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1 Introduction 

DEFOR is a software package that uses exome sequencing or whole genome sequencing data to identify 

somatic copy number alteration (SCNA) from paired tumor and normal samples. DEFOR doesn’t rely on 

the strong assumption that there are only a small proportion of SCNAs in the genome. Our evaluation 

showed that DEFOR have better accuracy than other six available methods for SCNA profiling from 

exome-sequencing, especially in the situation that there are large-scale copy number alterations in the 

genome. 

2 Methods 

2.1 Statuses of copy number 

DEFOR supports the estimation of copy number alterations in six different statuses (Supplementary 

Table S1), and these statuses can be distinguished by allele frequency and/or depth ratio between a pair of 

tumor and normal samples. 

2.2 Estimation of allele frequency clusters 

Reference allele frequency is estimated for each site. An EM-algorithm is used to estimate the cluster 

pattern of allele frequency for each sliding window. Then genome is segmented into blocks according to 

the allele frequency clusters in each overlapping window. 

2.3 Estimation of depth ratio 

Considering the possible target capture efficiency bias in exome-sequencing, the depth-ratio between 

paired tumor and normal samples are used for absolute copy number estimation. Depth ratio between 

paired tumor and normal samples is estimated for each sliding window by counting the depth of coverage 

of each site. 

2.4 Normalization of depth ratio 

2.4.1 Principle 

Since the depth of coverage may be different for tumor and normal samples, the raw depth ratio must be 

normalized before copy number estimation. That means we must estimate the ‘standard raw depth ratio’ 

(DRst) which represents the normal status (copy number of two), and then all raw depth-ratio can be 

normalized based on DRst.  

In most existing methods, the median or mean value of depth-ratio across genome is usually used as the 

DRst. However, such estimation relies on the assumption that SCNAs only occupy a small proportion of the 

genome. If that assumption is not correct, the estimation of DRst is not reliable because the mean or median 

depth ratio may not represent the normal status. To improve the accuracy of the estimation of DRst 

especially when there are large –scale SCNAs in the tumor genome, allele frequency was incorporated as 

an important factor in DEFOR. 

Although the allele frequency cannot be used to estimate the absolute copy number directly, it indeed can 

help select the regions without large-scale SCNAs. Allele frequency distribution has different pattern for 

different SCNA events (Supplementary Table. S1). If imbalanced SCNA (two alleles have different copy 

numbers) occurred, it’s expected that the frequencies of two alleles in the heterozygosity site would not be 
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around 50%, and the reference allele frequency of different sites could be grouped into two clusters 

(Supplementary Table S1). Meanwhile, in the normal regions with copy number of two, the expected allele 

frequency in heterozygosity sites should be around 50%. So only for the region with AF = 50% could be 

used to estimate the depth ratio representing the normal statues of copy number. However, when balanced 

SCNAs (the copy numbers of two alleles are the same) occurred, we can still expect the reference allele 

frequency to be 50% in heterozygosity sites, and so balanced SCNAs cannot be distinguished with normal 

regions using only allele frequencies. Considering such situation, we must also consider the observed depth 

ratio to distinguish between normal regions and balanced SCNAs when estimate the correct normalization 

factor.  

2.4.2 Assumption 

To facilitate the estimation of the normalized depth ratio, the following assumptions were used in DEFOR: 

1. L(CN = 2) > 50Mb; 

2. L(CN = 2) > L(CN = 0); 

3. L(CN = 2) > L(CN = 4); 

L(CN = 2) : total length of regions with copy number of two 

L(CN = 0) : total length of regions with copy number of zero (loss of both alleles) 

L(CN = 4) : total length of regions with copy number of four (amplification of both alleles) 

This set of assumption is weaker than the commonly use assumption that most of the genome don’t have 

SCNAs. With these assumptions, we are able to use both depth and allele frequency to identify the candidate 

regions that represent the status of copy number of two. 

2.4.3 Clustering of allele frequencies in each segment 

For all positions in one segment, the allele frequencies were assigned to one of four clusters. In the initial 

step, we define the frequency of four clusters at 0, 0.33, 0.66 and 1. The standard deviation of each cluster 

is set as 0.05. For each position, the initial probabilities for four clusters are assigned as 0.25. the 

following algorithm is used to assign allele frequencies into four clusters: 

1) Then the probability density of each cluster for each position (p) is calculated using Gaussian 

distribution:  

 

2) The probability (Ppi) of each cluster for each position is calculated: 

𝑃𝑝𝑖 =
𝐷𝑝𝑖

∑ 𝐷𝑝𝑖
4
𝑖=1

 

3) The mean frequency and standard error of each cluster is updated: 

𝜇𝑖
′ = 𝜇𝑖 

𝐷𝑝𝑖 = 𝑝𝑑𝑓(𝐹𝑝 − 𝜇𝑖 , 𝑠𝑑𝑖) 

pdf: probability density function of normal distribution 

Fp: observed allele frequency at position p 

μi: mean frequency of cluster i 

sdi: standard deviation of cluster i 
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𝜇𝑖 =
∑ 𝑃𝑝𝑖𝐹𝑝
𝑛
𝑝=1

∑ 𝑃𝑝𝑖
𝑛
𝑝=1

 

 

𝑠𝑑𝑖 = √
∑ 𝑃𝑝𝑖(𝐹𝑝 − 𝜇𝑖)

2𝑛
𝑝=1

∑ 𝑃𝑝𝑖
𝑛
𝑝=1

 

 

4) For any one of the clusters, if |𝜇𝑖 − 𝜇𝑖
′| is greater than 0.001, go back to step 1); otherwise go 

to next step. 

5) Finally, we get the mean frequency of four clusters 𝜇1, 𝜇2, 𝜇3 and 𝜇4.  

μ1 and μ4 represent the clusters around 0 and 1, which were composed of homozygosity sites and a part of 

sequencing errors. μ2 and μ3 provide information about the clusters around the center, and they are used to 

infer copy numbers in the following steps. 

2.4.4 Inference of candidate normal regions 

To infer the candidate normal regions (with copy number of two), only the region with allele frequency 

clustered around 0.5 (|𝜇2 − 𝜇3| < 0.1) were selected. The depth ratios for these regions are grouped by 

each chromosome. The median value and standard deviation of depth ratios of all windows from candidate 

normal regions is estimated for each chromosome, and then only the chromosome with the standard 

deviation greater than twice of the standard deviation is excluded from candidate normal region. This step 

is used to exclude the chromosomes where there is large proportion of both regions with balanced SCNAs.  

2.4.5 GC-content based correction 

Because the strong correlation between depth ratio and GC-content is observed in both previous studies and 

our study, the raw depth ratio need to be adjusted according to GC-content which is termed as GC-content 

based correction. Only the candidate normal regions are used for GC-content based correction.  

The entire interval of GC-content ([0, 1]) is split into 20 small intervals, and the length of each GC interval 

is 0.05, and so the first interval is [0, 0.05], the second interval is (0.05, 0.1], …, and the last one is (0.95, 

1]. The middle point of each GC-content interval is used to represent the GC-content (GCi, 1 ≤ i ≤ 20) of 

that interval. Genomic regions in different sliding windows are assigned into different GC intervals 

according to their GC-content. Respectfully, the depth ratio (in logarithmic scale) can be estimated for each 

sliding window in candidate normal regions (identified in previous steps). The median depth ratio across 

all of the regions assigned to the i-th GC-content interval (GCi) is denoted as depth ratio DRi. Then for any 

given GC-content (GCgc), the expected depth ratio (DRgc
’) for GCi can be calculated via linear interpolation 

as follows (assume 𝐺𝐶𝑖 ≤ 𝐺𝐶𝑔𝑐 < 𝐺𝐶𝑖+1): 

𝐷𝑅𝑔𝑐 − 𝐷𝑅𝑖

𝐺𝐶𝑔𝑐 − 𝐺𝐶𝑖
=
𝐷𝑅𝑔𝑐 −𝐷𝑅𝑖+1

𝐺𝐶𝑔𝑐 − 𝐺𝐶𝑖+1
 

For any region with observed raw depth ratio DRobs and GC-content GCgc, the difference between the 

observed depth ratio (DRobs) and the expected depth ratio (DRgc) is a better statistic to reflect the copy 

number of the given region. Thus the GC-content adjusted depth ratio (DRgc-adj) is estimated according to 

the following formula:  

𝐷𝑅𝑔𝑐−𝑎𝑑𝑗 = 𝐷𝑅𝑜𝑏𝑠 − 𝐷𝑅𝑔𝑐 



6 

 

2.4.6 Normalized depth ratio 

After the estimation of GC adjusted depth ratio, the median value of depth ratio of the candidate normal 

regions is chosen as the standard depth ratio representing the copy number of two (DRst). 

And then all depth ratios are adjusted according to DRst using the following formula: 

𝐷𝑅𝑎𝑑𝑗 = 𝐷𝑅𝑔𝑐−𝑎𝑑𝑗 − 𝐷𝑅𝑠𝑡 

After this adjustment, the normalization of depth ratio has been finished. If the copy number of a region is 

two, then the expected DRadj of this region should be around 0.  

2.5 Estimation of copy number 

Based on the adjusted depth ratio and allele frequency clusters in each region, copy number status was can 

be estimated (Supplementary Figure S5) based on the principle proposed in Supplementary Table S1. 

3 Evaluation 

3.1 Data 

The validation data was from a published study on kidney cancer (Pena-Llopis, et al., 2012). Evaluation 

was based on 9 pairs of normal-tumor samples with both SNP array (Affymetrix 6.0) data and exome-

sequencing data. 

3.2 Estimation of copy number from SNP array data 

High density SNP array was served as the gold standard for SCNA detection for a long time considering 

the good resolution and coverage. To evaluate the performance of DEFOR and some of the other methods 

for exome-sequencing data, we used SCNAs identified based on SNP array data as the gold standard. To 

avoid possible artificial bias, a third party web-based pipeline, Copy Number Inference Pipeline from 

GenePattern (Reich, et al., 2006), was used to conduct SCNAs calling from SNP array data. 

3.3 Estimation of copy number from exome sequencing data 

All reads was mapped to the reference genome (hg19) using bwa-mem (Li and Durbin, 2009). SCNA 

detection was conducted using DEFOR and six other tools, including CNVkit, Falcon, VarScan2, cn.mops, 

CNVnator and CNV-seq. 

3.3.1 Comparison between results from exome sequencing and SNP array data 

SCNAs identified from exome-sequencing data and array data were compared for each base. If a SCNA 

was detected on both exome-sequencing data and SNP data, and the changing direction (gain or loss) also 

matched with each other, we considered this result as true positive (TP). If a SCNA was identified only in 

exome-sequencing data but not in array data, we considered this SCNA as false positive (FP). If a SCNA 

was identified only in array data but not in exome-sequencing data, this SCNA was considered as false 

negative (FN). Total length of TP, FP and FN were calculated, and then the recall, precision and F-score 

were estimated (Supplementary Table S2 and S3) to evaluate the accuracy of different methods. The 

proportion of SCNAs in each tumor sample was estimated based on the array data. 
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3.3.2 Samples with SCNAs occupied < 30% of the genome 

Based on the evaluation result (Supplementary Table S2 and S3), when the SCNAs occupy a small 

proportion of the genome (< 30%), DEFOR and CNVkit outperformed the other methods. For these five 

samples with relative low proportion of SCNAs, DEFOR and CNVkit had a good concordance with array 

data, and DEFOR (precision = 97.3%, recall = 98.2%) performed better in both precision and recall than 

CNVkit (precision = 96.9%, recall = 97.4%).  

3.3.3 Samples with SCNAs occupied >30% of the genome 

When the SCNAs occupy a large proportion of tumor genomes (> 30%), the concordance between the 

results from exome-sequencing and arrays seems not as good as those samples with less proportion of 

SCNAs. Then we inspected the results in much details. To facilitate interpreting the results, depth ratio, 

reference allele frequency and SCNAs calling results from different methods were plotted (Supplementary 

Fig. S1 – S4).  

For sample T164T (Supplementary Fig. S1), the relative copy number in the results from array, DEFOR 

and CNVKit are highly consistent with each other, but the estimated absolute copy numbers are different 

significantly. The key point that caused the observed difference between these results is that the positions 

of ‘central’ line (red line) representing the normal status are different. That means the genomic regions that 

represent the copy number of two were different for different methods. 

Based on the pattern of allele frequency distribution and depth ratio, we think the result from DEFOR is 

better. As mentioned before, for the regions with copy number of two (around red line), the allele frequency 

in heterozygosity sites were distributed around 50%, while for the regions where the regions with 

imbalanced SCNAs, the allele frequency of heterozygosity sites should be departed from 50%. Using 

sample T164 as an example, based on the array result, the copy number of chromosome 6, 8, 9, 11, 13, 14, 

15, 17, 18 and 22 are thought slightly less than two, and the copy number of chromosome 7, 10, 16, 19, 20 

were greater than two. The result of CNVkit indicates the copy number of chromosome 6, 8, 9, 11, 13, 14, 

15, 17, 18 and 22 are nearly two, and the copy number of chromosome 7, 10, 16, 19, 20 are greater than 

two. But the result of DEFOR shows that the copy number of chromosome 6, 8, 9, 11, 13, 14, 15, 17, 18 

and 22 greater than two, while chromosome 7, 10, 16, 19, 20 are around two. Based on the pattern of allele 

frequency distribution, the AF of heterozygosity sites in chromosome 7, 10, 16, 19, 20 are distributed 

around 0.5, but the AF of heterozygosity sites in chromosome 6, 8, 9, 11, 13, 14, 15, 17, 18 and 22 are not 

0.5 but very close to 0 or 1. Considering these observations, the results from DEFOR represent a reasonable 

solutionof correct copy number status across the genome. Meanwhile, if another whole genome duplication 

happened after the copy number alterations estimated from DEFOR, the result of CNVKit also represent 

another reasonable solution. Without other type of data, it’s difficult to tell which one is more reasonable 

using only exome-sequencing data. But based on the parsimony principle, we think the result from DEFOR 

is better, because one more step (whole genome duplication) is needed to interpret the result from CNVKit. 

Although it seems that the concordance between DEFOR and array results are not high, we think the results 

of DEFOR make sense in this example. Both array results and CNVkit result may have some problem in 

estimating the position of ‘center line’. Based on the results for T166T, T144T and T108M, DEFOR also 

performed well in these samples (Supplementary Fig. S2 – S4). 
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5 Supplementary Tables 

Supplementary Table S1. The allele frequency, depth ratio and purity of tumor cells for each copy number status 

 If there is no heterogeneity (purity = 1) If the purity of tumor cells is less than 1 

SCNA Status 
Allele Frequency 

(Minor, Major) 
Normalized Depth Ratio Relationship between allele frequency (f), depth ratio (d) and purity (p) 

Loss of 2 allele NA 0 
d = 1 – p 

f = 0.5 

Loss of 1 allele 0, 1 0.5 

d = 1 – 1/2 * p 

f = (1 – p) / (2 – p) 

d = 1 / (2 * (1 – f)) 

Loss of 1 allele then 

followed by 

amplification 

0, 1 1 
d = 1 

f = (1 – p) / 2 

Normal 0.5, 0.5 1 
d = 1 

f = 0.5 

Gain of 1 allele 0.33, 0.66 1.5 

d = 1 + 1/2 * p 

f = 1 / (2 + p) 

f = 1 / (2 * d) 

Gain of 2 alleles 0.5, 0.5 2 
d = 1 + p 

f = 1/2 

 

Supplementary Table S2. Accuracy of the SCNAs estimated from seven methods (samples with SCNAs < 30% of the genome) 

sample 
Proportion of genome 

with SCNAs 

DEFOR CNVkit falcon VarScan cnv-seq cn.mos 

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score 

T127T 12.4% 97.0% 99.5% 0.982 96.3% 97.2% 0.967 76.5% 50.8% 0.610 6.1% 45.5% 0.107 34.4% 51.1% 0.412 2.4% 0.0% 0.001 

T163T 13.8% 95.1% 92.1% 0.936 94.8% 93.1% 0.939 74.5% 73.5% 0.740 6.3% 41.2% 0.109 32.9% 88.3% 0.480 3.0% 0.0% 0.001 

T142T 16.3% 98.3% 98.1% 0.982 97.7% 97.9% 0.978 80.8% 27.3% 0.408 93.4% 99.3% 0.963 33.2% 47.4% 0.390 64.8% 0.9% 0.018 

T108T 22.0% 96.8% 99.8% 0.983 96.9% 98.3% 0.976 14.4% 10.8% 0.124 4.4% 16.1% 0.069 35.7% 29.3% 0.322 92.3% 6.0% 0.113 

T183T 28.7% 98.2% 99.6% 0.989 97.7% 98.5% 0.981 52.2% 4.1% 0.077 17.0% 49.1% 0.252 23.8% 14.9% 0.183 20.7% 0.1% 0.002 

 

Supplementary Table S3. Accuracy of the SCNAs estimated from seven methods (samples with SCNAs > 30% of the genome) 

sample 
Proportion of genome 

with SCNAs 

DEFOR CNVkit falcon VarScan cnv-seq cn.mos 

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score 

T166T 44.6% 46.7% 62.1% 0.533 91.5% 93.4% 0.925 93.7% 35.2% 0.512 42.3% 68.3% 0.523 44.2% 74.2% 0.554 62.6% 0.6% 0.011 

T164T 40.8% 98.4% 59.1% 0.738 98.2% 36.1% 0.527 78.2% 39.7% 0.527 95.8% 37.8% 0.542 73.3% 44.4% 0.553 94.6% 6.6% 0.123 

T144T 30.6% 96.9% 85.6% 0.909 97.8% 92.0% 0.948 78.3% 39.3% 0.524 9.6% 19.7% 0.129 65.2% 56.2% 0.603 0.3% 0.0% 0.000 

T108M 57.1% 80.0% 46.6% 0.589 90.3% 53.5% 0.672 41.9% 21.6% 0.285 57.4% 46.3% 0.513 52.1% 32.6% 0.401 20.3% 0.1% 0.002 
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6 Supplementary Figures 

Supplementary Figure S1. Depth ratio, allele frequency and copy number for each chromosome of sample T164T. a) Raw 

depth ratio (from exome-sequencing data) between tumor and normal samples. b) Reference allele frequency estimated 

from exome-sequencing data. c) Copy numbers estimated from SNP array data. Copy numbers estimated from d) DEFOR, 

e) CNVkit, f) Falcon, g) Varscan, h) cn.mos, i) cnv_seq.  
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Supplementary Figure S2. Depth ratio, allele frequency and copy number for each chromosome of sample T166T. a) Raw 

depth ratio (from exome-sequencing data) between tumor and normal samples. b) Reference allele frequency estimated 

from exome-sequencing data. c) Copy numbers estimated from SNP array data. Copy numbers estimated from d) DEFOR, 

e) CNVkit, f) Falcon, g) Varscan, h) cn.mos, i) cnv_seq.  
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Supplementary Figure S3. Depth ratio, allele frequency and copy number for each chromosome of sample T144T. a) Raw 

depth ratio (from exome-sequencing data) between tumor and normal samples. b) Reference allele frequency estimated 

from exome-sequencing data. c) Copy numbers estimated from SNP array data. Copy numbers estimated from d) DEFOR, 

e) CNVkit, f) Falcon, g) Varscan, h) cn.mos, i) cnv_seq.  
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Supplementary Figure S4. Depth ratio, allele frequency and copy number for each chromosome of sample T108M. a) Raw 

depth ratio (from exome-sequencing data) between tumor and normal samples. b) Reference allele frequency estimated 

from exome-sequencing data. c) Copy numbers estimated from SNP array data. Copy numbers estimated from d) DEFOR, 

e) CNVkit, f) Falcon, g) Varscan, h) cn.mos, i) cnv_seq. 
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Supplementary Figure S5. Float chart of copy number status assignment 

 

 


