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1. Approach
In order to establish a large-scale, integrated, and batch-corrected dataset comprising both normal cerebellar and MB samples,
the present study was carried out along four main phases as follows:
• The literature was screened for relevant microarray gene expression datasets containing MB and/or normal cerebellar

samples. A preprocessing framework was implemented to merge the data from different studies and platforms and
establish MB subgroup affiliations for samples with missing information.

• The collected data was used to empirically define negative control genes, i.e. genes with low observed variation
between or within phenotypes.

• Empirically defined negative control genes were employed to batch-correct the merged dataset using the Removal of
Unwanted Variation (RUV) method (Gagnon-Bartsch and Speed, 2012; Jacob et al., 2016). A range of RUV related
regularization parameters were tested.

• Various metrics were implemented and utilized to evaluate the performance of the different batch-effect removal
configurations and ultimately select a normalized dataset.

2. Supplementary methods

2.1 Collection of gene expression datasets
For purposes of mergability, only samples hybridized to the HG-U133 Plus 2, Human Exon 1.0 ST, Human Gene 1.0 ST, and
Human Gene 1.1 ST Affymetrix arrays were selected, which encompassed the most frequently used platforms and included
the majority of data. Datasets for these platforms were obtained from the Gene Expression Omnibus (GEO) (Barrett et al.,
2012) and ArrayExpress (AE) (Kolesnikov et al., 2014) repositories, and each dataset will in the following be referred to
by the respective GEO or AE accession codes. To restrict the number of batches that would have to be considered in the
merging process, only datasets with more than five samples were considered. Furthermore, datasets, which were composed
solely of samples already selected from another study, were also discarded from the collection.
The selected datasets were further pruned as follows. 15 SHH samples in GSE73038 were suspected to be present in
GSE49243 and were subsequently excluded from GSE49243. There was also substantial overlap between GSE50765,
GSE37382, and GSE85217. A total of 71 Samples were removed from GSE50765, because they were duplicated in
GSE37382 and/or GSE85217. In turn, 235 samples were excluded from GSE37382, which were duplicated in GSE85217.
Duplicated samples were mainly identified due to identical samples names or patient IDs, while a minority was removed due
to an artificially high correlation with the gene expression profile (plus an agreement with clinical information) of already
included samples.
As we only sought to include primary MB tumor samples, we excluded 2 relapse samples from GSE74195.

2.2 Processing of gene expression datasets
For all selected samples, raw CEL files were downloaded from GEO or AE. Subsequently, all raw CEL files from the same
platform were processed together using the R/Bioconductor package oligo (Carvalho et al., 2010) in conjunction with the
RMA algorithm (Irizarry et al., 2003). The Human Gene 1.0 ST and Human Gene 1.1 ST arrays were analysed at the core
level, while the Human Exon 1.0 ST arrays were processed at the extended level. Subsequently, we mapped the identifiers
of the HG-U133 Plus 2 and Human Exon 1.0 ST to Human Gene 1.0/1.1 ST identifiers using ‘Best Match’ information
from Affymetrix (https://www.affymetrix.com/support/technical/byproduct.affx?product=hugene-1_0-st-v1). In addition,
to increase the overlap between the Human Exon 1.0 ST and Human Gene 1.0/1.1 ST data we also inspected and added
probe mappings from the ‘Good Match’ and ‘Complex Match’ files, including probes for the genes MYCN, PTCH1, NPR3,
UNC5D, DKK2, and GABRA5. After mapping of probe identifiers within each platform, multiple rows mapping to the same
identifier were collapsed using the mean value. Subsequently, all platform datasets were merged on probe identifiers, and
gene symbols were assigned using the hugene11sttranscriptcluster.db package.
Multiple rows mapping to the same gene or multiple columns mapping to the same patient were collapsed using the
mean value. Finally, the resulting gene expression matrix was quantile normalized using the respective function in the
preprocessCore package.

2.3 Subgroup classification of MB samples
Classifications were conducted in R using the Prediction Analysis for Microarrays (PAM) classifier, via the respective
implementation in the Bioconductor/R package pamr, and an ElasticNet classifier via the glmnet package.
Specifically, the PAM classifications were conducted on a set of 100 genes comprising 25 empirically defined signature
genes for each MB subgroup. These classifier genes were estimated as follows. First, within each of the four datasets,
GSE10327, GSE21140, GSE37418, GSE85217, the differential gene expression between a subgroup and each other subgroup
was investigated using the limma package (Ritchie et al., 2015) and for each gene the maximum FDR corrected p-value
(q-value) and minimal fold change (FC) across all comparisons were recorded and used for further analyses. Secondly,
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genes significantly upregulated (q < 0.05,FC > 1.3) in the subgroup as compared to the other subgroups were extracted and
q-values converted to ranks. Thirdly, for each subgroup, the intersection of significantly upregulated genes was extracted
from the four studies, re-ranked according to the mean rank across the four datasets, and the 25 top-ranking genes were
extracted as signature genes for that subgroup. The subsequently established PAM classifiers were always trained on only
these 100 signature genes.
The ElasticNet classifier was implemented by setting the penalty α = 0.9 and was instead applied to all genes in the dataset.

2.3.1 Cross-validation

In order to evaluate the existing MB subgroup labels in the dataset, a cross-validation analysis was conducted. For this
purpose, the PAM and ElasticNet classifiers were trained and applied to all MB samples with an existing subgroup label,
using leave-one-out classifiers to obtain a class prediction for each individual sample. Samples, which were correctly
classified by both PAM and ElasticNet classifiers, were considered most reliable. For these samples, the supplied subgroup
affiliations were retained, while subgroup labels of samples, which were incorrectly classified by at least one of the two
classifiers, were removed for the downstream analyses, thus leaving those samples effectively unlabeled.

2.3.2 Classification of MB samples with unknown subgroup affiliation

After removing the subgroup labels from samples with unreproducible subgroup labels, new PAM and ElasticNet classifiers
were trained on all samples with retained MB subgroup labels, and the classifiers were applied to the 137 samples, for which
no subgroup was originally supplied. Samples obtaining the same class prediction by both classifiers were labeled with the
respective class, while other samples were left unlabeled.

2.4 Visualization of batch-effects in merged data
To inspect the existence of batch-effects present in the dataset after merging of studies and platforms, three visualization
tools were used on the gene expression data: (i) Relative Log Expression (RLE) plots (Brettschneider et al., 2008; Gandalfo
et al., 2017) , (ii) a scatter plot of data after dimensional reduction through Multi-Dimensional Scaling (MDS) (Cox et al.,
2008), and (iii) hierarchical clustering (HC) (Anderberg et al., 2014).

2.4.1 Relative log expression (RLE) plots

The Relative log expression (RLE) denotes a measure of deviation of the log2 expression value of a gene in a single sample
from the median of log2 transformed expression values of that gene computed across all samples in an expression matrix
(Brettschneider et al., 2008; Gandalfo et al., 2017). Formally, let xis denote the expression of gene i in sample s given in
normal scale, and let xi∗ be the vector holding the expression values of gene i from all samples in the expression matrix.
Then the RLE of xis is defined as (Gandalfo et al., 2017)

RLE(xis) = log2(xis)−median(log2(xi∗)).

RLE plots are then typically shown as box-plots, where each box corresponds to the distribution of RLE values within one
sample. Thus, this method represent a visual tool employed to illustrate the heterogeneity or variation of gene expression
distributions between samples. In a batch-free dataset, samples are generally expected to show comparable RLE distributions,
while the presence of batches might cause discernible differences between distributions.
However, to allow a visualization for the large number of samples gathered in this project, a simplified version was
implemented, in which only the median RLE value, the region between the first (Q1) and third (Q3) quantiles, and the range
between minimum and maximum RLE values (excluding outliers) were computed following Tukey’s box plot paradigm
(Frigge et al., 1989). Specifically, Q1 and Q3 were taken to be the 25% percentile and 75% percentile of the RLE values in a
sample, respectively, and the minimum and maximum RLE values were computed as Q1−1.5 · IQR and Q3 +1.5 · IQR,
respectively, where IQR = |Q3−Q1| is the interquartile region.

2.4.2 Multi-dimensional scaling (MDS)

A Multi-dimensional scaling (MDS) of the data down to two or three dimensions was computed via the isoMDS function
from the R package MASS (Venables et al., 2002), using all samples and the 1200 genes with highest standard deviation
across samples. A scatter plot of the MDS dimensions was then utilized to inspect the overall clustering of the data based on
platforms, studies and phenotypes.

2.4.3 Hierarchical clustering (HC)

While the MDS was employed to illustrate similarities between all samples, Hierarchical clusterings (HC) was utilized more
specifically to evaluate whether the MB samples clustered according to their tumor subgroup in accordance with previous
class discovery studies (Cho et al., 2011; Kool et al., 2008; Northcott et al., 2011; Thompson et al., 2006). To this end, HC
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was conducted only on MB samples, again using the 1200 most variable genes as measured by the standard deviation of
expression values across these samples. Specifically, clustering was performed using the hclust function from the fastcluster
(Müllner et al., 2013) package in R, using Euclidian distances and complete linkage. Results were visualized using the
heatmap.3 package (Zhao et al., 2014).

2.5 Batch-effect removal
The naiveRandRUV function of the R/Bioconductor package RUVnormalize (Jacob et al., 2016) was used to correct for
batch effects in the merged gene expression data. Appart from a matrix holding the raw expression data, the function takes as
input the column indices of negative control genes and three regularization parameters: the regulization strength (nu.coeff ),
the assumed number of independent sources of unwanted variation (k), and a tolerance parameter (tol).
Negative control genes were estimated empirically, as described below. To identify a suitable selection of regularization
parameters a range of values for nu.coeff∈ {i ·10 j; i ∈ {1,2, . . . ,10}, j ∈ {−5,−4,−3}} and k ∈ {3,4, · · · ,23} were used,
while the default value for tol was used. For each combination of regularization parameters, the expression data was
processed using the naiveRandRUV method, and the performance of the batch-effect removal was quantified according to
different metrics (described in section 2.7).

2.6 Negative control gene identification
Negative controls gene in the RUV sense are genes, which are expected to show almost no changes in expression over
the conditions of interest (Gagnon-Bartsch and Speed, 2012). Thus, variations in expression levels of such genes between
different datasets can be utilized as a means to detect and correct for batch effects.
While housekeeping genes have been suggested as a potential source of negative control genes (Gagnon-Bartsch and Speed,
2012), it is unclear how applicable such genes are for MB, considering that housekeeping genes are typically derived from
adult tissues under normal conditions (Eisenberg and Levanon, 2013). To obtain a set of negative controls to be used in the
present project we thus aimed here at empirically defining such controls by identifying genes with low variation of gene
expression within and between any of the investigated phenotypes.
Specifically, we established three rank-scores, referred to as FW , which measures the amount of expression variation within
a phenotype, FB1 , which measures the amount of expression variation between MB subgroups, and FB2 , which measures
expression variation between MB and normal brain (The indices B1 and B2 are here used to distinguish between the first
and second type of between-phenotype variance measures). The computation of the three measures is described below and
illustrated in Supp. Fig. 3. Given the set G = {1,2,3, ...,g} containing the indices of all genes in the dataset, the overall
score Ftotal for gene i ∈ G was then obtained from the three individual scores as

Ftotal(i) =
FW (i)+FB1(i)+FB2(i)

3
.

A low score corresponds to a generally lower amount of gene expression variation within and between subgroups, while a
high score implies more variation. Accordingly, negative control genes were selected as the genes with lowest values of
Ftotal .

2.6.1 Measuring expression variation within phenotypes

In order to score genes based on how stable their expression is within phenotypes, we calculated one measure of dispersion
within each set of samples belonging to the same phenotype and study. To avoid a bias towards genes with low average
expression, dispersion was here computed in terms of the Relative Mean absolute Deviation (RMD) defined as

RMD(i) =
1
n ∑

n
j=1 |xi( j)− x̄i|
|x̄i|

,

where xi( j) measures the gene expression of gene i in sample j, and n denotes the total number of samples.
Now, let p be an index over the different phenotypes and s be an index over all studies. For every combination of s and p that
includes at least 5 samples, we define RMDp

s (i) as the RMD of gene i across all samples belonging to study s and phenotype
p; for combinations not satisfying this criterion we set RMDp

s (i) = 0. Then the dispersion measure for gene i in study s was
obtained as

RMDs(i) = max
p

(RMDp
s (i)).

Subsequently, the final score FW was obtained by first calculating the maximum dispersion across all studies

RMDmax(i) = max
s

(RMDs(i)),
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and ranking genes based on the RMD measure as

FW (i) =
(

rank↑(RMDmax)
)

i
,

where rank↑(·) denotes the fractional rank assigned to values in increasing order. The final score FW (i) for a gene i measures
variation within subgroups, with a low rank reflecting low variation and a high rank reflecting large variation.

2.6.2 Measuring expression variation between MB subgroups

In order to score genes with respect to how stable their expression was across MB subgroups, we instead performed a
one-way analysis of variance (ANOVA) between subgroup specific expression means within each study, which contains
at least 5 samples of each subgroup. The datasets in question were GSE10327, GSE21140, GSE37418, GSE73038, and
GSE85217. Specifically, for each of those studies s the ANOVA related score for a gene i was computed as

AOV B1
s (i) =− log10(p(i)),

where p(i) denotes the p-value of the ANOVA for gene i and the label B1 was simply added to distinguish this measure
from the computation of AOV scores between normal controls and MB (see below). To account for unequal variances, we
employed the oneway.test implementation of ANOVA in R.
Subsequently, the maximum AOV score across all studies s was computed as

AOV B1
max(i) = max

s
(AOV B1

s (i)),

and the final score was obtained by ranking genes with respect to the maximum AOV scores as

FB1(i) =
(

rank↑(AOV B1
max)

)
i
,

with a low rank implying that gene i shows relatively little variation between subgroups.

2.6.3 Measuring expression variation between MB and normal brain

The scoring of genes with respect to variations between MB and normal brain gene expression was conducted similar as
above. Specifically, in studies that contained at least five MB samles and five normal brain samples, we performed an
ANOVA through the oneway.test function (which in this case is equivalent to conducting a Welch’s t-test) comparing the
mean expression of MB samples (regardless of subgroup) against the mean expression of normal brain samples. The datasets
in question were EMTAB292 and GSE74195.
In each study s, the ANOVA related score for a gene i was computed as

AOV B2
s (i) =− log10(p(i)),

where p(i) again denotes the p-values of the ANOVA for gene i. Subsequently, the maximum AOV score across all studies s
was computed as

AOV B2
max(i) = max

s
(AOV B2

s (i)),

and the final score was obtained by ranking genes with respect to the maximum AOV scores as

FB2 =
(

rank↑(AOV B2
max)

)
i
,

with a low rank implying that gene i shows relatively little variation between MB and cerebellum.

2.6.4 Comparison with house-keeping genes

The empirically derived control genes were compared to house-keeping genes with respect to: (1) total overlap of genes and
(2) performance when used as negative controls in the RUV normalization. For that purpose, a set of 575 house-keeping
genes (Eisenberg and Levanon, 2003), which we will refer to as HKG2003, and a set of 3804 house-keeping genes (Eisenberg
and Levanon, 2013)), which we will refer to as HKG2013, were downloaded from https://www.tau.ac.il/~elieis/HKG/.
For the HKG2003 set, RefSeq identifiers were mapped to approved gene symbols using the HUGO Gene Nomenclature
Committee (HGNC, https://www.genenames.org/). After mapping the house-keeping gene sets to the genes retained in
the merged expression datasets, a total of 314 (HKG2003) and 3074 (HKG2013) house-keeping genes were available for
downstream comparisons.
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2.7 Evaluation of normalizations
In order to estimate the existence of batch effects in the raw data and to determine how well such batch-effects have been
removed by a particular configuration of the RUV normalization, a number of evaluation metrics were employed.

2.7.1 Standard deviation of median RLE values (σmRLE )

To obtain a quantitative metric measuring one aspect of heterogeneity in RLE plots, first the median RLE value was computed
for each sample and then the standard variation across those median values (σmRLE ) was considered.

2.7.2 Intra- to inter-group distances (IIGD)

In addition to clustering, we also aimed to investigate the overall similarities of gene expression profiles of samples within
the same and between phenotypes. Specifically, if batch effects lead to artificial differences between samples within the
same phenotype or an artificial clustering of samples due to platform rather than phenotype, then batch-effect removal might
cause expression profiles between samples of the same phenotype to become more similar, and/or the ratio of distances of
expression profiles within the same phenotype to the distances between phenotypes to decrease. To quantify such properties,
we calculate two types of mean distances for each phenotype, where distance is measured in terms of Euclidean distance.
Specifically, let {pk; k = 1,2, · · · , l} denote the l unique phenotypes, let Sk denote the set of samples belonging to phenotype
pk, and let SC

k denote the set of samples not belonging to phenotype pk. Let xu
k(i) further denote the expression of gene i in

sample u. We then calculated first the mean Euclidean distance of expression profiles between pairs of samples within the
same phenotype pk as

D̄W (pk) =
2

|Sk|(|Sk|−1)

|Sk|−1

∑
t=1

|Sk|

∑
w=t+1

√
g

∑
i=1

(xt
k(i)− xw

k (i))
2,

where g denotes the number of genes in the dataset. The mean Euclidean distance of expression profiles of samples from
phenotype pk to samples of other phenotypes was equivalently calculated as

D̄B(pk) =
1

|Sk||SC
k |

∑
t∈Sk

∑
w∈SC

k

√
g

∑
i=1

(xt
k(i)− xw

k (i))
2.

The final metric, denoted as IIGD (Inter to Intra Group Distances), was then computed as the ratio

IIGD =
1
l

l

∑
k=1

D̄W (pk)

D̄B(pk)
.

2.7.3 K-means clustering and Adjusted Rand Index (ARI)

In order to evaluate how well the actual clustering of MB samples corresponds to the ideal clustering, in which all samples
belonging to the same subgroup would fall into one distinct cluster, we employed the Adjusted Rand Index. Specifically, a
clustering into k = 4 clusters was performed using the kmeans function in R. Subsequently, the adjustedRandIndex from
the mclust package was utilized to compare the cluster affiliation of samples to the ideal sequence of labels, in which each
cluster only contained samples from one unique subgroup.

2.7.4 Entropy

We hypothesized that the ARI for a particular clustering might produce a good result, even if within a subgroup specific
cluster samples would agglomerate due to platform. However, in the batch-effect free scenario and assuming a uniform
distributions of subgroups across platforms, we would not expect such a clustering due to platform. To distinguish between
such cases, we employed here a measure of entropy applied on the sequence of platform labels obtained from a hierarchical
clustering.
Specifically, let L = (l1, l2, . . . , ln−1, ln) denote the sequence of platform labels ordered based on the sample ordering in the
dendrogram established by the hierarchical clustering. Let Li with i = (1,2, . . . ,n−50,n−49) be subsequences obtained
by applying a sliding window on L, such that Li = (li, li+1, . . . , li+48, li+49). Let {k j

i ; j = 1,2, · · · ,m} denote the m unique
platform labels included in Li. Then Shannon’s entropy for subsequence Li is defined as

H(Li) =−
m

∑
j=1

P(k j
i ) log2(P(k

j
i )),

which we have calculated in R using the entropy package.
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The final metric H̄ is then obtained as

H̄ =
n−49

∑
i=1

H(Li).

A high value of H̄ corresponds then to a more uniform distribution of platform labels across the clustered samples, while a
low value of H̄ implies an agglomeration of samples due to platform in the hierarchical clustering.

2.7.5 Accuracy of Support Vector Machine classifications (SVM)

The accuracy of phenotype classifications within the merged data was evaluated as follows. 50 training samples, encom-
passing 10 normal brain samples, 10 WNT, 10 SHH, 10 G3, and 10 G3 samples, were randomly selected from the merged
dataset and used to train a SVM classifier using the e1071 package in R. 50 additional samples with the same number of
phenotype labels were selected randomly without repetition and served as test data. The fraction of correct class predictions
were recorded and averaged over ten classification runs with different random training and test sets and initial configurations.

2.7.6 Overlap of differentially expressed genes with positive control genes (OPG)

The differential expression of positive control genes in the raw and batch-corrected data was tested as follows. Positive
control genes for each MB subgroup were estimated through differential gene expression analyses against samples from
other MB subgroups using the limma package in R. Specifically, for every subgroup one list of upregulated genes was
obtained from each of five studies (GSE10327, GSE21140, GSE37418, GSE73038, and GSE85217), which contained at
least 8 samples from each of the four MB subgroups. The intersection of the five lists was then considered the set of positive
control genes for the subgroup. Subsequently, an analogous differential expression analysis, but including all MB samples
regardless of study or platform, was conducted on the batch normalized data. For each subgroup the fraction of significantly
upregulated positive control genes was calculated and the final metric was obtained as the mean across the four subgroup
related fractions.

2.8 Evaluation of overall strategy on independent training and test datasets
In the main text, the NCGs used for the RUV normalization were derived from the same dataset, to which the normalization
was applied. In ensure the feasibility of this strategy, we sought to validate the approach by instead using two independent
datasets for NCG identification and batch effect removal. For this purpose, we split the merged dataset comprising the 1641
samples into two separate datasets, one of which was only used to define NCGs (and positive control genes as described
further below), while the other dataset was then normalized via the RUV method and using the NCGs determined from the
first dataset. The details and individual steps of this validation experiment are outlined in the following.

2.8.1 Splitting of datasets into training and testing data

In order to obtain two independent datasets for validation, we proposed to split the 23 included studies into two separate sets,
such that one set could be used for NCG identification, while the other was to be batch-corrected using the derived NCGs.
The former dataset will in the following be referred to as training dataset, while the latter will be referred to as testing dataset.
The proposed method for NCG selection is based on the calculation of three different metrics, i.e. gene expression variations
(i) within phenotypes, (ii) between MB subgroups, and (iii) between MB and normal cerebellar controls, which are computed
within individual studies to avoid batch effects. Accordingly, the training dataset was required to contain studies with the
relevant composition of MB subgroups and studies that included both MB and normal cerebellar samples. Furthermore,
in order to ensure that the testing data displays sufficient levels of batch effects, it should also comprise studies broadly
distributed across all technical platforms. To satisfy these requirements, we selected a total of seven studies (including 958
samples) to represent the training dataset, while the remaining 16 studies (619 samples) were assigned to the testing dataset
(Supp. Table 5).

2.8.2 Selection of negative control genes

Subsequently, NCGs were selected according to the strategy outlined in section 2.6 of the supplementary methods and Supp.
Fig. 3, with the exception that only the datasets GSE37418 and GSE85217 were used for the step ‘Measuring expression
variation between MB subgroups’. To inspect whether these NCGs, derived from the training dataset, displayed the expected
expression profiles across phenotypes, studies, and platforms in the testing data, we generated two plots. Specifically, we
selected the two NCGs with the highest MAD across all samples in the testing data and plotted their expression levels
for all samples separated based on phenotype, study, and phenotype in the testing dataset (Supp. Fig. 6A). Furthermore,
we calculated and plotted for each NCG a measure of expression variation between phenotypes within the same study,
between studies within the same platform, and between platforms (Supp. Fig. 6B). Both results suggest that the NCGs,
despite having been independently derived from the training data, show even in the testing data comparably little variation
between phenotypes within studies, but increasingly more variation between studies and platforms. Thus, while the NCGs

7



Weishaupt et al. 2019 - Supplementary material

have been identified from the training data, they display the desired expression pattern to be considered feasible NCGs for
batch-correcting the testing dataset.

2.8.3 Evaluation of normalization performance

To evaluate the independently derived NCGs with respect to the RUV batch-normalization of the testing data, we started
again by performing the respective RUV-normalization using the same range of parameters as described in section 2.5.
Subsequently, we computed the six performance metrics described in section 2.7 for the raw data and the batch-corrections,
which were conducted using either the empirically derived NCGs or three different types of controls: (i) 314 house keeping
genes proposed by Eisenberg and Levanon (2003) and retained in the merged data (HKG), (ii) the 372 genes with the lowest
expression RMD values calculated across all samples in the testing dataset (Ctrl1), and (iii) 372 genes chosen randomly
(Ctrl2). The positive control genes, needed for the computation of the OPG metric, were extracted as described above, but
only using the studies GSE37418 and GSE85217 included in the training dataset. Considering especially the results for the
ARI, SVM, and OPG metrics, the analysis suggested that the RUV-normalization using the NCGs, despite the fact that they
had been derived from the independent training dataset, produced generally better results on the testing data than the other
three sets of control genes (Supp. Fig. 7).

2.8.4 Visualization of batch-effects in raw and RUV-normalized datasets

By utilizing the independently derived NCGs for the RUV-normalization and employing the four metrics, ARI, IIGD,
Entropy, and σmRLE , and visual inspections, we obtained a final batch-corrected version of the testing data. By visualizing,
via the use of the RLE, MDS and HC plots, and comparing the batch effects between the raw testing data (Supp. Fig. 8)
and the final batch-correction of the testing data (Supp. Fig. 9), we found that the strategy was capable to remove a large
amount of batch effects in the testing data, thus validating the proposed batch-correction strategy.

3. Availability of normalized data
The batch-corrected data have been deposited in the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/,
together with (i) the original MB subgroup affiliations, (ii) the reclassified MB subgroup labels assigned in this study, and
(iii) all originally supplied clinical information for individual samples. The data is available through the GEO accession
number GSE124814.
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4. Supplementary tables and figures

Supplementary table 1

Supp. Table 1: Selected gene expression datasets

Number of samples?

GEO/AE ID Platform Normal† WNT SHH G3 G4 MB: unk.§ Tot. Reference

GSE3526 HG-U133-Plus-2 9 9 (Roth et al., 2006)

GSE4036 HG-U133-Plus-2 14 14 -

GSE10327 HG-U133-Plus-2 9 15 11 27 62 (Kool et al., 2008)

GSE12992 HG-U133-Plus-2 40 40 (Fattet et al., 2009)

GSE37418 HG-U133-Plus-2 8 10 16 39 3 76 (Robinson et al., 2012)

GSE44971 HG-U133-Plus-2 9 9 (Lambert et al., 2013)

GSE49243 HG-U133-Plus-2 58 58 (Kool et al., 2014)

GSE50161 HG-U133-Plus-2 2 8 4 7 3 24 (Griesinger et al., 2013)

GSE67850 HG-U133-Plus-2 22 22 (Ho et al., 2015)

GSE73038 HG-U133-Plus-2 10 16 10 10 46 (Sturm et al., 2016)

GSE74195 HG-U133-Plus-2 5 25 30 (deBont et al., 2008)

EMTAB292 HuEx-10 5 14 19 (Menghi et al., 2011)

GSE21140 HuEx-10 8 33 27 35 103 (Northcott et al., 2011)

GSE25219 HuEx-10 51 51 (Kang et al., 2011)

GSE60862 HuEx-10 130 130 (Ramasamy et al., 2014;
Trabzuni et al., 2013)

GSE22569 HuGene-10 22 22 (Liu et al., 2012; Somel
et al., 2011)

GSE30074 HuGene-10 30 30 (Park et al., 2011)

GSE35974 HuGene-10 44 44 (Chen et al., 2013)

GSE41842 HuGene-10 6 3 2 8 19 (Gokhale et al., 2010)

GSE37382 HuGene-11 11 6 33 50 (Northcott et al., 2012a)

GSE50765 HuGene-11 12 12 (Vanner et al., 2014)

GSE62803 HuGene-11 1 1 2 4 8 (Morrissy et al., 2017)

GSE85217 HuGene-11 70 223 144 326 763 (Cavalli et al., 2017)

?: Where the number of samples corresponds to the number of unique patients in a study, ignoring duplicated samples for the same patient.
†: Samples labeled as “Normal” designate normal cerebellar controls.
§: Samples labeled as “MB: unk.” refer to MB samples, for which no subgroup label could be obtained from the respective dataset record or the
accompanying publication.
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Supplementary figure 1
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Supp. Fig. 1. Selection of classifier genes. A) Volcano plots showing the results of differential expression analyses between
MB subgroups (rows) within four different datasets (columns). For a given subgroup and dataset, three limma analyses were
performed, comparing the subgroup to each of the other three subgroups in this dataset. The plots depict the maximum
q-value (FDR corrected p-value) and minimal FC across the three analyses. The horizontal reference line indicates the
q = 0.05 threshold, while the vertical lines indicate logFC thresholds of − log2(1.3) and log2(1.3), respectively. Colored
data points indicate the 25 subgroup specific classifier genes used for classification analyses. B) The percentages of samples
correctly classified by the PAM classifier as a function of the number of top signature genes used for the classification. The
dashed reference line indicates the 85% level.
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Supplementary table 2

Supp. Table 2: Signature genes identified through differential expression analyses

WNT SHH G3 G4

WIF1 PDLIM3 GABRA5 SH3GL3
TMEM51 CYYR1 SORBS2 RBM24

ADAMTSL1 KIAA0922 NXPH4 RND1
GAD1 SFRP1 SMARCD3 KIAA0319

RUNX2 EYA1 ARL6 PTPN5
ZNRF3 NDP PNPLA3 CAP2

TMEM132C PPP2R2C NPR3 ANKS1B
P4HA2 NDST3 PCOLCE2 SLC10A4

TNFRSF19 ZC3H12C GABRB3 PDZD4
TNC ATOH1 TRIP10 SPTAN1

FZD10 HHIP DOCK9 MID2
NKD1 NRIP2 SSX2IP KIAA2022

ADAM12 PREX1 TDRP SH3BP5
LRP4 PRLR PALMD NEUROD2
PYGL ANKRD6 RABGAP1L THRA
FBXL7 PBX4 MCF2L2 ST18
LAMP5 TEX15 GPD1L RPH3A

MAF SRGAP1 ARL4D TMEM35A
RASL11B CPLX1 INHBB RAPGEFL1

RTTN ARHGEF26 PYY STXBP1
DKK2 PTX3 NRL MPP3
OSR2 ABCB4 RALGPS2 SLC9A6
RAI2 ZNF516 TSHZ3 RALGPS1

TMEM2 TMEM144 TBX21 RNF144A
IFT57 KIF21A ARHGAP9 BLCAP
PGM5 GRIA4 FGF11 GPR12

Genes highlighted in color overlap with a previously published set of 22 signature genes (Northcott et al., 2012b).

Supplementary table 3

Supp. Table 3: Coefficients used by the Elastic Net classifier

WNT SHH G3 G4

ADAMTSL1 CYYR1 C2orf71 BARHL1
AMHR2 EHD1 DCT EPHB1
DLX3 EYA1 DENND1B EXPH5
FZD10 NDP EML1 GRM8
GAD1 NRIP2 GABRA5 HTR2C

MYH15 PDLIM3 GSG1 KIAA0319
NKD1 SFRP1 GUCA1C KLRD1
OSR2 ZNF516 HLX LINC01105
PGM5 LMO1 NEUROD2

RUNX2 NPFFR2 NID2
TGFA NPR3 PTPN5

TMEM2 NXPH4 RAPGEF2
WIF1 PYY RAPGEFL1

RHO RBM24
RIMS2 RPH3A
TBX21 SH3GL3
TRIP10 SHC4
USP2 SIX6

SNCAIP
STOX2
SYCP1

TES
TFAP2D

TMEM192
TSPAN2

Genes highlighted in color overlap with a previously published set of 22 signature genes (Northcott et al., 2012b).

11



Weishaupt et al. 2019 - Supplementary material

Supplementary figure 2
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Supp. Fig. 2. Inspection of samples with lacking consensus MB subgroup prediction. A) Heat map showing the expression
of 100 signature genes in 55 MB cases, which exhibited subgroup affiliations but could not be correctly classified by both
the PAM and Elastic Net classifiers. B) Heat map showing the signature gene expression in 9 MB samples, which lacked
previous subgroup affiliations and could not be robustly classified by the two classifiers. C) Heatmap showing pairwise
Pearson’s correlation coefficients comparing each of the 64 samples, which could not be robustly classified by the two
classifiers, against all those samples, which belonged to the same platform and exhibited trustworthy phenotype labels
(either normal cerebellar controls or correctly classified MB subgroup labels). D-E) Biplots showing the results of principal
component analyses performed on all samples in the GSE21140 (D) or the GSE85217 (E) datasets and utilizig the 1200
most variable genes in each dataset, respectively. Samples from these datasets, which could not be robustly classified by
both PAM and ElasticNet classifiers, are drawn using triangles.
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Supplementary figure 3
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Supp. Fig. 3. Flow-chart visualizing the procedure and metrics employed to select empirical negative control genes. For
more details, please refer to supplementary methods section.
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Supplementary table 4

Supp. Table 4: List of 372 empirically defined negative control genes
A4GNT CCDC12 ETV7 KRT24 NLRP13 S100PBP TNF

ABCB11 CCDC127 EXOSC6 KRT4 NLRP8 SCART1 TNP2

ABCB5 CCDC130 FAM110D KRT72 NPHS2 SCGB2A2 TPP1

ABHD11 CCER1 FAM129C KRTAP3-1 NR0B1 SEBOX TPPP2

ABI3 CCL1 FAM205BP LAD1 NR1I2 SERPINB7 TRAF3IP3

ACO2 CCL13 FAM49B LAYN NSFL1C SH3GL1 TREML1

ACTL8 CCL21 FAM71A LEXM NSUN2 SIGLEC11 TRIM29

ACTR10 CD1E FAM91A1 LGALS8-AS1 NUDT18 SIRPB2 TRIM41

ACVR1B CD244 FAM9C LILRA1 NXF1 SLA2 TRIM42

ADCY10 CD40LG FANCD2OS LILRA5 ODF3L2 SLC16A8 TRIML1

ADGRE3 CD7 FASLG LINC00301 OGFR SLC22A18AS TRMU

ADGRG5 CDC42SE2 FBXO39 LINC00304 OGG1 SLC25A25 TRPC4AP

ADRA1D CDSN FCRL2 LINC00523 OPN4 SLC28A1 TSACC

ADRA2B CEACAM7 FCRL3 LINC00598 OPRPN SLC28A2 TSPY26P

ADRM1 CELA2B FER1L6-AS1 LINC00638 OR51B2 SLC5A2 TTLL10

AFAP1-AS1 CELA3B FETUB LINC01366 OR8D1 SLC7A6OS TTTY11

AFG3L2 CFL2 FFAR2 LINC01565 PARP10 SMDT1 TYW5

AGAP3 CLDN18 FGA LINC01620 PATE1 SMG9 UBE2G2

AGR2 CLEC4C FGB LIPC PDYN SMIM12 UBE2J2

AKR1D1 CLNK FGL1 LMF2 PIGO SMNDC1 UBL4B

ALG12 CLTA FGR LMNA PIK3CD-AS1 SON UCMA

ANXA9 CNBD2 FLJ31713 LMOD3 PIN1 SPATA16 UMOD

AP1G1 COG7 FLJ40288 LOC100127955 PLA2G2A SPATA19 UPK3B

AP1M1 COPS7A FOXP3 LOC101927051 PLEKHH3 SPATA8 UROS

AP1M2 CPSF7 FRMD8 LOC254028 PLG SPHK2 USP21

AP3D1 CRKL G6PC LOC645261 POF1B SSBP4 UTF1

APOB CSF2 GAS2L2 LOC93622 POLL SSMEM1 UTP18

APTX CSF3R GBA3 LRPAP1 POLR3H SSU72 WFDC11

ARFRP1 CST11 GNLY LRRC47 POM121L2 STAR WFDC8

ARMC5 CST8 GOLPH3 LYL1 PPP1R35 SUGP1 VIL1

ARPP19 CTAGE1 GP2 MAS1L PPP2R1A SUN1 WNT2

ART5 CTBP1 GPKOW MATN1 PPP6R3 SUN5 WNT8B

ASAH1 CUL3 GPSM3 MCM3AP PRDM9 SYVN1 WNT9B

ASB1 CWH43 GPX5 MECOM PRG3 TACSTD2 VPS18

ATE1 CXCR6 GSDMC MED15 PRKACG TAF2 VPS37D

ATF2 CXorf36 HIST1H4G MEMO1 PRR15L TAT YTHDC1

ATP13A3 CYP1A1 HMGXB3 MKRN2 PRR30 TBC1D10B YY1

ATP6V1F CYP2B7P HRG MLF2 PRRX2 TBC1D22A-AS1 ZAP70

ATP8B5P CYP4B1 HSD11B1L MNT PRSS54 TCF21 ZC3H7B

AURKAIP1 CYP4F2 HSPA12B MOV10L1 PSMD1 TESMIN ZCCHC13

BAAT DDI1 HYAL4 MPG PTCD2 TESPA1 ZNF142

BAP1 DDX17 HYI MRGPRX2 PUDP TFPT ZNF251

BMX DMP1 IAH1 MROH2B R3HCC1L THAP3 ZNF343

BPIFB1 DNAJB12 ICAM5 MS4A3 RAB7A TIAL1 ZNF554

BTLA DNAJC11 IGLL1 MTG2 RAF1 TIMM10B ZNF576

C11orf16 DRD3 IL1RN MTHFSD REG3A TM4SF5 ZNF584

C12orf42 DRG1 IL20 MTUS2-AS1 RETNLB TMCO2 ZNF629

C1orf116 DVL2 IL36B MUL1 RHBDD3 TMCO4 ZNF696

C20orf141 DYM IL37 MYH4 RHOT2 TMCO5A

C7orf77 EARS2 IRX4 NAA38 RNF114 TMEM198

CALCR ELF3 ITGAX NDST1 RNH1 TMEM225

CAPN9 ERP29 KCNK16 NDUFS7 RP9 TMEM40

CASR ERVH48-1 KRBA1 NFX1 RTP1 TMEM41A

CCAR2 ETFBKMT KRT20 NLRC4 RTP3 TMEM8A
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Supplementary figure 4
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Supp. Fig. 4. Scatter plots of MDS results. A) Scatter plot of the first and third component of a MDS reduction of the
batch-corrected dataset down to three dimensions. B) Scatter plot of the second and third component of the MDS results. C)
Three dimensional scatter plot comparing all 3 dimensions of the MDS results.
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Supplementary figure 5
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Supp. Fig. 5. Biplots illustrating results of principal component analyses on all samples in the merged dataset before and
after RUV-normalization, respectively. A-B) Scatter plots on the first and second principal components obtained for the raw
data. C-D) Scatter plots on the first and second principal components obtained for the RUV-normalized data. In each of the
two datasets, the 1200 most variable genes were used for the PCA. For each sample, the microarray platform is indicated via
the shape of the respective datapoint, while colors reflect either the phenotye (A, C) or study affiliation (B, D).
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Supplementary table 5

Supp. Table 5: Datasets used for validation

Number of samples Used for?

Dataset WNT SHH G3 G4 Normal Total Training Testing

GSE3526 0 0 0 0 9 9 X

GSE4036 0 0 0 0 14 14 X

GSE10327 9 14 10 26 0 59 X

GSE12992 4 7 8 20 0 39 X

GSE37418 8 10 15 35 0 68 X

GSE44971 0 0 0 0 9 9 X

GSE49243 0 58 0 0 0 58 X

GSE50161 1 9 2 7 2 21 X

GSE67850 1 5 9 7 0 22 X

GSE73038 10 16 9 10 0 45 X

GSE74195 1 1 7 11 5 25 X

EMTAB292 0 3 3 8 5 19 X

GSE21140 8 29 23 35 0 95 X

GSE25219 0 0 0 0 51 51 X

GSE60862 0 0 0 0 130 130 X

GSE22569 0 0 0 0 22 22 X

GSE30074 2 9 3 16 0 30 X

GSE35974 0 0 0 0 44 44 X

GSE41842 6 3 2 6 0 17 X

GSE37382 0 10 5 31 0 46 X

GSE50765 0 10 0 0 0 10 X

GSE62803 1 1 2 3 0 7 X

GSE85217 67 220 135 315 0 737 X

Training 76 234 160 369 119 958 X

Testing 42 171 73 161 172 619 X

? The training dataset was only employed to extract the NCGs, which were then utilized to normalize the testing dataset.
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Supplementary figure 6
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Supp. Fig. 6. Inspection of NCGs defined in a training dataset (7 studies, 958 samples) and illustrated in an independent test
dataset (16 studies, 619 samples). A) Strip chart showing the gene expression across all 619 samples in the test data for
the NCGs with the largest (top panel) and second largest (bottom panel) MAD score across all samples in the test dataset.
B) Strip chart depicting the variation of expression values between phenotypes, between studies, and between platforms
within the test dataset, as calculated for the empirically defined NCGs (one dot per gene). For each gene, the variation
between phenotypes was calculated within each study as the RMD across phenotype means and the maximum RMD across
studies was utilized as the final value. Similarly, the variation between studies was calculated on study means within each
platform and the maximum across platforms was recorded. The variation between platforms was calculated as the RMD
across platform mean expression values. ***: p < 0.001 (Wilcoxon signed-rank test).
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Supp. Fig. 7. Evaluation of batch-effect removal on the test dataset (16 studies, 619 samples) using NCGs identified from
an independent training dataset (7 studies, 958 samples). A-F) Box plots depicting the distribution of σmRLE (A), IIGD (B),
ARI (C), Entropy (D), SVM (E), and OPG (F) scores obtained from the raw expression data or after batch normalization
over a range of regularization parameters and using either empirically defined NCGs (RUV) or three reference sets of control
genes (HKG: 314 Housekeeping genes, Ctrl1: the 372 genes with the lowest RMD across all samples in the test dataset,
Ctrl2: 372 randomly sampled genes). ***: p < 0.001 (Wilcoxon rank sum test).
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Supplementary figure 8
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Supp. Fig. 8. Visualization of batch effects in raw, merged dataset comprising 619 samples from 16 studies (GSE3526,
GSE10327, GSE12992, GSE44971, GSE49243, GSE50161, GSE67850, GSE73038, GSE21140, GSE60862, GSE22569,
GSE30074, GSE41842, GSE37382, GSE50765, GSE62803). A) Modified RLE plot showing the median, interquartile region
(IQR), and non outlier ranges of each sample’s RLE distribution. B) Scatter plot showing the result of a two-dimensional
MDS analysis utilizing the top 1200 most variable genes. C) Hierarchical clustering of MB samples and the 1200 most
variable genes.
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Supplementary figure 9

−4

−2

0

2

4

R
el

at
iv

e 
lo

g 
ex

pr
es

si
on

Samples

Platform
Study

Non−outliers
IQR
Median

A

−40 −20 0 20 40

Dimension 1

−20

0

20

40

D
im

en
si

on
 2

HuEx−10 HuGene−10 HuGene−11
HG−U133−Plus−2

Normal WNT SHH G3 G4B

Platform
Study

Subgroup

5

-5

0

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

C

WNT
SHH
G3
G4

GSE10327
GSE12992
GSE49243
GSE50161
GSE67850
GSE73038
GSE21140
GSE30074
GSE41842
GSE37382
GSE50765
GSE62803

HG.U133.Plus.2
HuEx.1.0.st.v1
HuGene.1.0.st.v1
HuGene.1.1.st

Supp. Fig. 9. Visualization of batch effects in RUV-normalized dataset comprising 619 samples from 16 studies (GSE3526,
GSE10327, GSE12992, GSE44971, GSE49243, GSE50161, GSE67850, GSE73038, GSE21140, GSE60862, GSE22569,
GSE30074, GSE41842, GSE37382, GSE50765, GSE62803). The negative control genes, which were utilized in the RUV
normalization, were empirically determined in an independent dataset comprising 958 samples from 7 studies (GSE4036,
GSE37418, GSE74195, EMTAB292, GSE25219, GSE35974, GSE85217). A) Modified RLE plot showing the median,
interquartile region (IQR), and non outlier ranges of each sample’s RLE distribution. B) Results of a two-dimensional MDS
analysis utilizing the top 1200 most variable genes. C) Hierarchical clustering of MB samples and the 1200 most variable
genes.
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