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1 Generating random simplicial complexes

In the main document, we validate our approaches using randomly genera-
ted simplicial complexes, which we generate according to the ten random
simplicical complex models described bellow. The first five models are
based on randomly generated graphs, which are converted into so-called
clique complexes, in which simplices connect nodes that belong to a clique
in the graph:

e A random clique complex (RCC) is the clique complex of an Erdos-
Reényi random graph (Erdos and Rényi, 1959). We generate an Erdos-
Renyi graph by fixing the number of nodes in the graph, and then by
adding edges between uniformly randomly chosen pairs of nodes until
a given edge density is reached.

e A Vietoris-Rips complex (VRC) (Hausmann et al., 1995) is the clique
complex of a geometric random graph (Penrose, 2003). A geometric
random graph represents the proximity relationship between uniformly
randomly distributed points in a d-dimensional space. We generate
geometric graphs by uniformly randomly distributing the desired num-
ber of nodes (points) in a 3-dimensional unit cube. Then, two nodes
are connected by an edge if the Euclidean distance between the cor-
responding points is smaller than a distance threshold r. The distance
threshold is chosen to obtain the desired edge density.

e A scale-free complex (SFC) is the clique complex of a Barabasi-Albert
scale-free graph (Barabdsi and Albert, 1999). The scale-free graph
model constructed by preferential attachment generates graphs based
on the “rich-get-richer” principle and are characterized by power-law
degree distributions. We create a scale-free graph using an iterative
process, in which the graph is grown by attaching new nodes each
with m edges that are preferentially attached to the existing nodes
with high degree (m is chosen to obtain the desired edge density).

o A Watts-Strogatz complex (WCS) is the clique complex of a small-
world graph (Watts and Strogatz, 1998). Small-world graphs are
characterized by short average path lengths and high clustering. We
create a small word graph by constructing a regular ring lattice of

n nodes and by connecting each node to its k neighbours, k/2 on
each side (k is chosen to obtain the desired edge density). Then we
uniformly randomly rewire 5% of the edges.

e An nPSO complex (nPSOC) is the clique complex of a non-uniform
Popularity Similarity Optimization graph (Muscoloni and Cannistraci,
2018). Non-uniform Popularity Similarity Optimization graphs are
geometric graphs in hyperbolic space that have realistic features, such
as high clustering, small-worldness, scale-freeness and rich-clubness,
with the additional possibility to control the community organization.
We create a small word graph by constructing a regular ring lattice
of n nodes and by connecting each node to its k neighbours, k/2 on
each side (k is chosen to obtain the desired edge density), We use
the graph generator from Muscoloni and Cannistraci (2018), in which
the temperature parameter is set to 0.5, gamma is set to 0.3, and the
number of communities is set to 50.

The five other models are extensions of the Linial-Meshulam model (Linial
and Meshulam, 2006; Meshulam and Wallach, 2009), which originally
consists in randomly connecting nodes with k-dimensional facets. We
extended this model to randomly connect nodes with facets while following
the facet distribution of an input simplicial complex. In this way, we can
create Linial-Meshulam variant of the four clique complex-based models
presented above:

e A Linial-Meshulam random clique complex (LM- RCC) is a Linial-
Meshulam complex that follows the facet distribution of an input
random clique complex.

e A Linial-Meshulam Vietoris-Rips complex (LM- VRC) is a Linial-
Meshulam complex that follows the facet distribution of an input
Vietoris-Rips complex.

e A Linial-Meshulam scale-free complex (LM-SFC) is a Linial-
Meshulam complex that follows the facet distribution of an input
scale-free complex.

o A Linial-Meshulam Watts-Strogatz complex (LM- WSC) is a Linial-
Meshulam complex that follows the facet distribution of an input
Watts-Strogatz complex.
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e A Linial-Meshulam nPSO complex (LM-nPSOC) is a Linial-
Meshulam complex that follows the facet distribution of an input nPSO

complex.

For each model we choose three node sizes, 1,000, 2,000, and 3,000
nodes, and three edge densities, 0.5%, 0.75% and 1%. We generated 25
random simplicial complexes for each model and each of these node sizes
and edge densities. Hence, in total, we generated 10 X 3 X 3 X 25 =
2,250 random simplicial complexes. We chose these node sizes and edge
densities to roughtly mimic the sizes and densities of real-world data used
in the main paper.

2 Redundancies between the counts of simplet
degrees

Analogous to graphlets, the statistics of different simplet orbits are not
independent of each other. The reason behind this is the fact that smaller
simplets are induced sub-simplicial complexes of larger simplets. For 2-
to 4-node simplets, there are four non-redundant dependency equations
between the simplet degrees of a given node wu:

(u;) = uz + uq + us, (1

ug\ /U1 — 2
<1>( 1 ):3U9+2U11+2’U414+U18+U20+U237 2)

(us) <u1 - 1) _ ur +ui2 +uis + 2uie + 2uir 3)

1 1 +2u19 + 2u21 + 2u2e ’

(U1> _ ug9 + ui1 + ui4 + ui1g + uzo + u23 + u24 + u2s )
3 +uge + uor + ugs + ugo + uso + us +usz

We used these equations to assess the correctness of our exhaustive simplet
counter.

3 Supplementary figures and tables

Orbit, % Weight, o;
1 1
2,3,4,5 3
6, 8,9, 10, 13, 24, 26, 30, 31, 32 3
7,11, 12, 14,15, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29 4
20 5

Table 1. The orbit weights. Weight o, is the number of orbits that orbit ¢ depends
on, including itself. For instance, the count of orbit 2 (the middle of a three node
path) of a node depends on its count of orbit O (i.e. its node degree) and on itself,
50 oo = 2. For orbit 9, og = 3, since it is affected by orbits 0, 2, and itself.
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Supplementary Fig. 1: SCMs of sample simplicial complexes from four
random simplicial complex models. The four simplicial complexes from
RCC, VRC, LM-RCC, and LM-VRC models have been generated with
2,000 nodes and the edge density of 0.75%. Note that SCMs of all networks
of this size and density coming from a particular model look similar. Hence,
these four SCMs are representative of these models at these sizes and

densities.
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Supplementary Fig. 2: Clustering randomly generated simplicial com-
plexes. The Precision-Recall curves that are achieved when using the three
distance measures (color coded, simplet correlation distance in red, facet
distribution distance in blue, spectral distance in green) to cluster together
the 2,250 randomly generated simplicial complexes into the models that
generated them.
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ROC curves: clustering by model
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Supplementary Fig. 3: Clustering randomly generated simplicial com-
plexes. The ROC curves that are achieved when using the different distance
measures (color coded, simplet correlation distance in red, facet distribu-
tion distance in blue, spectral distance in green) to cluster together the 2,250
randomly generated simplicial complexes into the models that generated
them.

Precision-Recall curves: real data
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Supplementary Fig. 4: Clustering real-world simplicial complexes. The
Precision-Recall curves that are achieved when using the three distance
measures (color coded, simplet correlation distance in red, facet distri-
bution distance in blue, spectral distance in green) to cluster together the
1,775 real-world simplicial complexes according to their data types.

ROC curves: real data
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Supplementary Fig. 5: Clustering real-world simplicial complexes. The
ROC curves that are achieved when using the three distance measures
(color coded, simplet correlation distance in red, facet distribution distance
in blue, spectral distance in green) to cluster together the 1,775 real-world
simplicial complexes according to their data types.

Canonical correlation analysis, Yeast, GO-BP
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Supplementary Fig. 6: Canonical correlation analysis for yeast. For both
models of yeast interactomes (PPI network and PPI complex), we plot-
ted for each variate the corresponding correlation value (only statistically
significantly correlated variates are presented, with canonical correlation
p-value < 5%).
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