap(dmin − d)2 if d ≤ dmin

0 if d > dmin

(2)

where i is the index of the linker bead, k is the index of the structure atom, koverlap is a

constant, d is the current distance between the bead and the atom, and dmin is the distance
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tolerance for overlaps. This overlap function is quadratic for distances shorter than the toler-

ance for overlap and null for distances greater than the overlap distance. Therefore, it is only

affected by short-range interactions of the beads of the linker with structure atoms, and is

exactly zero when no overlaps exist. Despite that it depends on the calculation of distances

to all atoms of the protein, the fact that it is only very short-ranged allows the effective use

of linked cell methods [1], with which the number of distances computed is small and propor-

tional to number of atoms of the linker only. This is the same overlap function used in the

packing program Packmol [3, 4] and is evaluated with the same efficient strategies reported

in [4].

The complete energy function, is therefore,

U = Ubond
A,1 + Ubond

nb,B
+

nb−1∑
i=1

Ubond
i,i+1 +

nb∑
i=1

N∗∑
j=1

Uoverlap
i,j (3)

where the first two terms are bond terms related to the attachment of the first atom of the

linker with the first reactive atom (atom A), and to the attachment of the last atom of the

linker to the second reactive atom (atom B). The third term is the sum over all consecutive

atoms of the linker of the bond energy, and the last term is the sum over all atoms of the

linker and the atoms of the structure of the volume exclusion term. The last sum is indicated

as N∗, where N is the number of atoms of the structure, because the overlap function is not

computed for the side-chain atoms of the reactive residues.

To obtain the minimum topological path between two reactive sites, we solve the opti-

mization problem

minU(~xlinker)

where U is a function of the position of the linker beads. Analytical derivatives are computed

and a Conjugate-Gradient-Newton method of local optimization, as described in [2], is used.

Multiple initial random conformations of the linker are used to obtain the linker of shortest

length. In the current implementation, if the same best path is obtained three times, the

global minimizer is assumed to be found.

To validate the present strategy, we have compared the topological paths obtained with

TopoLink with the paths obtained with Xwalk [5]. Xwalk uses a completely different ap-

proach, consisting of an breadth-first search of paths defined by a sequence of points of

three-dimensional grid defined to not overlap with the structure. Figure 2 displays the topo-

logical distances obtained by Xwalk as a function of the distances obtained by TopoLink, with

default parameters for both methods, for crosslinks of at most 30Å between Lysine residues,

on the surface of a barnase dimer (PDB id. 1BRS) which is provided as the test case for

Xwalk. The methods coincide in 26 of 30 crosslinks found by Topolink. XWalk suggested one

path that was not suggested by Topolink, but this path does not appear to physically justified

as it crosses the protein core. The exact paths and lengths are dependent, on both methods,
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Figure 2: Topological distances obtained with (A) TopoLink [5] and (B) Xwalk for a

barnase dimer (PDB ID. 1BRS). In this case, a linker of 30Å was considered for linking

pairs of Lysine residues. 30 links were found by TopoLink, and 27 were found by Xwalk,

from which 26 are similar to those found by TopoLink. The links which do not coincide

are shown in green, and seem to be physically consistent in the TopoLink search, while

the extra link found by XWalk crosses the protein core. (C) The paths found by TopoLink

are most times shorter than those found by XWalk, particularly for longer links. These

differences are dependent on methodological parameters, which were kept to default values

in both cases.
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on some input parameters that can in principle be adjusted by the user (excluded volume sizes

and convergence criteria, for instance). We have carefully tuned the parameters in TopoLink

such that in the large database comparisons we report the crosslinks found appeared to be

physically consistent. With the final tuned parameters, TopoLink appears to be consistently

more reliable than Xwalk to find accessible paths with physical accuracy. At the same time,

the reasonable degree of coincidence of the methods shows that both strategies are reasonable

enough to be used for model analysis and experimental design.
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