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A. The details of ADMM for solving NLRR 

According to the Equation 3 in the main context, the augmented Lagrangian formulation is as follows: 
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where X is the single cell RNA-seq matrix, C is the target similarity matrix, J is an auxiliary matrix, Y is the dual variable or 

Lagrange multiplier andγis a user-defined parameter. The ADMM update the one of matrix C, J, Y by fixing others. So the K-th 

iteration of updating is as follows: 
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The 𝑌𝑘+1 could be calculated based on the 𝑌𝑘, 𝐶𝑘+1 and 𝐽𝑘+1. The optimal 𝐶𝑘+1 and 𝐽𝑘+1 could be derived as following rules: 
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where 𝑆𝑜𝑓𝑡𝜆,𝛾(∗)  is a soft-thresholding operator (Cai et al., 2010), and 𝑆𝑜𝑓𝑡𝜆,𝛾(𝐴) = 𝑈𝐷𝜆,𝛾(Σ)𝑉𝑇 , 𝐴 = 𝑈Σ𝑉𝑇 , 𝐷𝜆,𝛾(Σ) =

max (σ𝑖𝑖 − 𝜆 ∗ 𝛾, 0) and σ𝑖𝑖 is the diagonal elements of Σ. 

B. Analysis of parameters 

There are two main parameters, λ and γ, in SinNLRR. We select the proper λ by analyzing the locality of similarity matrix and the 

number of minimal neighbors (NoMN), which is described in Section 2.2 of main context. The corresponding NoMN, NMI and 



ARI with the increment of λ are shown in Fig. S1. In most case, the tipping points of NoMN (larger than 3 for small scale datasets 

and larger than 1 for datasets with the number of cells larger than 1000) achieve better performance on NMI and ARI. 
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Fig. S1. The corresponding NoMN, NMI and ARI with different values of parameter λ on ten datasets. The left Y axis is the value of NoMN, while 

right Y axis denotes the value of NMI and ARI. 

We also another parameter γ (we use 1/γ in the matlab code) and evaluate the 1/γ from 0.2 to 2.0 with increment of 0.2. The 

corresponding NMI and ARI are show in Fig. S2. The results on the ten datasets show that SinNLRR is not so sensitive to the 

selection of 1/γ with the proper λ. 

 

Fig. S2. The corresponding (A) NMI and (B) ARI with different values of parameter γ on ten datasets.  

C. The estimated cluster number K 

Given the normalized Laplacian matrix L of learned similarity matrix C, we apply eigengap (Von Luxburg, 2007) to determine the 

number of cluster k by maximizing the eigenvalues gap |𝜆𝑘 − 𝜆𝑘−1|, where 𝜆1 < 𝜆2 … < 𝜆𝑛 is the eigenvalues of the Laplacian 

matrix L. We run similar methods in SIMLR and MPSSC. Besides, the methods SNN-Cliq and Corr also provided the methods to 

estimate the number of clusters. The estimated cluster numbers in the ten datasets is shown in Table S1. Corr is not applied on 

Tasic, Zeisel and Macosko, because it is time-consuming for big datasets. SinNLRR obtains the number of clusters same with true 

cell types in two datasets (Pollen and Engel) and closest with the true cell types in five datasets (Darmanis, Goolam, Treutlein, 

Zeisel and Macosko). Although the cluster numbers estimated by these methods are not so consistent with the true cell types, 

SinNLRR achieves the better performance overall. 

 

Table S1.  The estimation of cluster number by five methods. 

Dataset Cell types SIMLR MPSSC SNN-Cliq Corr SinNLRR 

Darmanis (Darmanis et al., 2015) 8 13 18 17 6 9 

Goolam (Goolam et al., 2016) 5 11 15 17 3 4 

Lin (Lin et al., 2017) 16 11 26 73 7 10 

Pollen (Pollen et al., 2014) 11 19 21 11 3 11 

Usoskin (Usoskin, et al., 2015) 4 4 2 29 2 5 

Treutlein (Treutlein et al., 2014) 5 10 15 14 3 3 

Engel (Engel et al., 2016) 4 3 2 13 2 4 

Tasic (Tasic et al., 2016) 48 7 7 36 - 22 

Zeisel (Zeisel et al., 2016) 48 10 3 383 - 11 

Macosko (Macosko et al., 2015) 39 6 11 548 - 26 
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C. The analysis of computational complex 

In the procedure of obtaining similarity matrix, some operations, such as 𝑋𝑇𝑋 and (𝑋𝑇𝑋 +
1

𝛾
)

−1

, need to be computed only once. 

The main computational complexity is brought by the soft threshold function, which actually uses the SVD. The complexity is 

𝑂(𝑛2𝑚 + 𝑑𝜆𝑘𝑛3), where n is the number of cells, m is the number of genes, 𝑑𝜆 is the number of loops to obtain optimal 𝜆 based 

on NoMN and k is the number of updates in ADMM. In addition, the computational complexity of spectral clustering is 𝑂(𝑛3). 

The complete computational complexity of SinNLRR is 𝑂(𝑛2𝑚 + 𝑑𝜆𝑘𝑛3). To compare the computational time of these methods, 

we select four datesets which have different number of cells. The computational times are tested on the same sever (CPU 2.4GHz, 

40 cores, 128G). Table S2 summarizes the running times in four datasets. SinNLRR achieves the comparable running times in 

small datasets while is more time-consuming in large scale datasets. The result shows SinNLRR is not feasible to solve a large 

number of cells because of the optimal 𝜆 searching and ADMM. 

Table S2.  The computational times (seconds) of SC, Corr, SIMLR, NMF, MPSSC and SinNLRR on four datasets. “-” denotes 

the running time is longer than 24 hours.  

Dataset SC SNN-Cliq Corr SIMLR NMF MPSSC SinNLRR 

Goolam    (size=124) 4.100 1.1532 233.780 2.600 1995.244 3.398 4.570 

Usoskin    (size=622) 10.499 20.1131 6181.127 8.053 1321.200 15.308 39.721 

Tasic      (size=1727) 14.004 4886.403 - 62.142 3802.086 289.895 294.281 

Macosko   (size=6418) 76.159 32063.506 - 1161.528 4178.579 6322.816 18121.312 

 
 

References 

Cai, J. F. et al. (2010) A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 20, 1956-1982. 

Von-Luxburg, U. (2007). A tutorial on spectral clustering[J]. Statistics and computing, 17, 395-416. 

Darmanis, S. et al. (2015) A survey of human brain transcriptome diversity at the single cell level[J]. Proceedings of the National Academy of Sciences, 

112, 7285-7290. 

Goolam, M. et al. (2016) Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos[J]. Cell, 165, 61-74. 

Lin, C. et al. (2017). Using neural networks for reducing the dimensions of single-cell RNA-Seq data[J]. Nucleic acids research, 45, e156-e156. 

Pollen, A. A. et al. (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing 

cerebral cortex[J]. Nature biotechnology, 32, 1053. 

Usoskin, D. et al. (2015). Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing[J]. Nature neuroscience, 18, 

145. 

Treutlein, B. et al. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq[J]. Nature, 509, 371. 

Engel, I. et al. (2016) Innate-like functions of natural killer T cell subsets result from highly divergent gene programs[J]. Nature immunology, 17, 

728. 

Tasic, B. et al. (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics[J]. Nature neuroscience, 19, 335. 

Zeisel, A. et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[J]. Science, 347, 1138-1142. 

Macosko, E. Z. et al. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 161, 1202-1214. 


