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S1. Extracting Graphlet-orbit Transitions (GoTs)

Supplementary Algorithm S1 describes how we obtain exact counts of k-node GoTs of a given network. First,
our method generates all k-node graphlets and their respective orbits and populates a g-trie with them (lines
2 and 3). A g-trie is a datastructure that efficiently stores input subgraphs and greatly speeds up their
enumeration in a network [19]. The main idea of a g-trie is that subgraphs of a given size (say, 4-nodes)
have common subtopologies. Thus, instead of searching each subgraph individually, g-tries obtain the exact
occurrences of smaller subgraphs (say, 3-nodes) and grow them iteratively without starting computation from
scratch. When they were first proposed, g-tries were a one or two orders of magnitude faster than state-of-the
art algorithms, such as FANMOD [26] and Kavosh [10]. Other fast methods for subgraph enumeration include
QuateXelero [11] and FASE [16]. More recently, analytic approaches such as PGD [20] and ESCAPE [17]
have been proposed to greatly speed up graphlet enumeration. However, these latter approaches are not
general (i.e., they can only be used for specific sets of graphlets, e.g., undirected graphlets of at most give
nodes).

Note that our method generates the g-trie (for a given set of orbits) only once, stores it in a file and
reuses it when necessary. The enumeration process is repeated for all T snapshots, storing the enumerated
occurrences in a vector of the form of {Nodes{1..k}, t, Orbits{1..k}}. We use this representation so that, after
we sort the vector (line 10), the occurrences of the same subgraph Nodes{1..k} are in subsequent positions
of vector Occs and sorted by t. We compare each consecutive pair of occurrences (Occ1, Occ2) and, if they
belong to the same subgraph (i.e., the nodes are the same), we update the GoTs of each node according to
its orbit transition from t to t+ k (lines 11-14).

Consider the two possible 3-node undirected connected graphlets (chain and triangle) and their orbits
from Supplementary Figure S3. A chain has two possible orbits, i.e., a node can be either at the center of
the chain or in one of its leaves. A triangle has a single orbit, as all of its nodes are topologically equivalent.
GoTs are the matrix of changes (transitions) between every possible pair of orbits across two consecutive
snapshots. There are a total of 3× 3 = 9 possible orbit transitions in Supplementary Figure S3. A node can
remain in its previous orbit, be it a (A) chain-center, (D) chain-periphery or (I) triangle-node. Or, it can
transition from the chain-center to the chain-periphery (B) or to a triangle-node (C), etc. All possibilities
for the 3-node graphlets are illustrated in Figure 3; in practice, we use larger graphlets as well (see below).
The matrix from Supplementary Figure S3 illustrates the GoTs of node x that we use as x’s feature vector.
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Algorithm S1 Obtain all k-node GoTs of network N with T snapshots

1: procedure enumerateGoT(N , T , k)
2: Ok : generate all k-node orbits.
3: GTk = createGTrie(Ok)
4: GoTs : Nodes(N)× |Ok| × |Ok| tensor.
5:

6: for all t ∈ {1 : T} do
7: SN,t : snapshot t of N
8: Occs{t} = enumerateOrbitOccurrences(SN,t, GTk)
9: end for

10:

11: sort(Occs)
12: for all (Occ1, Occ2) ∈ Occs do
13: if Nodes(Occ1) == Nodes(Occ2) then
14: for all i ∈ {1 : k} do
15: GoTs[Nodei(Occ)][Orbiti(Occ1), Orbiti(Occ2)] ++
16: end for
17: end if
18: end for
19: return GoTs
20: end procedure

S2. Performance evaluation

In the following tests we measure potential improvement of GoT-WAVE over DynaWAVE as follows.

S2.1 On synthetic networks

Let us denote by SG the (accuracy or running time) score of GoT-WAVE, and by SD the score of DynaWAVE.
Also, let us denote by GA the relative gain of GoT-WAVE over DynaWAVE in terms of accuracy, and by
GT the relative gain GoT-WAVE over DynaWAVE in terms of running time. Since for accuracy, a larger
score is better, we define GA = SG−SD

min(SG,SD) × 100%. On the other hand, since for running time, a lower

score is better, we define GT = SD−SG

min(SG,SD) × 100%. In both cases, positive gain (i.e., a positive GA or

GT value) would indicate improvement of GoT-WAVE compared to DynaWAVE, and negative gain (i.e.,
a negative GA or GT value) would indicate degradation of GoT-WAVE compared to DynaWAVE. For
example, in terms of accuracy, if GoT-WAVE has accuracy of 1 and DynaWAVE has accuracy of 0.7, then
GA = 1−0.7

0.7 × 100% = 43% (i.e., GoT-WAVE is superior to DynaWAVE). On the other hand, if GoT-
WAVE has accuracy of 0.7 and DynaWAVE has accuracy of 1, then GA = 0.7−1

0.7 × 100% = −43% (i.e.,
GoT-WAVE is inferior to DynaWAVE). As another example, in terms of running time, if GoT-WAVE takes
2 seconds and DynaWAVE takes 6 seconds, then GT = 6−2

2 × 100% = 200% (i.e., GoT-WAVE is superior
to DynaWAVE). On the other hand, if GoT-WAVE takes 6 seconds and DynaWAVE takes 2 seconds, then
GT = 2−6

2 × 100% = −200% (i.e., GoT-WAVE is inferior to DynaWAVE).

S2.2 On real networks

We denote the objective scores of the ideal and method-produced alignments for noise n by Si,n and Sp,n,
respectively. The expectation is that a good method’s produced objective score should be similar to the
method’s ideal objective score, i.e., |Sp,n − Si,n| should be as close as possible to 0. Also, since we want to
account for scaling (e.g., the difference of 0.1 between 0.9 and 0.8 is not the same as the difference of 0.1
between 0.3 and 0.2), we divide the difference between the produced and ideal alignment by their maximum,
i.e., max(Sp,n, Si,n). With these points is mind, we compute the distance dis(Sp, Si) over all considered

noise levels n (from 0% to 20%) as: dis(Sp, Si) =
∑20%
n=0%

|Sp,n−Si,n|
max(Sp,n,Si,n)

For each real network, we compute this distance for each of GoT-WAVE and DynaWAVE. Then, we
summarize gain of GoT-WAVE compared to DynaWAVE as follows. Let us denote by SG the distance score
of GoT-WAVE, and by SD the score of DynaWAVE. Since a lower distance score is better, we compute the
relative gain of GoT-WAVE over DynaWAVE, denoted by GO, as: GO = SD−SG

min(SG,SD) × 100%. Positive gains

mean than GoT-WAVE is superior to DynaWAVE and negative gains mean that GoT-WAVE is inferior to
DynaWAVE.
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Second, we compare GoT-WAVE and DynaWAVE in terms of node correctness (see above). Let us denote
by SG the node correctness of GoT-WAVE, and by SD the node correctness of DynaWAVE. Since higher
node correctness is better, we compute the relative gain of GoT-WAVE over DynaWAVE, denoted by GNC ,
as: GNC = SG−SD

min(SG,SD) × 100%. Again, positive gains mean than GoT-WAVE is superior to DynaWAVE

and negative gains mean that GoT-WAVE is inferior to DynaWAVE.

S3. Temporal random graph models

We generate networks with 24 snapshots each. In each snapshot, new nodes and edges are added to it,
growing the network but keeping edge density. Node arrival is either linear or exponential. We set the
arrival function of each model based on similar models [12]. Which new edges are added is specific to each
model (detailed below). Edge density is set at ≈1% for all models, mimicking real-world networks (such
as PINs [14]), and remains stable for all snapshots (e.g., this stability was observed in social networks [7]).
Each network starts with 100 nodes and grows to 1,000 nodes. We generate ten networks for each of the five
models, for a total 50 networks with 24 snapshots each, or 1200 snapshots.

Next, we give specific details on the models. Supplementary Table S1 summarizes the models.

• Erdős-Rényi (Random) [3]: Two nodes are chosen at random and connected. Past edges are kept.

• Barabási-Albert (ScaleFree) [2]: Two nodes u and v are chosen at random but they become

connected only if max(deg(u),deg(v))
|E| > r, where r is a randomly generated value ∈ [0, 1]. Therefore,

nodes with higher degrees have a bigger chance of gaining new connections (”the rich get richer”).
Past edges are kept.

• Watts–Strogatz (Small-world) [25]: At t = 0 an initial ring network is created, where each node
is connected to ≈ k neighbors. Since N0 = 100 and the edge density is 1%, k = 1 for t = 0. Edges
are then randomly rewired with probability β = 0.2. For t > 0, new nodes arrive and a ring is formed
again (with a possibly different k) while keeping the rewired connections previously added. Rewiring is
again performed, both on the new ring and on the old randomized edges. Therefore, past edges might
disappear.

• Geometric gene duplication (Geo-GD) [18]: Initially k seed-nodes are placed close-by in a two-
dimensional space: d(u, v)2 < ε. As suggested by [18], ε = 5 · 10−2 and k = 5 are used. Nodes
are incrementally added to the network one at a time, and each new node u is placed at a distance
d(u, f)2 ≤ ε from a random father-node f already in the network. The model includes parameter p
which controls how likely node u is to cut-off from f ; for our purposes p = 0.2 since it gives origin
to realistic PPI networks [18]. When a node cuts-off from its father, it is placed at a distance of 10ε
at most. Node additions stop when the desired number of nodes is achieved and the closest 1% edges
are added to snapshot t, while the other possible edges remain unactivated. It is possible that past
edges disappear since close edges in snapshot t are not guaranteed to remain in the 1% closest edges
of snapshot t+ 1.

• Scale-free gene duplication (ScaleFree-GD) [22]: After a few seed edges are added to the network,
each new node is (i) connected to a random father-node and it (ii) copies the father’s connections. The
model has two parameters: p controls the likelihood of child- and father-nodes being connected by an
edge, and q sets the probability of the child-node keeping his father’s connections to other nodes. For
our purposes, p = 0.3 and q = 0.7 since these values generated realistic PPI networks [18]. The model
also sets a 50% chance that when an edge is not successfully replicated from father to child either (a)
the father keeps the edge but the child does not copy it or (b) the child steals the connection from the
father; therefore, past edges can be lost.

S4. Computing ROC curves

With each of GoT-WAVE and DynaWAVE, we align all pairs of synthetic networks. We compute objective
function scores of all alignments. Objective scores vary from 0 (i.e., the networks are completely different)
to 1 (i.e., the networks are exactly alike). We consider an objective score threshold of k, also varying from 0
to 1. Then, a pair of networks is: i) a true positive if their alignment’s objective score is k or higher and the
networks belong to the same model, ii) a false positive if their alignments objective score is k or higher but
the networks belong to different models, iii) a false negative if their alignment’s objective score is lower than
k but the networks belong to the same model, and iv) a true negative if their alignment’s objective score is
lower than k and the networks belong to different models.
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More formally, if G are H are two networks being aligned, c(X) is the class (i.e., model) of the network
and Score(G,H) is their objective score, then, for a given threshold k:

Label(G,H, k) =


True Positive Score(G,H) ≥ k, c(G) = c(H)

False Positive Score(G,H) ≥ k, c(G) 6= c(H)

True Negative Score(G,H) < k, c(G) 6= c(H)

False Negative Score(G,H) < k, c(G) = c(H)

Then, for each level k, we compute the true positive rate (TPR)) and the false negative rate (FPR).

TPR(k) =
|True Positives|

|True Positives ∪ False Negatives| (TPR)

FPR(k) =
|False Positives|

|False Positives ∪ True Negatives| (FPR)

We vary k in increments of 0.01, resulting in 1000 pairs of TPR versus FPR. We then compute the area
under the receiver operating characteristic (AUROC) curve as follows:

AUROC =

1∑
k=0.01

TPR(k)∆FPR(k) (1)
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S5. Randomization schemes

We insert noise using three different randomization schemes. For undirected networks, we use an established
randomization scheme [6], which we refer to as undirected randomization. This scheme chooses two random
events and swaps their timestamps with some probability. For directed networks, we use a variation of the
above scheme that also randomly swaps edge directions with some probability, which we refer to as directed
randomization. For directed networks, we use an additional scheme that only swaps the edge direction of
events but not their timestamps, which we refer to as pure directed randomization.

We study 10 noise levels, from 0% to 20% in increments of 2%. We produce five random networks for each
noise level. First, for a given method, at each noise level, for each alignment, we compute its objective function
score. Ideally, the score decreases as the network is aligned to progressively noisier versions. Additionally,
since we know the perfect alignment between the original network and its randomized versions (as their nodes
are the same), we compute the ideal objective score, i.e., the quality of the perfect alignment, as measured
by DynaWAVE’s and GoT-WAVE’s objective function. We then measure the distance to the each method’s
ideal alignments (details in Supplementary Section 2.2).

Next, we provide more details on each scheme.

S5.1 Undirected randomization

This randomization scheme was proposed in [6] and used in [23, 24]. Given the original undirected dynamic
network SN a randomization percentage p, one randomly picks edge e1 to be rewired. We then pick another
random edge e2 and, with probability p, we rewire the two events. That is, given e1 = (u, v, Si, Sf ) and
e2 = (u′, v′, S′i, S

′
f ) (where Si and S′i are the starting snapshots, and Sf and S′f are the ending snapshots)

we do one of the following transformations with 50% probability:

• e1 = (u, v, Si, Sf ) → e1 = (u, v′, Si, Sf ) and
e2 = (u′, v′, S′i, S

′
f ) → e2 = (u′, v, Si, Sf ), or

• e1 = (u, v, Si, Sf ) → e1 = (u, u′, Si, Sf ) and
e2 = (u′, v′, S′i, S

′
f ) → e2 = (v, v′, Si, Sf ), or

If the transformation was performed, e1 and e2 are both taken out of the list of edges to be rewired.
Otherwise, only e1 is taken out. The process is followed until no edges are to be rewired.

S5.2 Directed randomization

This randomization scheme is adapted from [6] to directed networks. Given the original directed dynamic
network SN a randomization percentage p, one randomly picks edge e1 to be rewired. We then pick another
random edge e2 and, with probability p, we rewire the two events. That is, given e1 = (u, v, Si, Sf ) and
e2 = (u′, v′, S′i, S

′
f ) (where Si and S′i are the starting snapshots, and Sf and S′f are the ending snapshots)

we do one of the following transformations with 50% probability:

• e1 = (u, v, Si, Sf ) → e1 = (u, v′, Si, Sf ) and
e2 = (u′, v′, S′i, S

′
f ) → e2 = (u′, v, Si, Sf ), or

• e1 = (u, v, Si, Sf ) → e1 = (u, u′, Si, Sf ) and
e2 = (u′, v′, S′i, S

′
f ) → e2 = (v, v′, Si, Sf ), or

If the transformation was performed, an additional parameter γ controls edge reversal. So, with proba-
bility γ, one performs the transformation for each edge:

• ek = (x, y, Sn, Sm) → ek = (y, x, Sn, Sm)

Then, e1 and e2 are both taken out of the list of edges to be rewired. Otherwise, only e1 is taken out.
The process is followed until no edges are to be rewired.

S5.3 Pure directed randomization

Given the original dynamic directed network SN , one randomly picks edge e1 to be rewired. That is, given
e1 = (u, v, Si, Sf ) (where Si is the starting snapshot, and Sf is the ending snapshot), and a randomization
percentage p, we the following transformations with p% probability:

• e1 = (u, v, Si, Sf ) → e1 = (v, u, Si, Sf )

Otherwise, e1 is kept as it was. e1 is taken out of the list of edges to be rewired and the process is
followed until no edges are to be rewired.
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Supplementary Tables

Table S1: Set of graph models used in our experiments. All networks (regardless of the model) have 24
snapshots, start with 100 nodes, grow until they reach 1000 nodes, and have edge density of = 1% in all
snapshots. Node arrival (linear or exponential) is set to what was reported in [12] for similar models. How
nodes are connected (i.e., how new edges are added) depends on the model (see Supplementary Section S3).

Model Node arrival New edges
Random linear random
ScaleFree exponential preferential Attachment
Small-world linear ring + rewire (β = 0.2)

Geo-GD linear duplication w/ cut-off (p = 0.2)

ScaleFree-GD exponential duplication w/ edge loss (p = 0.3, q = 0.7)

Table S2: Results on synthetic networks for α = 0 and α = 1
2 . In parentheses, we show gain in performance

of GoT-WAVE compared to DynaWAVE.

AUROC
α DynaWAVE GoT-WAVE
0 0.59 0.78 (+32%)
1
2 0.54 0.70 (+30%)

Model DGDVs GoTs
Random 26s 22s (+18%)

ScaleFree 22s 25s (-14%)

Small-world 23s 4s (+475%)

Geo-GD 34s 11s (+210%)

ScaleFree-GD 16s 12s (+33%)

Total 121s 74s (+64%)

(a) Accuracy. (b) Feature extraction times.

Table S3: Average time to align two networks when using DGDVs or GoTs. We compute the time of aligning
each model (e.g., the time to align each of the Random networks with any other networks). Since each of

the 5 models m has 10 instances n (i.e., networks), we consider (n−1)×n
2 = 45 alignments of a given network

to networks of its own model (e.g., align two Random networks) and n× (m− 1)× n = 400 alignments to
networks of different models (e.g., align a Random network with a ScaleFree network). For each model,
we average the time over all 445 considered alignments.

Model DGDVs GoTs
Random 6.219s 6.078s (+2%)

ScaleFree 6.196s 6.056s (+2%)

Small-world 6.181s 6.049s (+2%)

Geo-GD 6.027s 5.925s (+2%)

ScaleFree-GD 6.009s 5.868s (+2%)

Total 30.632s 29.976s (+2%)
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Table S4: Real temporal networks used in our experiments.
Network Nodes Events Snaps. Description
zebra [21] 27 500 57 Zebra proximity network
yeast [23] 1,004 10,403 8 Yeast PIN
aging [4] 6,300 76,666 38 Human aging PIN
school [5] 327 7,388 5 School proximity network
gallery [9] 420 22,476 16 Gallery proximity network
arxiv [13] 2,504 138,495 7 Paper co-authorships
emails [15] 167 8,771 9 E-mail communication
tennis [1] 876 103,938 42 Player dominance network

Table S5: Node correctness when aligning an undirected real network to itself (noise = 0). In parentheses,
we show relative improvement (positive gain) or degradation (negative gain) in performance of GoT-WAVE
compared to DynaWAVE. In bold, we show the best result for each network.

(a) α = 0 (b) α = 1
2

Network DynaWAVE GoT-WAVE DynaWAVE GoT-WAVE
zebra 0.926 ± 0.05 0.578 ± 0.09 (-60%) 0.911 ± 0.04 0.615 ± 0.14 (-48%)

yeast 0.966 ± 0.01 0.924 ± 0.01 (-5%) 0.966 ± 0.01 0.919 ± 0.01 (-5%)

aging 0.912 ± 0.01 0.942 ± 0.01 (+3%) 0.959 ± 0.01 0.955 ± 0.01 (-0.4%)

arxiv 0.340 ± 0.02 0.446 ± 0.02 (+31%) 0.658 ± 0.01 0.602 ± 0.04 (-9%)

gallery 0.507 ± 0.03 0.485 ± 0.03 (-5%) 0.557 ± 0.01 0.531 ± 0.01 (-5%)

school 0.735 ± 0.03 0.861 ± 0.03 (+17%) 0.973 ± 0.01 0.971 +- 0.01 (-0.2%)

Table S6: Results on undirected real networks in terms of (a) feature extraction times and (b) number of
subgraph occurrences (i.e., number of dynamic graphlets or GoTs found on the network). GoTs induce
many more occurrences than DGDVs, and this is especially true for denser networks, such as aging, arxiv
and school. Due to our fast enumeration algorithm based on g-tries [19], GoTs’ extraction is still faster
for the sparser networks, namely zebra, yeast and school. In parentheses, we show relative improvement
(positive gain) or degradation (negative gain) in performance of GoT-WAVE compared to DynaWAVE. We
assume that more occurrences means degradation. Thus, GoT-WAVE shows a much higher degradation in
terms of number of occurrences than in execution time (-1,886% versus -142%), showcasing our enumeration
algorithm’s efficiency.

(a) (b)

Network
Execution time #Occurrences

DGDVs GoTs DGDVs GoTs
zebra 0.06s 0.02s (+200%) 9.676× 103 7.792× 103 (+24%)

yeast 86s 65s (+32%) 7.160× 106 5.815× 107 (-712%)

aging 202s 696s (-245%) 1.532× 107 5.510× 108 (-3,496%)

school 4s 2s (+100%) 3.765× 105 2.352× 106 (-525%)

arxiv 586s 1,360s (-132%) 6.178× 107 1.067× 109 (-1,627%)

gallery 6s 14s (-133%) 5.864× 105 1.432× 107 (-2,341%)

Total 884s 2,137s (-142%) 8.523× 107 1.693× 109 (-1,886%)
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Table S7: Average time to align two networks when using DGDVs or GoTs. We compute the time of aligning
a network with each of its randomized versions. Since each network randomization has ten noise levels, each
comprised of five networks, we consider a total of 50 alignments per network, and average out the times.

Network DGDVs GoTs
zebra 4.50s 5.36s (-19%)

yeast 55.32s 82.46s (-49%)

aging 2,264.92s 1,209.58s (+87%)

arxiv 416.40s 249.98s (+67%)

gallery 20.36s 19.70s (+3%)

school 20.46s 14.72s (+39%)

Total 2,781.95s 1,586.79(75%)

Table S8: Node correctness when aligning a network to itself (α = 0). In parentheses, we show gain in
performance of GoT-WAVE over DynaWAVE.

Network
DynaWAVE GoT-WAVE
Undirected-4 Undirected-4 Directed-3 Directed-4

emails 0.85 ± 0.02 0.81 ± 0.03 0.83 ± 0.01 (-2%) 0.81 ± 0.02
tennis 0.74 ± 0.01 0.84 ± 0.03 0.85 ± 0.02 (+15%) 0.81 ± 0.02

Table S9: Results on directed real networks in terms of feature extraction times when using DGDVs or
GoTs. For DGDVs, we extract dynamic graphlets with up to four nodes and up to six events, as suggested
in [8]. For GoTs, we extract undirected GoTs with up to four nodes, directed GoTs with up to three nodes,
and directed GoTs with up to four nodes. In parentheses, we show relative improvement (positive gain) or
degradation (negative gain) in performance of GoT-WAVE compared to DynaWAVE. In bold, we show the
best result for each network.

Network
DGDVs GoTs

Undirected-4 Undirected-4 Directed-3 Directed-4
tennis 29.09s 113.07s (-289%) 2.90s (+903%) 128.43s (-341%)

emails 5.19s 5.65s (-9%) 0.21s (+2,371%) 7.84s (-51%)

Total 34.28s 118.72s (-246%) 3.11s (+1,002%) 136.27s (-297%)

8



Supplementary Figures

Figure S1: Graphlets are small non-isomorphic subgraphs. Different node positions (or symmetry groups)
in a graphlet are called orbits. This figure shows all 11 orbits of all six undirected 4-node graphlets. Nodes
that are in the same orbit (i.e., are topologically equivalent) in a given graphlet are colored in black. For
example, o1 and o2 are two possible orbits of a 4-node star, orbits o3 and o4 are two possible orbits of a
4-node chain, etc. Graphlets are a general concept (e.g., not specific to a given size, and edge direction can
be incorporated).

Figure S2: Illustration of GDV(v) that counts how many times v participates in each of the orbits a, b, c
and d of all undirected 2-3-node graphlets. In this example, v touches orbit a twice (i.e., has degree of two),
the periphery of a 3-node chain (orbit c) twice, and a triangle (orbit d) once.
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Figure S3: All possible graphlet-orbit transitions (GoTs) of 3-node undirected graphlets and the correspond-
ing GoT matrix. Node x is the node being considered (whose GoT matrix is shown), and black nodes are
in the same orbit as x. Each cell (i, j) of the GoT matrix represents the number of times node x transitions
from orbit i to orbit j.
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Figure S4: Comparison between GoT-WAVE and DynaWAVE on undirected networks in terms of how
well their alignments’ objective scores match the objective scores of ideal alignments, when (a) only node
conservation is optimized (α = 0) and (b) both node and edge conservation are optimized (α = 1

2 ). Recall
that GO is the relative gain of GoT-WAVE over DynaWAVE (positive: GoT-WAVE is superior; negative:
DynaWAVE is superior).
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Figure S5: Comparison between GoT-WAVE and DynaWAVE on undirected networks in terms of node
correctness, when (a) only node conservation is optimized (α = 0) and (b) both node and edge conservation
are optimized (α = 1

2 ). The higher the node correctness, the better the method.
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Figure S6: In the main paper we observe that, when both node and edge conservation are considered
(α = 1

2 ), in contrast to when only node conservation is considered (α = 0), DynaWAVE has better results
than GoT-WAVE consistently. Here we hypothesize why that might the case with an example. When we use
GoTs, node a from network G and node a′ from network H are correctly identified as different (i.e., node
a and node a′ have different GoTs). When we use DGDVs, node a and node a′ are incorrectly identified as
similar/equal (i.e., node a and node a′ have the same DGDVs). For details on DGDVs we refer the reader
to [8]. DGDVs can not distinguish between nodes a and a′ because a dynamic graphlet only allows for one
event per time-step. For instance, the last graphlet in the DGDVs is not allowed (and not calculated). Thus,
for this case, DGDVs can only distinguish nodes a and a′ when edge conservation is also considered. Cases
such as these show why DGDVs have bigger benefits in using DWEC than GoTs.
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Figure S7: GoT-WAVE against DynaWAVE on directed networks in terms of (a,b) node correctness and
(c,d) how well their alignments’ objective scores match the scores of ideal alignments. In (a,b), higher node
correctness is better. In (c,d), GO is the relative gain of GoT-WAVE over DynaWAVE.
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Figure S8: Comparison between GoT-WAVE and DynaWAVE on directed networks in terms of how well
their alignments’ objective scores match the objective scores of ideal alignments, when only node conservation
is optimized (α = 0). The noisy versions are generated using the pure directed randomization scheme (i.e.,
time stamps of two events are never swapped, only the edge direction is swapped). We observe, on one hand,
as expected, that DynaWAVE does not distinguish between the original and its randomized versions because
DGDVs do not take edge direction into account. On the other hand, GoT-WAVE clearly distinguishes
between the original and its randomized versions because GoTs take edge direction into account.
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[18] Pržulj, N., Kuchaiev, O., Stevanovic, A., and Hayes, W. Geometric evolutionary dynamics of
protein interaction networks. In Pacific Symposium on Biocomputing (2010), vol. 2009, pp. 178–189.

[19] Ribeiro, P., and Silva, F. G-tries: a data structure for storing and finding subgraphs. Data Mining
and Knowledge Discovery 28, 2 (2014), 337–377.

[20] Rossi, R. A., and Zhou, R. Leveraging multiple gpus and cpus for graphlet counting in large
networks. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management (2016), ACM, pp. 1783–1792.

[21] Rubenstein, D. I., Sundaresan, S. R., Fischhoff, I. R., Tantipathananandh, C., and
Berger-Wolf, T. Y. Similar but different: dynamic social network analysis highlights fundamental
differences between the fission-fusion societies of two equid species, the onager and grevy’s zebra. PloS
one 10, 10 (2015), e0138645.

[22] Vázquez, A., Flammini, A., Maritan, A., and Vespignani, A. Modeling of protein interaction
networks. Complexus 1, 1 (2003), 38–44.
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