SPIM Workflow Manager for HPC

Jan Kozusznik?, Petr Bainar?, Jana Klimova?, Michal
Krumnikl'2, Pavel Moravec!?, Viclav Svaton?, and Pavel
Tomané¢ak??

1Department of Computer Science, FEECS VSB — Technical University of Ostrava,
Ostrava-Poruba, Czech Republic
2IT4Innovations, VSB — Technical University of Ostrava, Ostrava-Poruba, Czech
Republic
3Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

1 Supplementary Data

This document contains supplementary data to the original paper SPIM Work-
flow Manager for HPC.

1.1 SPIM Data Processing Pipeline

Selective Plane Hlumination Microscopy (SPIM) typically images living biolog-
ical samples from multiple angles (views) collecting several 3D image stacks to
cover the entire biological specimen. The 3D image stacks, representing one
time point in a long-term time-lapse acquisition, need to be registered to each
other, which is typically achieved using fluorescent beads as fiduciary markers
[Preibisch et al., 2010]. After the registration, the individual views within one
time point need to be combined into a single output image either by content-
based fusion [Preibisch et al., 2008] or multi-view deconvolution [Preibisch et al.,
2014]. The living specimen can move during acquisition, necessitating an in-
termediate step of time-lapse registration [Preibisch et al., 2010]. Whereas
processing of individual time points is embarrassingly parallel, the time-lapse
registration can be performed on a single compute node without the need for
parallelization.

The sheer amount of SPIM data requires conversion from raw microscopy
data to Hierarchical Data Format (HDF5) for efficient input/output access and
visualization in Fiji’s BigDataViewer (BDV) [Pietzsch et al., 2015]. BDV uses
an XML file to store experiment metadata (i.e. number of angles, time points,
channels etc.). Although the conversion to HDF5 is a parallelizable procedure,
further updating the XML file downstream in the pipeline is not; and per-time
point XML files have to be created and then merged after completion of the
registration and fusion steps. Consequently, the parallel processing of individual



time points on an HPC resource (conversion to HDF5, registration, fusion and
deconvolution) is interrupted by non-parallelizable steps (time-lapse registration
and XML merging).

In the parallel processing workflow relying on the Snakemake engine [Schmied
et al., 2016], pipeline input parameters are entered by a user into a config.yaml
configuration file. In the first step, the .czi raw data are concurrently resaved
into the HDF5 container on the cluster. Similarly, the individual time points
are registered in parallel using fluorescent beads as fiduciary markers on the
cluster. Subsequently, a non-parallel job executed by Snakemake consolidates
the registration XML files into a single one, followed by time-lapse registration
using the beads segmented during the spatial registration step. After this, the
pipeline diverges into either parallel content-based fusion or parallel multi-view
deconvolution. To achieve this divergence in practice, the Snakemake pipeline
is launched from the Fiji plugin using config.yaml files set to execute content-
based fusion and deconvolution respectively. In the final stage of the pipeline,
the fusion/deconvolution output is saved into a new HDF5 container.

1.2 HEAppE Middleware

HPC-as-a-Service is a well-known term in the area of high performance com-
puting. It enables users to access an HPC infrastructure without the need to
buy and manage their own physical servers or data center infrastructure. This
approach further lowers the entry barrier for users who are interested in utilizing
massive parallel computers but do not have the necessary level of expertise in
this area.

To provide this simple and intuitive access to the supercomputing infrastruc-
ture, an application framework called High-End Application Execution (HEAppE)
Middleware! has been developed. This middleware provides HPC capabilities to
the users and third-party applications without the need to manage the running
jobs from the command-line interface of the HPC scheduler on the cluster.

HEAppE also provides the mapping between the external users and internal
cluster service accounts that are being used for the actual job submission to
the cluster. It simplifies access to the computation resources from the security
and administrative points of view. For security purposes, users are permitted
to run only a pre-prepared set of so-called command templates. Each command
template defines an arbitrary script or an executable file which is to be run on
the cluster, a set of input parameters modifiable at runtime, any dependencies
or third-party software it might require, and the type of queue that should be
used for the processing.

HEAppE has already been successfully used in several projects; for exam-
ple, providing What-If analysis in the crisis decision support system Floreon+
[Svaton et al., 2018], satellite image data analysis, and in the area of molecular
diagnostics and personalized medicine.

'http://heappe.eu



HPC Cluste

computer

Upload

v

— Submit job
v N
Processing [«———— Modify local .yaml file

J - _

R SE— BDV/reports
Download I E—
SN
|

Figure 1: Data processing workflow with the developed plugin

1.3 SPIM Workflow Manager for HPC plugin

To provide users with an intuitive interface for managing pipeline jobs?, we
created a Fiji plugin® accessible directly from the application menu. This plugin
communicates with HEAppE, which submits requests for pipeline job executions
to the cluster where the Snakemake engine is launched.

Upon plugin invocation, the user needs to be authenticated by verifying
HEAppE credentials*. Additionally, a local working directory must be defined.
Later on it will contain specific job subdirectories, each of them serving as a
staging area for a config.yaml configuration file specifying pipeline parameters.

Following a successful login, the main window providing top-level informa-
tion on all jobs is displayed. Figure 1 displays the typical workflow described in
the following sections.

The plugin comprises a job configuration wizard where the user can define
input and output paths as well as opt for using a pre-defined config.yaml config-
uration file. This file can be edited locally in a common text editor, allowing the
user to swiftly modify parameters for existing jobs. Once the job configuration
is confirmed by the user, the plugin obtains a unique job ID from HEAppE, and
automatically creates a job subdirectory named identically to the job ID in the
working directory.

In the next step, the user typically uploads input image data. The main
window constantly updates the user about the upload progress, conveniently

2In this context, the term job is used for a single SPIM data processing pipeline run with
specified parameters

3The plugin can be downloaded from http://sites.imagej.net/P2E-IT4Innovations/

4Credentials required for authentication can be applied for by contacting the authors



displaying the estimated remaining time. Importantly, the user may pause the
data upload and resume it later on from the context menu in the main window.
This mechanism takes care of any unexpected interruptions of the connectivity
during lengthy data transfer.

Once files are transferred, the user starts the job execution. The job meta-
data together with the config.yaml configuration file are sent to the cluster via
HEAppE, which is responsible for the job life cycle from this point on. The
Snakemake engine ensures that consecutive steps identified as independent are
executed in parallel as separate tasks on computational nodes where Fiji in-
stances are run in headless mode.

The main window providing an overview of all jobs periodically retrieves job
states from HEAppE and updates the table.

In addition, the user can display a detailed progress dashboard showing the
contemporaneous states of all individual computational tasks for the selected
job. The dashboard also includes panes for displaying the Snakemake output,
thereby providing useful debugging information.

Once the pipeline has successfully finished, the user can interactively exam-
ine the processed SPIM image data residing on the remote cluster file system
using the BigDataServer [Pietzsch et al., 2015] as well as download resultant
data and a summary file containing key information about the performed job.

The user can edit the corresponding local configuration file in a common text
editor, and restart an interrupted, finished, or failed job. In this way, interactive
debugging on the remote cluster is enabled.

1.4 Plugin Benchmarking

Execution of the Snakemake pipeline from the implemented Fiji plugin was
tested on the Salomon supercomputer at IT4Innovations in Ostrava, Czech Re-
public and compared with a measurement run on a local workstation at Max
Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden,
Germany [Schmied et al., 2016].

The measurement was comprised of the total time taken for data upload from
MPI-CBG to IT4Innovations, pipeline execution on the Salomon supercomputer
and downloading the resultant data back to the workstation in Dresden.

1.4.1 Dataset Description

The test dataset we used was a 90 time-point SPIM acquisition of a Drosophila
melanogaster embryo expressing FlyFos fluorescent GFP fusion reporter for the
nrv2 gene [Sarov et al., 2016]. The embryo was imaged with a Lightsheet Z.1
SPIM microscope (Carl Zeiss Microscopy) from 5 views every 15 minutes from
the cellular blastoderm stage until the late stages of fruitfly embryogenesis.
The same dataset was previously used to benchmark the performance of the
Snakemake SPIM processing pipeline on a local cluster [Schmied et al., 2016].
Figure 2 shows results of registration and fusion.



Registered

Fused

Figure 2: Visualization of SPIM data at different stages of processing. Lateral
(left) and cross-sectional (right) views of registered and fused embryo volumes
at time points 1, 45 and 90.

1.4.2 Technical Specification of Used Resources

Salomon supercomputer consists of 1 008 compute nodes, each of which is equipped
with 2x12-core Intel Xeon E5-2680v3 (2.5 GHz CPU; average CPU PassMark
18626) processors and 128 GB RAM, providing a total of 24 192 compute cores
using x86-64 architecture and 129 TB RAM. The total theoretical peak perfor-
mance reaches 2000 TFLOPS.

The workstation at MPI-CBG has the following specification: 2x6-core Intel
Xeon E5-2630 (2.3 GHz CPU); 128 GB RAM; 2x NVIDIA Quadro 4000 (256
CUDA cores); 4x 4 TB SATA disks in RAID 5 configuration.

1.4.3 Results

We carried out 9 measurements in total. Table 1 shows the average duration
of each of the individual experimental steps together with their standard devi-
ations. Note that the resultant data size is approximately 215 GB, whereas the
original input dataset volume had a size of 170 GB.

Table 1: Duration of individual experiment steps

H Local workstation ‘ Salomon
Data upload - 01:40:14 (£ 00:11:13)
Processing 23:56:00 01:41:01 (+ 00:27:28)
Data download - 06:01:12 (£ 00:17:51)
Total time 23:56:00 09:22:27 (£ 00:40:55)

References

T. Pietzsch, S. Saalfeld, S. Preibisch, and P. Tomancak. Bigdataviewer: visual-
ization and processing for large image data sets. Nature methods, 12(6):481,
2015.



S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak. Mosaicing of single
plane illumination microscopy images using groupwise registration and fast
content-based image fusion. In Medical Imaging 2008: Image Processing,
volume 6914, page 69140E. International Society for Optics and Photonics,
2008.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak. Software for bead-
based registration of selective plane illumination microscopy data. Nature
methods, 7(6):418, 2010.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, R. H. Singer, E. Myers, and
P. Tomancak. Efficient bayesian-based multiview deconvolution. Nature meth-
ods, 11(6):645, 2014.

M. Sarov, C. Barz, H. Jambor, M. Y. Hein, C. Schmied, D. Suchold, B. Stender,
S. Janosch, V. V. KJ, R. Krishnan, A. Krishnamoorthy, I. R. Ferreira, R. K.
Ejsmont, K. Finkl, S. Hasse, P. K&émpfer, N. Plewka, E. Vinis, S. Schloissnig,
E. Knust, V. Hartenstein, M. Mann, M. Ramaswami, K. VijayRaghavan,
P. Tomancak, and F. Schnorrer. A genome-wide resource for the analysis
of protein localisation in Drosophila. eLife, 5, 2016. ISSN 2050-084X. doi:
10.7554 /eLife.12068.

C. Schmied, P. Steinbach, T. Pietzsch, S. Preibisch, and P. Tomancak. An
automated workflow for parallel processing of large multiview spim recordings.
Bioinformatics, 32(7):1112-1114, 2016. doi: 10.1093/bioinformatics/btv706.

V. Svaton, M. Podhoranyi, R. Vaviik, P. Veteska, D. Szturcova, D. Vojtek,
J. Martinovi¢, and V. Vondrak. Floreon+: A web-based platform for flood
prediction, hydrologic modelling and dynamic data analysis. In Dynamics in
Glscience, pages 409-422, 2018. ISBN 978-3-319-61297-3.



