
IGLOSS - Supplementary material

1 Introduction

In this Supplement, we give a detailed description of algorithms and procedures underlying IGLOSS
server. Document is organized as follows: in the next Section, we describe the model building
procedure. We then explain the use of the string matching algorithm from [4]. How these two are
combined is described in Section 4. Finally, in the penultimate Section, we present our tests and
results, while the last Section contains figures and tables.

2 Model Building

In this section we describe our model building procedure. As already mentioned, the model is
computed from the input - in the first iteration - or - in subsequent iterations - from a list of
positives of the previous one. The application allows for “neutral” and conserved positions in the
input, where, at a neutral position - denoted by “X” - the mutation pattern corresponds to the
uniform distribution of amino acids. All this complicates the model building procedure a bit, so
we will deal with the first iteration separately.

In the first iteration, the input consists of one or more rows of equal width, say, N rows. We
first compute sequence weights w̃l (following [3]), and then renormalize:

wl =
w̃l∑
l w̃l

, l = 1, . . . , N. (1)

Using {wl}, we compute the weighted empirical distribution W̃j for the column j of the input.
Let m be any amino acid, and denote by {mlj} the input matrix. Then W̃j(m), the position indexed
by m in W̃j , is given by

W̃j(m) =
∑

l:mlj=m

wl +
∑

l:mlj=X

1

20
wl. (2)

It can be easily seen that W̃j is a probability distribution (i.e. it sums to 1). We next add a small
amout of pseudo-count

Wj(m) =
W̃j(m) + 1

100N

1 + 1
5N

, (3)

to obtain Wj , a weighted distribution for each column j of the input.
We now construct evolutionary pseudo-counts. Let P stand for PAM120 matrix i.e. a 120-th

power of the PAM matrix [1], and let P(m) denote the vector corresponding to the amino acid m.
We use Wj as coefficients in a convex combination, that is, we set

Nj =

20∑
k=1

Wj(k)P(k), (4)
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and obtain Nj , an evolution-model for column j of the input. We combine this with the weighted
model Wj , where the convex combination coefficient depends on N , the size of the sample. Hence,
let the function f be given by

f(x) =

{
0.505514− 0.00551429 · x x ∈ [0, 36]
−9.05/x2 + 9.5/x+ 0.05 x > 36

(5)

The function f is strictly decreasing, linear on [0, 36], and polynomial for x > 36 (see Figure 1),
and we define

K̃ = (1− f(N))W + f(N)N . (6)

We now deal with “neutral” and conserved positions. If the position j is considered conserved,
we set

Kj =
1

100
K̃j +

99

100
Wj , (7)

and, if the position j is considered neutral,

Kj =
1

10
K̃j +

9

10
B, (8)

where B is the background amino acid distribution. Otherwise, we have

Kj = K̃j . (9)

Finally, we get our position specific scoring matrix for the first iteration - denoted L1 - as

L1 = logK − logB. (10)

In subsequent iterations, we do not have X’s in the input, so formula (2) is simplified, and
model building proceeds in identical fashion. However, we use the PSSM from the first iteration to
stabilize the model, hence

L̃k = log

(
1

2
(expLk + expL1)

)
(11)

is the PSSM in the k-th iteration.

3 String-Matching Algorithm

Our search strategy is exhaustive - it amounts to evaluating our model at each possible position in
the whole sample. In other words, the PSSM Li - that was computed after the previous iteration - is
in the i-th iteration evaluated at each position in each sequence. With that in mind, we construct,
for each sequence x, the score-vector

v(x) = (v(x)1, v(x)2, . . .),

where v(x)j , the j-th component of v(x), is defined as the score of Li at j-th position of x. The
vector v(x) can easily be computed using window-sliding procedure, but in a situation where the
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sample is scanned over and over again, it is reasonable to consider the indexed-based method from
[4]. In that case, v(x) is computed with a loop over the length of the model (rather than the length
of the sequence x), which speeds up the process. The algorithm was originally meant to work with
a match-mismatch scoring function, so the only modification needed was to adapt it to work with
a general PSSM, which - nota bene - includes dealing with multiple queries. But, that turns out
to be straightforward.

4 Engine Algorithm

Once the model has been constructed - as in Section 2 - and the vector v(x) calculated, for all
sequences x in the sample, we can proceed to the next step. For each x, denote by m(x) the
maximum of v(x). Then, standard results from extreme value theory [2] indicate that {m(x)}
should be approximately logistically distributed. This is, indeed, the case, as can be seen from
Figure 2, and will be used to obtain an accurate estimate of distribution parameters.

Hence, we use scipy package, function logistic fit, to find the mean and scale parameters, µ and
s, and set a threshold as t = µ + k · s, where k is the server input parameter. Now, any hit with
a score greater than t is added to the list of positives from the current iteration, and used - in the
next iteration - to build a new model.

5 Results

In this Section, we present and comment on our tests and results. We carried out GDSL-lipase
search on five plant proteomes with three applications - IGLOSS (IG), PSI-BLAST (PB) and
jackHMMER (JH). In order to assess and compare performance, we ran all three applications for
various similarity levels and combined results into ROC-like curves.

First, a few words about notation: sequences in the sample that have been annotated as GDSL-
lipase are marked as condition positive and their number is denoted as |CP |, while the rest are
marked as condition negative (CN). Now, each of the three applications under consideration pro-
duces - for a specified similarity level - a list of positive hits, and their respective sequences are
denoted as positive (P) - with the rest of the sample being negative (N) - while |P | and |N | denote
the corresponding set sizes. We then have true positives (TP) and false positives (FP) as

TP = P ∩ CP, FP = P ∩ CN, (12)

and likewise for true negatives (TN) and false negatives (FN)

TN = N ∩ CN, FN = N ∩ CP. (13)

The usual way of assessing diagnostic ability of an application would be the ROC-curve, where
one would plot sensitivity or true positive rate

TPR = |TP |/|CP | (14)

against false positive rate
FPR = |FP |/|CN |. (15)
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However, in the present context, there is a serious disbalance between the sizes of the condition
positive and condition negative sets: |CN | is several orders of magnitude greater than |CP |, so,
for any reasonable test outcome, |FPR| will be close to 0. Consequently, we consider precision or
positive predictive value

PPV = |TP |/|CP |, (16)

use PPV and TPR as accuracy measures, and construct PPV-TPR ROC-like curve to illustrate
performance of all three applications.

We performed motif-scanning on five organisms - Arabidopsis thaliana (AT) (TAIR9), Oryza
sativa (OS) (MSU v7), Solanum tuberosum (ST) (ITAG1), Solanum lycopersicum (SL) (ITAG2.3)
and Beta vulgaris (BV) (KWS2320). That consisted, for each plant, of 35 IG, 25 PB and 35 JH
tests for various similarity levels, so, in total, we have carried out 95× 5 tests. This enabled us to
obtain a full range of PPV—TPR points. Clearly, for PB and JH, similarity level is controlled by
e-value, while in case of our server, scale is the required input.

Summary of our tests is presented in Figures 3 and 4, some of the results were compiled into
tables in the next Section, while a complete set of results is available from the website. Figures 3
and 4 represent cumulative results, where, for example, the set CP is obtained as an union of CPs
for each organism, i.e.

CPtotal = CPAT ∪ . . . ∪ CPBV , (17)

and likewise for the rest. This gives sufficient density to obtain an (almost) smooth PPV-TPR
curve for each application in Figure 3, and PPV-F1 curve in Figure 4. Here, F1 stands for the
harmonic mean between PPV and TPR, hence

F1 = 2 · PPV · TPR
PPV + TPR

(18)

Finally, a short comment regarding the Figure 3: it can be seen that, in terms of PPV-TPR
trade-off, IG outperforms PB for the whole range of PPV values, more-or-less matches JH in the
lower range, and gives an improvement for values of PPV over 0.7. Note also that, in the upper
range, IG registers a simultaneous improvement in PPV and TPR, which is - essentially - a natural
consequence of a careful model building procedure in this context: an increase in PPV will yield a
better profile, which will increase both PPV and TPR in the next iteration.

6 Figures and Tables

In this Section, we collected figures and tables that have been commented upon earlier. In Tables
1 to 5, you will find motif scanning results for GDSL Block I consensus query FVFGDSLSDA. As
already mentioned, these tables represent a sample of the tests that we carried out. We assembled
results of the three applications in a single table by (approximately!) matching the number of
positives. The full size of the family (per organism) is in the top row, the size with isoforms
counted once is in brackets, while the execution time is in seconds (tests have been carried out on
an HP ProBook, intel CORE i5). Tables are ordered by increasing joint PPV values.
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Figure 1: Graph of function f

Figure 2: IGLOSS results in yellow, perfect logistic in green
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Figure 3: PPV-TPR curve

Figure 4: PPV-F1 curve

AT OS ST SL BV UNION
CP 118(104) 155(116) 123(123) 108(108) 86(82) 590(533)

PSI-BLAST

TP/P 82/172 84/161 84/168 85/161 58/123 393/785
PPV 0.48 0.52 0.50 0.53 0.47 0.50
TPR 0.69 0.54 0.68 0.79 0.67 0.67
EVALUE 1022 1421 845 720 860
TIME 0.39 0.56 0.35 0.35 0.34

JACKHMMER

TP/P 103/172 100/162 92/169 90/161 64/123 449/787
PPV 0.60 0.62 0.54 0.56 0.52 0.57
TPR 0.87 0.65 0.75 0.83 0.74 0.76
EVALUE 327 445 335 283 285
TIME 0.16 0.26 0.14 0.15 0.13

IGLOSS

TP/P 80/172 120/162 92/169 93/161 62/123 447/787
PPV 0.47 0.74 0.54 0.58 0.50 0.57
TPR 0.68 0.77 0.75 0.86 0.72 0.76
SCALE 6.7 8.2 6.7 6.7 6.7
TIME 12.18 33.86 15.66 11.32 10.16

Table 1: Scanning results I, for various e-values and scale; joint PPV is in the last column
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AT OS ST SL BV UNION
CP 118(104) 155(116) 123(123) 108(108) 86(82) 590(533)

PSI-BLAST

TP/P 74/119 84/156 76/123 76/108 54/86 364/592
PPV 0.62 0.54 0.62 0.70 0.63 0.61
TPR 0.63 0.54 0.62 0.70 0.63 0.62
EVALUE 640 1417 580 465 560
TIME 0.32 0.55 0.30 0.28 0.27

JACKHMMER

TP/P 90/118 99/156 85/124 82/108 57/86 413/592
PPV 0.76 0.63 0.69 0.76 0.66 0.70
TPR 0.76 0.64 0.69 0.76 0.66 0.70
EVALUE 172 426 224 163 183
TIME 0.17 0.27 0.14 0.14 0.13

IGLOSS

TP/P 86/113 120/158 89/122 90/109 61/85 446/587
PPV 0.76 0.76 0.73 0.83 0.72 0.76
TPR 0.73 0.77 0.72 0.83 0.71 0.76
SCALE 7.8 8.3 7.7 8.1 7.7
TIME 16.67 33.82 14.68 11.56 13.44

Table 2: Scanning results II, for various e-values and scale; joint PPV is in the last column

AT OS ST SL BV UNION
CP 118(104) 155(116) 123(123) 108(108) 86(82) 590(533)

PSI-BLAST

TP/P 73/113 79/113 73/110 76/107 50/73 351/516
PPV 0.65 0.70 0.66 0.71 0.68 0.68
TPR 0.62 0.51 0.59 0.70 0.58 0.59
EVALUE 605 1200 510 460 460
TIME 0.32 0.53 0.29 0.27 0.26

JACKHMMER

TP/P 86/113 87/113 80/110 82/107 52/73 387/516
PPV 0.76 0.77 0.73 0.77 0.71 0.75
TPR 0.73 0.56 0.65 0.76 0.60 0.66
EVALUE 165 265 180 160 159
TIME 0.16 0.26 0.14 0.14 0.12

IGLOSS

TP/P 86/113 107/113 89/110 89/107 63/73 434/516
PPV 0.76 0.95 0.81 0.83 0.86 0.84
TPR 0.73 0.69 0.72 0.82 0.73 0.74
SCALE 7.9 10.8 8.5 8.5 8.2
TIME 16.35 36.79 17.58 11.38 10.12

Table 3: Scanning results III, for various e-values and scale; joint PPV is in the last column
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AT OS ST SL BV UNION
CP 118(104) 155(116) 123(123) 108(108) 86(82) 590(533)

PSI-BLAST

TP/P 75/106 86/115 76/123 76/107 52/78 365/529
PPV 0.71 0.75 0.62 0.71 0.67 0.69
TPR 0.64 0.55 0.62 0.70 0.60 0.62
EVALUE 480 900 600 470 470
TIME 0.29 0.36 0.27 0.29 0.26

JACKHMMER

TP/P 80/107 88/116 86/125 82/107 56/85 392/540
PPV 0.75 0.76 0.69 0.77 0.66 0.73
TPR 0.68 0.57 0.70 0.76 0.65 0.66
EVALUE 150 270 230 160 180
TIME 0.17 0.26 0.14 0.15 0.12

IGLOSS

TP/P 85/106 108/114 89/124 89/108 61/85 432/537
PPV 0.80 0.95 0.72 0.82 0.72 0.80
TPR 0.72 0.70 0.72 0.82 0.74 0.73
SCALE 8.5 10 7.5 8 7.7
TIME 16.30 31.41 13.63 15.26 13.46

Table 4: Scanning results IV, for various e-values and scale; joint PPV is in the last column
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AT OS ST SL BV UNION
CP 118(104) 155(116) 123(123) 108(108) 86(82) 590(533)

PSI-BLAST

TP/P 46/61 65/77 62/71 52/56 43/48 268/313
PPV 0.75 0.84 0.87 0.93 0.90 0.86
TPR 0.39 0.42 0.50 0.48 0.50 0.45
EVALUE 265 705 280 160 270
TIME 0.25 0.38 0.24 0.22 0.21

JACKHMMER

TP/P 53/61 70/77 66/71 55/57 42/49 286/315
PPV 0.87 0.91 0.93 0.96 0.86 0.91
TPR 0.45 0.45 0.54 0.51 0.49 0.48
EVALUE 82 172 72 51 75
TIME 0.15 0.26 0.13 0.14 0.12

IGLOSS

TP/P 52/61 73/77 67/71 56/56 49/49 297/314
PPV 0.85 0.95 0.94 1.00 1.00 0.95
TPR 0.44 0.47 0.54 0.52 0.57 0.50
SCALE 11.0 12.5 11.0 11.0 11.0
TIME 17.51 46.32 18.93 12.28 15.92

Table 5: Scanning results V, for various e-values and scale; joint PPV is in the last column
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