
Supplementary Materials

Here we provide an analysis of two additional gene blocks, more detail about the local and global
maximum parsimony algorithms, the correctness and proof of the two algorithms discussed in this
work.

Additional Gene Blocks

Here are the ancestral reconstructions of two more gene blocks in E. coli.

ε-protebacteria

α-protebacteria

β-protebacteria

γ-protebacteria

Fig S1 – Ancestral reconstrucion of gene block
bamA-skp-lpxD-fabZ-lpxAB-rnhB-dnaE
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Fig S2 – Ancestral reconstruction of rbsDACBKR

bamA-skp-lpxD-fabZ-lpxAB-rnhB-dnaE . The operon bamA-skp-lpxD-fabZ-lpxAB-rnhB-
dnaE participates in DNA replication, repair, immune reaction, and signal transduction. It is
actually a complex regulon with several promoter sites Liang and Liu (2008). Gene bamA is highly
conserved Gentle et al. (2004) and is required for Gram-negative outer membrane protein assembly
Doerrler and Raetz (2005); Werner and Misra (2005). Gene dnaE encodes the alpha-catalytic
subunit of the DNA polymerase III holoenzyme Maki and Kornberg (1985). The reconstruction
result has shown that those two genes have appeared in all the ancestors. Note that bamA is
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predicted to not be in the same regulatory block as the rest of the operon in γ-proteobacteria. At
the same time, gene dnaE is not in the same block of the operon in β-proteobacteria. However,
these two splits should not affect the overall operon functionality since neither bamA nor dnaE
are found to form a subunit with another gene in the operon. At the same time, the cluster of
lpxD-fabZ-lpxA is involved in lipid A biosynthesis in many bacteriaSchmid et al. (1989); Mohan
et al. (1994).

rbsDACBKR. The operon rbsDACBKR expresses genes associated with the ribose transport
complex in E. coli Zaitseva et al. (1996); Barroga et al. (1996). The rbsABC genes compose
an ATP-dependent ribose transporter that is a member of the ATP-Binding Cassette (ABC)
superfamily of transporters Park and Park (1999). Mutations in each of the components eliminated
transport of ribose at an external concentration of 1µM, indicating that the components make up
a transport system that is responsible for high-affinity ribose transport Iida et al. (1984). From
the reconstruction, we observe that the core gene cluster of the transporter rbsABC starts forming
in three different inner nodes: (1) the common ancestor of α-proteobacteria; (2) γ-proteobacteria
(genus Pseudomonas), and (3) γ-proteobacteria (Enterobacteriaceae, Pasteurellaceae families). The
three other genes, rbsK, rbsD and rbsR are not essential for ribose transport. rbsR codes for the
repressor protein which regulates the operon Shimada et al. (2013); Mauzy and Hermodson (1992).
rbsD, and rbsK are involved in the conversion of D-ribose to D-ribose 5-phosphate Oh et al. (1999).
The gene block is most complete in the γ-proteobacteria, but the core transport genes appear also
at the common ancestors of the α-proteobacteria.

Local Maximum Parsimony

Because the three distance measures are interdependent, the local parsimony problem is not trivial.
In the following example, we demonstrate why it is difficult to infer a parent from children in the
most parsimonious way.

Given an inner node v and its two child nodes v1 and v2, let O be the gene block to be assigned
to v. Consider the orthoblocks O1 and O2 of v1 and v2 respectively as:

O1 : ab|cd|ef |g|k
O2 : bc|de|fb|f |fo

We define the set of genes that appear in both O1 and O2 as S = {b, c, d, e, f}, and the union
gene set of O1 and O2 as G = {a, b, c, d, e, f, g, k, o}. Any gene i ∈ S will contribute a deletion
distance of 2 to dd(O,O1) + dd(O,O2) if O does not contain gene i. Any gene i ∈ G but i /∈ S
will contribute a deletion distance of 1 to dd(O,O1) + dd(O,O2) if O either has it or not. Hence,
including all genes from S in O gives us deletion distance: dd(O,O1) + dd(O,O2) = 4, which is the
minimum deletion distance. On the other hand, if we just want to minimize the split distance, the
most naive way is not to include any genes in O. Then, Rel(O,O1) = Rel(O,O2) = ∅, therefore
ds(O,O1) + ds(O,O2) = 0. However, if we choose to do it this way, our deletion distance becomes
large (dd(O,O1) + dd(O,O2) = 10). Apparently, decreasing split distance might increase deletion
distance and vice versa.

If we focus on minimizing the deletion distance, then Gene(O) = S, which means that O has to
include all genes in S. Then, the relevant gene blocks of O1, O2 to O respectively become:

Rel(O1,O) : b|cd|ef
Rel(O2,O) : bc|de|fb|f |f
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The split distance of O1, O2 is ds(O1, O2) = |5− 3| = 2. If we remove gene f from Gene(O), the
relevant gene blocks of the two children to u become:

Rel(O1,O) : b|cd|e
Rel(O2,O) : bc|de|b

Hence, by setting our gene block O as either Rel(O1, O) or Rel(O2, O) , the deletion distance
increased by 2 because we excluded gene f which is in S; however, the split distance also decreased
by 2. Therefore, the new deletion distance is dd(O,O1) + dd(O,O2) = 6, and the new split distance
is ds(O,O1) + ds(O,O2) = 0.

Consider another possibility: if we include gene g in Gene(O), this will not increase the deletion
distance. The relevant gene blocks of the two children to u become:

Rel(O1,O) : b|cd|ef |g
Rel(O2,O) : bc|de|fb|f |f

By setting O := b|cd|ef |g, the new split distance is ds(O,O1) + ds(O,O2) = 0 + 1 = 1 and
the deletion distance is dd(O,O1) + dd(O,O2) = 4. Therefore, we achieve a lower aggregate sum
of deletion and split distances (5 compared to 6). We can keep on adding, or removing genes
that only appear in one taxon. This process requires iterations through all the subsets of the
symmetrical difference set Gene(O1)4Gene(O2), which will take exponential time. We therefore
provide a heuristic approach that guaranteed minimum deletion and duplication distances, but not
split distances. We present a greedy local optimization algorithm as follows. See Figure 3 in the
manuscript for a visualization of the process.

Input: T,G,Ω, λ
Result: λ̂
for internal node u when traversing T in post-order do

Let u1, u2 be the children of u
Let O1 := λ(u1), O2 := λ(u2)
initial := GeneBlock(O1) ∪ GeneBlock(O2)
initialgene :=

{
g
∣∣FREQg(u) > .5

}
Remove genes in initial that is not included in initialgene
Remove gene blocks in initial that is a subset of another gene block in initial
Let U1G := set()
for gene block b ∈ GeneBlock(O1) do

for gene g in b do
if g /∈ initialgene then

Remove gene g from b

U1G = U1G ∪ b;

if |initial| < |U1G | or |initial| > |U1G | then
initial := U1G

for gene block b ∈ initial do
if b has a duplication of gene g and DUPs(u) ≤ .5 then

Remove the duplicated gene of g from b

λ̂(u) := initial

Return λ̂
Algorithm 1: Local Maximum Parsimony
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ε-protebacteria

α-protebacteria

β-protebacteria

γ-protebacteria

Fig S3 – Ancestral reconstruction of operon atpIBEFHAGDC using the local optimization
approach.
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ε-protebacteria

α-protebacteria

β-protebacteria

γ-protebacteria

Fig S4 – Ancestral gene block reconstruction of paaABCDEFGHIJK using the local reconstruction
approach. Asterisks in front of species names indicate that a minimal orthoblock (which should
consist of two or more proximal genes that are orthologs to genes in the reference operon) was not
found.
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Global Approach

Here, we present the global approach algorithm.
Input: T,G,Ω, λ
Result: λ̂
for gene g ∈ G do

for l ∈ Leaf(T ) do
if gene g ∈ Gene(λ(l)) then

l.gene[g] = {1}
else

l.gene[g] = {0}

if gene g ∈ Dup(l) then
l.dup[g] = {1}

else
l.dup[g] = {0}

for internal node u when traversing T in post-order do
Let u1, u2 be the children of u
for gene g ∈ G do

if u1.gene[g] == u2.gene[g] then
u.gene[g] = u1.gene[g]

else
u.gene[g] = {0, 1}

if u1.dup[g] == u2.dup[g] then
u.dup[g] = u1.dup[g]

else
u.dup[g] = {0, 1}

for inner node u ∈ V (T ) do
for gene g ∈ G do

if 1 ∈ u.gene[g] then
Gene(u).add(g)

if 1 ∈ u.dup[g] then
Dup(u).add(g)

for internal node u when traversing T in post-order do
Let u1 be u’s child, O1 := λ(u1)
Let U1G := set()
for gene block b ∈ GeneBlock(O1) do

for gene g in b do
if g /∈ initialgene then

Remove gene g from b

U1G = U1G ∪ b;

λ̂(u) := U1G for gene g ∈ Gene(u) do
if g /∈ Dup(u) then

Remove the duplicated of g from λ̂(u)

Return λ̂
Algorithm 2: Global approach

Correctness and Proof: Local Optimum

Correctness

Let λ̂ := Algorithm 1(T,G,Ω, λ). For each u ∈ I(T ), let u1, u2 be its children. Let O,O1, O2

respectively be the orthoblock assigned to u, u1, u2 by function λ̂. We will show that our results
minimize dd(O,O1) + dd(O,O2) and du(O,O1) + du(O,O2)
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Lemma 1: ∀g ∈ G, if FREQg(u) > .5 then either FREQg(u1) > .5 or FREQg(u2) > .5 In
addition, if FREQg(u) ≤ .5 then either FREQg(u1) ≤ .5 or FREQg(u2) ≤ .5
Proof :

1. If FREQg(u) > .5 then either FREQg(u1) > .5 or FREQg(u2) > .5
Assume that FREQg(u1) ≤ .5 and FREQg(u2) ≤ .5, then{

|{v ∈ HasLeaf(u1)|g ∈ Gene(λ(v)}| ≤ |HasLeaf(u1)|
2

|{v ∈ HasLeaf(u2)|g ∈ Gene(λ(v)}| ≤ |HasLeaf(u2)|
2

Define H := {v ∈ (HasLeaf(u1) ∪HasLeaf(u2))|g ∈ Gene(λ(v)}, from the two inequalities
above, we have:

∣∣H∣∣ ≤ |HasLeaf(u1)|
2

+
|HasLeaf(u2)|

2

Since u1, u2 are the children of u, then{
HasLeaf(u1) ∪HasLeaf(u2) = HasLeaf(u)

HasLeaf(u1) ∩HasLeaf(u2) = ∅

→
∣∣{v ∈ HasLeaf(u)|g ∈ Gene(λ(v)}

∣∣ ≤ |HasLeaf(u)|
2

→ FREQg(u) ≤ .5

By contraposition, if FREQg(u) > .5 then either FREQg(u1) > .5 or FREQg(u2) > .5

2. If FREQg(u) ≤ .5 then either FREQg(u1) ≤ .5 or FREQg(u2) ≤ .5
We can prove it using the same logic as above.

Lemma 2: ∀g ∈ G, if g ∈ Gene(O) and g /∈ Gene(O′), then |Ig(O)−Ig(O1)|+|Ig(O)−Ig(O2)| ≤
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| .
Proof :
Since g ∈ Gene(O), then FREQg(u) > .5. Therefore, FREQg(u1) > .5 or FREQg(u2) > .5 (by
lemma 1). Hence, g ∈ Gene(u1) or g ∈ Gene(u2). Consider 3 cases:

1. If u1 and u2 contain g, then
|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |1− 1|+ |1− 1| = 0
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| = |0− 1|+ |0− 1| = 2
Therefore, |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| < |Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|

2. If only u1 contains g, then
|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |1− 1|+ |1− 0| = 1
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| = |0− 1|+ |0− 0| = 1
Therefore, |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|

3. If only u2 contains g, then
|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |1− 0|+ |1− 1| = 1
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| = |0− 0|+ |0− 1| = 1
Therefore, |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|
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From the above cases, we conclude that |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| ≤ |Ig(O′)− Ig(O1)|+
|Ig(O′)− Ig(O2)|

Lemma 3: ∀g ∈ G, if g /∈ Gene(O) and g ∈ Gene(O′), then |Ig(O)−Ig(O1)|+|Ig(O)−Ig(O2)| ≤
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| .
Proof :
Since g /∈ Gene(O), then FREQg(u) < .5. Therefore, FREQg(u1) < .5 or FREQg(u2) < .5 (by
lemma 1. Hence, g /∈ Gene(u1) or g /∈ Gene(u2). Consider 3 cases:

1. If u1 and u2 do not contain g, then
|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |0− 0|+ |0− 0| = 0
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| = |1− 0|+ |1− 0| = 2
Therefore, |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| < |Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|

2. If only u1 does not contain g, then
|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |0− 0|+ |0− 1| = 1
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| = |1− 0|+ |1− 1| = 1
Therefore, |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|

3. If only u2 does not contain g, then
|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |1− 1|+ |1− 0| = 1
|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)| = |0− 1|+ |0− 0| = 1
Therefore, |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| = |Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|

From the above cases, we conclude that |Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)| ≤ |Ig(O′)− Ig(O1)|+
|Ig(O′)− Ig(O2)|

1. Minimal deletions: Given an assignment of orthoblock O′ to u, we will show that dd(O′, O1) +
dd(O′, O2) ≥ dd(O,O1) + dd(O,O2)

Proof :
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dd(O′, O1) + dd(O′, O2) =
∑
g

(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|)

=
∑
g∈O′

(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|) +

∑
g/∈O′

(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|)

=
∑

g∈O′,g∈O
(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|) +

∑
g∈O′,g /∈O

(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|) +

∑
g/∈O′,g∈O

(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|) +

∑
g/∈O′,g /∈O

(|Ig(O′)− Ig(O1)|+ |Ig(O′)− Ig(O2)|)

≥
∑

g∈O′,g∈O
(|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)|) +

∑
g∈O′,g /∈O

(|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)|) +

∑
g/∈O′,g∈O

(|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)|) +

∑
g/∈O′,g /∈O

(|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)|)

=
∑
g∈O

(|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)|) +

∑
g/∈O

(|Ig(O)− Ig(O1)|+ |Ig(O)− Ig(O2)|)

= dd(O,O1) + dd(O,O2)

(1)

2. Minimal duplication:

Proof:

Applying the same idea as the above proof withDUPg(u), Dup(u) instead of FREQg(u), Gene(u),
we will achieve same result.

Run Time

The main challenge is storing the the data of FREQg(v), HasLeaf(v) for each inner node v. This
can be done with dynamic programming. Algorithm 1 runs in polynomial time. Together, the
algorithm takes O(m2) × O(n) = O(m2 × n) with n is the number of leaf nodes, and m as the
number of genes in the reference orthoblock.
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Correctness and Proof: Global Optimum

Correctness

Let λ̂ := Algorithm 2(T,G,Ω, λ). We will show that dd(λ̂) :=
∑

(u,v)∈E(dd(u, v)) and du(λ̂) :=∑
(u,v)∈E(du(u, v)) are minimal.

1. Minimal deletions:

As stated above, dd(O,O
′) := |

∑
g(Ig(O) − Ig(O′))|. Therefore, we can rewrite out global

deletion cost as:

dd(λ̂) :=
∑

(u,v)∈E

(dd(u, v)) =
∑

(u,v)∈E

(|
∑
g

(Ig(λ̂(u))− Ig(λ̂(v)))|)

Since each gene occurrence within a gene block is independent from each other, we only need
to show that our algorithm provide a global minimum deletion for any genes g. Our algorithm
is based on Fitch algorithm, and the proof can be followed by the conventional proof of Fitch
easily.

2. Minimal duplications:

Proof: Applying the same rationale as in the above proof with DUPg(u), Dup(u) instead of
FREQg(u), Gene(u), we will achieve same result.

Run Time

This algorithm is twice as slow as the Local Algorithm. The reason is that it has to traverse the
tree twice, in post order and level order. However,it still takes O(m2 × n) to finish.
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