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Methods and Results

Discretizations from GED PRO TOOLS

In Table S1 we show all the discretization methods we use in this study and a brief description of them,
including whether they give binary or multi-level discrete data. Among the 13 different types of unsupervised
discretization methods provided by GED PRO TOOLS in Gallo et al. [2016], iX is also known as “equal
width discretization”, as this discretization splits the data range into X equal width intervals, labels them
between 0 and X − 1, and assigns to each observation the label of its corresponding interval. qX is also
known as “equal frequency discretization”, as the X intervals are drawn so that they have equal number of
observations. Each observation is assigned a value equal to the label of its interval (between 0 and X − 1).
Kmeans clustering separates observations into several clusters, and discretization is based on these clusters.
It is worth noticing that kmeans discretization in GED PRO TOOLS does not choose its initial cluster
centers randomly. Bi-kmeans discretization has a procedure that builds upon kmeans discretization. TopY
discretizes data by assigning the bottom (1−Y%) observations to 0, and the rest to 1. MaxY discretization
assigns 0 to all observations smaller than Y% of the maximum value.
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DREAM3 Yeast In Silico Network

The DREAM3 Yeast In Silico Network is provided by DREAM (Dialogue for Reverse Engineering Assess-
ments and Methods) 3 In Silico Network Challenge (Marbach et al. [2010, 2009], Prill et al. [2010]). We use
the time series from the Yeast Network that contains 100 genes (InSilicoSize100-Yeast1). There are 46 time
series, each of them has 21 time points. The goal is to infer the internal structure of this gene regulatory
network. The DREAM 3 Challenge provides the gold standard of this network. This network was studied by
Li et al. [2014] using time-delayed dynamic Bayesian network (TDBN) from Zou and Conzen [2005]. TDBN
allows time delay when inferring a gene regulatory network. TDBN requires the input data to be binary. In
Li et al. [2014], both area under the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPR) were reported.

Table S2: TDBN Area Under the Receive Operating Characteristic Curve (AUROC) with Different Dis-
cretization Methods and Maximum Time Delay ,DREAM3 Yeast In Silico Network

Maximum Delay
AUROC

mean top75 i2
1 0.5 0.5 0.5
2 0.5 0.5 0.5
3 0.5 0.5 0.5
4 0.5085 0.5176 0.4583
5 0.5085 0.5176 0.4583
6 0.5085 0.5176 0.4583
6 0.5085 0.5176 0.4583
7 0.5085 0.5176 0.4583
8 0.5085 0.5176 0.4583
9 0.5085 0.5176 0.4583
10 0.5085 0.5176 0.4583

Table S2 shows that a maximum delay of 4 is adequate, as either before or after that point, the AUROC
does not change for any discretization. Table S3 depicts Sensitivity and Specificity values for TDBN method
using data discretized by Top75 and Mean.

Table S3: Sensitivity, Specificity, True Positive (TP), False Negative (FN), True Negative (TN), and False
Positive (FP) values of Time-delayed Dynamic Bayesian Network (TDBN), DREAM3 Yeast In Silico Network

Discretization Sensitivity Specificity TP FN TN FP
top75 0.2892 0.7478 48 118 7354 2480
mean 0.2831 0.7271 47 119 7150 2684

Pandapas Network

The Pandapas network is an in silico network of 13 nodes introduced in Camacho et al. [2007]. In this
network, 10 nodes are intrinsic genes (G1 - G10) while other 3 nodes (P1 - P3) represent external pertur-
bations (Figure S1). This network is perturbed by introducing its wild type non-function mutations on G1,
G2, ..., G10, respectively. Here, we only focus on the wildtype network. In Camacho et al. [2007], authors
benchmarked different reverse-engineering algorithms to infer the network under different levels of noise in
the data. We start with noiseless data. Together, there are 8 datasets that are generated with different
initial conditions and different perturbations (P1, P2, P3 being either 0, 0.01, 0.05, 0.1, or 0.5). We use both
BANJO (version 2.2.0) and time-delayed dynamic Bayesian network (TDBN) to infer the Pandapas network
based on 8 datasets with different perturbations. For BANJO, we tested 23 different data discretizations,



including some multi-level discretization methods (bikmeans3, bikmeans4, bikmeans5, kmeans3, kmeans4,
kmeans5, i3, i4, i5, q3, q4, q5). For a given discretization method, we inferred the networks with BANJO
on every one of the 8 dataset separately and considered a consensus network where an edge is considered if
it appears more than twice amongst the 8 inference results. For the network inferred using TDBN, we test
the 11 binary discretizations available in GED PRO TOOLS.

P2 G6

G2

G8

P3 G9

G5

G1

G7G3G10 G4

P1

Figure S1: Pandapas Network from Camacho et al. [2007]. This is a gene network with 10 genes and 3
environmental perturbations (P1, P2, P3). These perturbations can directly affect the expression rate of
gene G1, G2 and G5. Arrow ends mean activation and blunt ends inhibition of the transcription rate.

We present ROC curves of both reverse engineering methods on noiseless data in Figure S2 and their
corresponding ROC plots in Fig 2. We can see that i2 is the best data discretization for both BANJO and
TDBN.

Figure S2: ROC Curves for Pandapas Network using either BANJO or TDBN for network inference. A:
AUROC of networks inferred by BANJO 2.2.0 using data that is discretized in 23 different ways. Amongst
them, i2 gives the maximum AUROC value (0.89983). B: AUROC of networks inferred by TDBN using data
that is discretized in 11 different ways. Amongst them, i2 gives the maximum AUROC value (0.659).



GAL4

GAL80 CBF1

SWI5 ASH1

Figure S3: IRMA Network from Cantone et al. [2009]. This network consist of 5 different genes: gene
GAL80 can be turned off when the environment contains galactose. When galactose is removed from the
environment and the yeasts are treated with glucose, the gene expression of IRMA network is turned on.
Dashed lines represent inhibitory protein-protein interaction, and directed edges with an arrow end represent
activation reactions in the network.

IRMA Network

IRMA network is a synthetic yeast network introduced in Cantone et al. [2009]. This network contains
5 genes, CBF1, GAL4, SWI5, ASH1, GAL80 (Figure S3). It is achieved by pairing genes with different
promoters and depletion of yeast endogenous transcription factors. Gal80-Gal4 interaction is inhibited in
the presence of the glucose. GAL1-10 promoter, cloned upstream of SWI5 gene in the network, is activated
by galactose, and consequently, activate all the five network genes. Expression profiles of these genes were
analyzed by quantitative real-time RT-PCR (q-PCR). Cantone et al. used BANJO (Yu et al. [2004]) as one
of the tools to reverse engineer gene regulatory network from IRMA data. BANJO is a software application
and framework for structure learning of static and dynamic Bayesian networks. BANJO focuses on score-
based structure inference. In BANJO 1.0.4, there is no effective way to change the cut-off threshold when
reporting network. Thereby, we are unable to obtain ROC curves. Thus, we use positive predictive value
(PPV) and sensitivity to measure the performance of BANJO when inputting differently discretized time
series (switch on and switch off) data.

Hepatocytic Cell Signaling Network

The time series data from the Hepatocytic Cell Signaling network was used to infer the network using
cell network optimizer (CNO) in Saez-Rodriguez et al. [2009]. Experimental data is collected from HepG2
hepatocellular carcinoma cells. The network is perturbed by exposing one of seven cytokines in the presence
or absence of seven small-molecule kinase inhibitors. Before inferring the network structure, all experimental
data were normalized, and a prior knowledge network (PKN) was assembled from literature (Terfve et al.
[2012], Morris et al. [2011, 2013], Gaudet et al. [2005], Klamt et al. [2006], Saez-Rodriguez et al. [2007, 2008]).
This prior knowledge network (PNK), shown in Figure S4, contains edges that are reported in literature in
all cell types, thus not all the edges would necessarily exist in HepG2 hepatocellular carcinoma cells. Here,
we use their R packages, CellNOptR and CNORdt, released in 2014, for network structure inference (Terfve
et al. [2012], Saez-Rodriguez et al. [2009]). Cell network optimizer requires binary discretization, and its
default discretization threshold is chosen by the mean value of experimental data after normalizing data
using Hill function (Terfve et al. [2012]). The network is optimized through removing edges or changing
logical relationships (AND & OR) from the prior knowledge network using a genetic algorithm. Optimized
networks are scored through minimizing the mean squared error. In our study, we use Saez-Rodriguez
et al. [2009] normalized data, PKN and their default discretization (mean) for comparison . We compare
our results of other binary discretizations to mean discretization. We further test how the range of size
penalty of cell network optimizer influences the score, which the authors were unable to do but planned to
do when Saez-Rodriguez et al. [2009] was published. Using the same parameters in CNO as the authors



Figure S4: The prior knowledge network (PKN) of hepatocytic Cell Signaling network from Saez-Rodriguez
et al. [2009]. Green boxes represents 6 cytosines that are tested in this study. They could be either present
of absent for each experiment. They influence the function of some proteins directly. Black lines are positive
regulatory relations that are reported in literature, red lines are inhibitory regulations from literature.

did in Saez-Rodriguez et al. [2009], bikmeans2 gives a better results than mean; and still does even if some
parameters change. Further analysis shows reverse engineered network based on bikmeans2 discretization
gives 17 unique edges comparing to the result based on mean discretization. We show detailed networks
optimized using data discretized by bikmeans2, mean, and max50 in Figure S5, S6, and S7, respectively.



Figure S5: Optimized CSR Network, (Lower Bound, Upper Bound) = (0.1, 10), Bikmeans2
Discretization. All the lines shown up are interactions that are reported in literature. Lines with an arrow
end represent activation interactions, lines that are red with a blunt end are inhibitory interactions. Grey
lines and faded red lines are edges removed during optimization. Black lines are positive regulatory relations,
red lines are inhibitory regulations. Green boxes are cytosines. Input data is original data is discretized by
bikmeans2 discretization.



Figure S6: Optimized CSR Network, (Lower Bound, Upper Bound) = (0.1, 10), Mean Dis-
cretization. All the lines shown up are interactions that are reported in literature. Lines with an arrow end
represent activation interactions, lines that are red with a blunt end are inhibitory interactions. Grey lines
are edges removed during optimization. Black lines are positive regulatory relations, red lines are inhibitory
regulations. Green boxes are cytosines. Input data is original data discretized by mean discretization.



Figure S7: Optimized CSR Network, (Lower Bound, Upper Bound) = (0.1, 10), Max50 Dis-
cretization. All the lines shown up are interactions that are reported in literature. Lines with an arrow
end represent activation interation, lines that are red with a blunt end are inhbitory interactions. Grey lines
are edges removed during optimization. Black lines are positive regulatory relations, red lines are inhibitory
regulations. Green boxes are cytosines. Input data is original data discretized by max50 discretization.

The DiscreeTest Algorithm

For two curves, y1 = f(x) and y2 = g(x), x ∈ [a, b], the mathematical formula for area between the curves

(ABC) is defined as ABC(f, g) =
∫ b

a
|f(x)− g(x)|dx. In Figure S8 we can see a graphical representation of

the area between curves f and g.
For a time series from normalized experimental data,

T =

t11 t12 . . . t1m
...

...
. . .

...
tn1 tn2 . . . tnm





where each row is an observation at time point i, 1 ≤ i ≤ n of m different nodes, and n is the total number
of time-series datasets. Let D = (dij)n×m denote the discretized data after normalization (for example, for
a discretization with 3 levels, dij is either 0, 0.5, or 1). We define the mean area between the curves (MA)
as

MA =

∑m
j=1A(tj , dj)

mn

where tj = [t1j , . . . , tnj ]
T , dj = [d1j , . . . , dnj ]

T , 1 ≤ j ≤ m, A(tj , dj) represents the area between the inter-
polated curves from the normalized original data points and the discretized data points between time points
j − 1 and j (see Figure S9 for an example of the area between the interpolated curves). We also define
residue between an original time series after normalization (tj) and discretized and normalized time series
(dj) as rj : rj = tj − dj . DiscreeTest will used rj in the first step (qualification step).

Figure S8: An example of the area between the
curves f and g.

Figure S9: An area between the curves example.
The original data (black line with blue round dots)
is discretized using i2 discretization (blue line with
red squared diamond markers). The area highlighted
in green is the area between the original time series
and i2 discretized time series. Mean area between the
curves is an average of total area between the curves
over time.

The DiscreeTest algorithm consists of 2 steps:
(1) Qualification Step. This step con-
sists on testing whether residues of each node
(rj , 1 ≤ j ≤ m) reject the null hypothe-
sis in the sign test. When there are multi-
ple time series datasets, DiscreeTest will com-
pute a p-value for each node in each dataset
separately. The p-value asisgned to the dis-
cretization method will be the lower quantile
from all the p-values computed from all the
datasets. DiscreeTest uses the lower quan-
tile of all the p-values so that the result is
more robust and less likely to be influenced
by outliers in the dataset. This p-value will
be compared to α (in our study, we choose
α = 0.01) to determine whether we reject the
null hypothesis. Discreetes proceeds when all
nodes’ residue fail to reject the null hypothe-
sis.

Here we give an example to show how the qualification step works when the discretization method applied
has multiple levels. Let’s consider gene 3(G3) from the Pandapas Network for which we have 8 time-series
datasets. To illustrate how normalization works, let’s discretize the data of G3 using the i4 discretization
method. The original data for G3 in time-series set 1 is

G3orig = [0.0329, 0.0445, 0.0619, 0.0674, 0.0676, 0.0666, 0.0657, 0.0651, 0.0648]



After applying the i4 discretization method, we have

G3i4 = [0, 1, 3, 3, 3, 3, 3, 3, 3]

The discretized data is normalized to be between 0 and 1 to obtain

G3i4n = [0, 0.33, 1, 1, 1, 1, 1, 1, 1]

Now, the original data will be normalized to be between 0 and 1 to have now values

G3n = [0, 0.3339, 0.8356, 0.9940, 1.0000, 0.9716, 0.9457, 0.9289, 0.9195]

Then we compute the residue between the discretized data and the original data is

res = [0,−0.0006, 0.1644, 0.0060, 0, 0.0284, 0.0543, 0.0711, 0.0805]

The p-value given by the sign test on this specific sequence of residuals is p = 0.125. The same process will
be done for each of the 13 nodes of the network and each one of the 8 time-series. Then all the p-values
will be pooled together. The lower quartile (25%) of all the 104 p-values is drawn out (p = 0.0039) which is
assigned to be the p-value for this discretization. This p-value is smaller than the 0.01, thus this discretiza-
tion doesnt pass the qualification step, and the evaluation metric of our DiscreeTest is assigned to be infinity.

(2) Evaluation Step. The second step is to calculate the mean area between discretized data and
original data. We choose the discretization that gives the minimum area between the curves.

In the following tables S4-S7, we report all the p-values and the mean area between the curves (MABC)
in all the experiments in the manuscript to provide the reader with a better picture on the performance of
the discretization methods tested.

Table S4: P-values and Mean Area Between the Curves (MABC) values of Different Discretization for
DiscreeTest, DREAM3 Yeast In Silico Network

Discretization p-values MABC
top75 0.078 0.356
q2 0.022 0.368
TDT p<0.001 0.333
max75 p<0.001 0.437
mean 0.001 0.337
max25 p<0.001 0.282
max50 p<0.001 0.360
bikmeans2 p<0.001 0.283
top25 p<0.001 0.426
i2 p<0.001 0.323
kmeans2 p<0.001 0.326

Assessment of data-noise impact on DiscreeTest.
Each discretization method and each reverse engineering method processes noise in different ways. Further-
more both, the discretization and the reverse engineering methods will process the noise in an intertwined
manner. Therefore, it is hard to systematically evaluate how noise impacts our evaluation metric after the
discretization and reverse engineering methods have been applied. Thus to provide an overview on the
impact of noise on our evaluation metric, we proceed in two ways:
1. Assessment of noise impact after discretization and reverse-engineering methods have been
applied: In the manuscript we assessed DiscreeTest in both in silico and real networks. The time-series
from both the IRMA network and the Hepatocytic Cell Signaling (CSR) Network are experimental data



Table S5: P-values and Mean Area Between the Curves (MABC) values of Different Discretization for
DiscreeTest, Pandapas Network

Discretization p-values MABC
top25 0.5078 0.4039
top75 0.1797 0.4901
i2 0.0391 0.3581
mean 0.0391 0.3631
bikmeans2 0.0039 0.2818
TDT 0.0039 0.41
kmeans2 0.0039 0.41
bikmeans5 0.0039 0.2601
i4 0.0039 0.387
q2 0.0039 0.4281
i5 0.0039 0.3819
bikmeans4 0.0039 0.2387
i3 0.0039 0.3881
kmeans5 0.0039 0.3966
kmeans4 0.0039 0.4017
q5 0.0039 0.3791
bikmeans3 0.0039 0.2693
q4 0.0039 0.3962
max25 0.0039 0.4664
max50 0.0039 0.4744
max75 0.0039 0.4827
kmeans3 0.0039 0.4028
q3 0.0039 0.388

Table S6: P-values and Mean Area Between the Curves (MABC) values of Different Discretization for
DiscreeTest, Hepatocytic Cell Signaling Network

Discretization p-values MABC
bikmeans2 0.059 0.137
mean p<0.001 0.07
TDT p<0.001 0.074
i2 p<0.001 0.028
q2 p<0.001 0.067
kmeans2 0.2503 0.14
max25 p<0.001 0.064
max50 p<0.001 0.066
max75 p<0.001 0.074
top75 0.043 0.169
top25 p<0.001 0.303

thus intrinsically the datasets contain noise. We showed that our evaluation metric identifies an optimal
discretization on both networks using their corresponding timeseries datasets.
Assessment of noise impact before reverse-engineering methods are been applied: The objective
is to assess whether DiscreeTest can capture dynamic trends in the data, with different levels of noise.

We considered the in silico Pandapas network and its corresponding time-series datasets. Under 0%, 1%
and 5% noise levels in the time-series datasets, we compared the original time series and the discretized time
series based on the number of local minima and local maxima. The presence of a local maximum portrays



Table S7: P-values and Mean Area Between the Curves (MABC) values of Different Discretization for
DiscreeTest, IRMA Network

Discretization
switch off switch on

p-values MABC p-values MABC
bikmeans2 p<0.001 0.1566 0.0042 0.466
bikmeans3 0.0002 0.209 0.0042 0.441
bikmeans4 p<0.001 0.1889 0.0042 0.3881
bikmeans5 p<0.001 0.1817 0.0042 0.3961
q4 0.0266 0.4824 0.0768 0.4617
TDT p<0.001 0.0497 0.0042 0.43
i4 0.0002 0.1582 0.0042 0.3546
i5 0.0002 0.1747 0.0042 0.3463
q5 0.0072 0.4745 0.0213 0.4949
kmeans2 p<0.001 0.1405 0.0042 0.4178
kmeans3 0.0002 0.1792 0.0042 0.3774
kmeans4 0.0002 0.1797 0.0042 0.3681
kmeans5 0.0002 0.1829 0.0042 0.3338
mean 0.0002 0.3311 0.0213 0.3743
q3 0.1892 0.4624 0.2101 0.4941
i2 p<0.001 0.0972 0.0042 0.4053
i3 0.0002 0.1436 0.0042 0.3505
q2 1 0.4887 0.8036 0.4601

the trend of a time-series shifting from increasing to decreasing. A local minimum portrays the trend shifting
from decreasing to increasing. We define a true positive as a local maximum that is present in both original
time series and the discretized time series, a true negative as a local minimum that is present in both, the
original time series and the discretized time series. A false positive is defined as a local maximum present
only in the discretized data or a local minimum that is missed by the discretized data. A false negative is
defined as a local minimum present only in the discretized data or a local maximum missed by the discretized
data. We focus on discretization methods that either pass the qualification step (i2, top75, top25, mean)
or gives small MABC (bikmeans2, bikmeans3, bikmeans4, bikmeans5) (shown in Table S5). We compute
confusion matrices for different the discretization methods with different levels of noise (Table S8-S10). We
show that the discretization methods identified by DiscreeTest (marked on yellow on Tables S8, S9 and S10
for data with 0%, 1% and 5% noise levels, respectively) consistently give higher positive predictive value
and high accuracy (marked on blue on Tables S8, S9 and S10 for data with 0%, 1% and 5% noise levels,
respectively).

We further provide a couple of visual examples. We show one time series from data with no noise (panel
A, Figure S10), and two discretizations of it. The original time series (solid black line in panel A, Figure
S10) has 1 local minimum (marked out by black square) and has no local maxima. The data discretized
by i2, the discretization identified by DiscreeTest, captures the local minimum (marked on red hexagram).
Another two-level discretization method, top75, overfits the dynamical trend and have 2 local maxima and
2 local minima (marked on yellow dots). Similarly, when comparing binary discretizations to multi-level
discretization (panel B in Figure S10), the original time-series data shows a continuous decreasing, with no
local minima nor local maxima. All the discretization methods (i2, mean, bikmeans5 discretizations) show a
decreasing trend, however, bikmeans5 generates 2 local maxima and 2 local minima, much more than what
is captured in i2 or mean discretization methods. This is also observed in the discretized data with 1%
noise (panel C, Figure S10) and data with 5% noise (panel D, Figure S10). These examples show that the
discretization method identified by DiscreeTest is optimal in comparison to the other discretization methods
benchmarked.



Figure S10: Examples from Pandapas network showing how well the discretized data capture the trend
change in original data. These examples use the data from gene 2, time series 2 of Pandapas network.
Examples span noiseless data (panel A and B), 1% noise data (panel C) and 5% noise data (panel D). In
panel A, we show how binary discretized data (by either i2 or top75, in red and in yellow respectively)
may catch the change of trend in the original data (black solid line) differently. Points of transitions (local
maxima or local minima) are marked out using red hexagram in i2 discretization, black square in original
data, and yellow dots in top75 discretized data. In panel B, we show how discretization with different levels
(i2 in red dotted line, mean in green dash line, bikmeans5 in yellow solid line) may catch the change of
trend in the original noiseless data (black solid line) differently. In panel C, we show how discretization with
different levels (i2 in red dotted line, mean in green dash line, bikmeans5 in yellow solid line) may catch
the change of trend in the original 1% noise data (black solid line) differently. In panel D, we show how
discretization with different levels (i2 in red dotted line, mean in green dash line, bikmeans5 in yellow solid
line) may catch the change of trend in the original 5% noise data (black solid line) differently.



Table S8: True positive (TP), false negative (FN), false positive (FP), true negative(TN), positive predictive
value (PPV) and accuracy of a discretized data that captures dynamic changing patterns (local maxima or
local minima) in the original data, noiseless Pandapas data

Discretization TP FN FP TN PPV accuracy

i2 24 42 36 29 0.4 0.405
top75 31 47 57 33 0.352 0.381
top25 31 79 65 33 0.352 0.308
mean 27 56 0 33 1 0.517
bikmeans5 24 31 49 16 0.328 0.333
bikmeans4 24 23 41 16 0.369 0.384
bikmeans3 24 23 41 16 0.369 0.384
bikmeans2 18 23 28 16 0.391 0.4

Table S9: True positive (TP), false negative (FN), false positive (FP), true negative(TN), positive predictive
value (PPV) and accuracy (ACC) of a discretized data that captures dynamic changing patterns (local
maxima or local minima) in the original data, 1% noise Pandapas data

Discretization TP FN FP TN PPV ACC

i2 24 23 41 16 0.369 0.384
top75 31 55 65 33 0.322 0.347
top25 31 95 81 33 0.276 0.266
mean 24 42 36 29 0.4 0.405

bikmeans5 24 31 49 16 0.328 0.333
bikmeans4 24 23 41 16 0.369 0.384
bikmeans3 24 23 41 16 0.369 0.384
bikmeans2 20 17 51 2 0.282 0.244

Table S10: True positive (TP), false negative (FN), false positive (FP), true negative(TN), positive predic-
tive value (PPV) and accuracy (ACC) of a discretized data that captures dynamic changing patterns (local
maxima or local minima) in the original data, 5% noise Pandapas data

Discretization TP FN FP TN PPV ACC

i2 24 23 41 16 0.369 0.384
top75 31 55 65 33 0.322 0.347
top25 31 95 81 33 0.276 0.266
mean 24 42 36 29 0.4 0.405

bikmeans5 24 31 49 16 0.328 0.333
bikmeans4 24 23 41 16 0.369 0.384
bikmeans3 24 23 41 16 0.369 0.384
bikmeans2 20 17 51 2 0.282 0.244
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