
Supplementary Notes

Xolik: finding cross-linked peptides with maximum

paired scores in linear time

Jiaan Dai∗, Wei Jiang∗, Fengchao Yu∗, Weichuan Yu

July 17, 2018

Contents

1 Proof of correctness 2

2 Proof of time complexity 4

3 Scoring peptides in the algorithm 5

4 Detailed comparison using the E. coli ribosome dataset 7

5 Detailed comparison using the human protein dataset 8

6 E-value estimation procedure 8

7 Illustration of the entire search space 9

8 An example spectrum outside the search space of Protein Prospector 11

∗Jiaan Dai, Wei Jiang and Fengchao Yu contributed equally to this work.

1

1 Proof of correctness

Theorem 1. Algorithm Xolik returns the maximum paired score among all possible

pairs satisfying the constraint of the precursor mass.

Proof. For simplicity, we suppose similarity scores are computed in advance. Let S[i]

denote the similarity score between the mass spectrum and the ith peptide. At the end

of each iteration, we prove the following properties:

1. [Ibf , Ibe] indicates the range of indices that satisfies PM − M [If] − XM − ϵ1 <

M [j] < PM −M [If]−XM + ϵ1 for j ∈ [Ibf , Ibe].

2. Elements e ∈ D are stored in descending order.

3. Elements e ∈ D satisfy e ∈ [Ibf , Ibe].

4. For e1 ≤ e2 with e1 ∈ D, e2 ∈ D, there is S[e1] ≤ S[e2].

5. The front of the deque D is the index with the largest S[j], j ∈ [Ibf , Ibe].

In the initialization stage:

1. Step 1 moves Ibe to the index whose corresponding mass is just smaller than Mu.

Step 2 moves Ibf from Ibe+1, and stops when M [Ibf−1] ≥ Ml. So the first property

is proved.

2. A new element e (i.e., a peptide index) can only be pushed into the deque D from

the back. Because Ibf monotonically decreases, elements inside D are stored in

descending order.

3. Before the initialization stage, D is empty. Therefore, after pushing elements, all

elements are in the range of [Ibf , Ibe].

4. e1 ≤ e2 means that e1 is pushed into the deque later.

(a) If D is empty before pushing e1 into D, then e1 will be pushed into D directly.

2

(b) If there is one element e2 in D before pushing e1 into it, then we have the

following two circumstances:

i. If S[e1] > S[e2], e2 will be popped out from the back. And e1 will be

pushed back into D. We still have one element in the deque.

ii. If S[e1] ≤ S[e2], e1 will be pushed from the back. In this case, the property

is proved.

(c) If there is more than one element in D before pushing e1 into it, we use

mathematical induction to prove the property holds in this case. Proof 4 (b)

shows the property holds in base cases. Assume the property holds before

pushing e1. Comparing e1 with e2 from the back ensures that all e2 > e1 with

S[e2] < S[e1] will be popped out. When it stops, it means that there is e3 > e1

and S[e3] ≥ S[e1] (or the deque is empty). Because before pushing e1 Property

4 holds, for all e ≥ e3, there is also S[e] ≥ S[e3] ≥ S[e1]. In this case, Property

4 still holds after pushing e1 back into D.

5. Before pushing elements, the deque is empty. Therefore, the index with the largest

S[e] (e ∈ [Ibf , Ibe]) will be the front of the deque, from the proof of Property 4.

In each iteration:

1. The proof of Property 1 follows the same procedure as in 1) in the initialization

stage.

2. The proof of Property 2 follows the same procedure as in 2) in the initialization

stage.

3. Property 2 (i.e., all elements e ∈ D are stored in descending order) holds in the

previous iteration, and we stop PopFront() when we see an element e with e ≤ Ibe.

This ensures that all e > Ibe have already popped out. Also, when decreasing Ibf ,

only e with M [e] ≥ Ml will be pushed into the deque. Therefore Property 3 holds.

4. Property 4 is satisfied in the previous iteration. Removing e > Ibe does not change

this property. Therefore, pushing a new element from the back follows the same

3

behavior as described in the proof in the initialization stage. Hence, Property 4

holds.

5. After removing e > Ibe, the elements in D are the overlapped index range from the

previous If to the current If . And Property 4 holds in D.

(a) If the index emax with the maximal score S[e] is in the overlapped part, then

it is already the front of D after removing e > Ibe. Pushing any new element

e1 from the back will not change the front because there is S[e1] ≤ S[emax] for

all new elements e1.

(b) If the index emax is among the newly added e1, then after pushing this emax

into the deque, it will pop out all elements that are already in the deque from

the back. At the same time, it becomes the front of D. Therefore, the front

of the deque is the index with maximal S[e] (e ∈ [Ibf , Ibe]).

At the end of each iteration, the properties hold. From Property 5, we know that

the front of the deque is the index whose corresponding score is the largest in the range.

Therefore, for each If , we find max{S[If] + S[j] | j ∈ [Ibf , Ibe]}. Then iterating all

If , we are able to get the constrained max{S[i] + S[j]} = max{max{S[If] + S[j] | j ∈

[Ibf , Ibe]} | ∀If}.

2 Proof of time complexity

Theorem 2. Algorithm Xolik can be finished in O(n) time.

Proof. At first, PopBack(), PushBack() and PopFront() of a deque are of constant time

complexity.

Let n be the number of scored candidates. In Step 1 (Fig. 1 in the manuscript), the

number of condition checks is at most 2×nbe+2 (two while loops), where nbe is the number

of times that Ibe decreases. Because Ibe will at most decrease n times, after looping all

If , Step 1 will cost a total of 2 × n + 2 × n = O(n). In Step 2, Ibf also monotonically

decreases, and the number of condition checks at Line 18 is at most n+n = O(n) in total.

4

The deque will at most have n elements pushed back, and thus the number of pop-backs

is also at most n. The condition check at Line 19 will run at most n + n, which is the

number of pop-backs and the number of times Ibf decreases. In Step 3, all operations are

of constant time complexity. After iterating all If , the time complexity of Step 3 is O(n).

Retrieving a cached score costs constant time, while computing a new score requires

O(t̃). If the preprocessed XCorr (Eng et al., 2008) is used, t̃ will be the average number

of theoretical ions. Therefore, besides the operations in the matching step, i.e., the

algorithm mentioned above, we need extra running time for computing new scores, which

is O(t̃ · p). Here p denotes the number of distinct peptides that are in valid cross-linked

solutions. As p ≤ n, the time complexity of the scoring is O(t̃ · n).

Therefore, the whole algorithm including the scoring costs O((1+ t̃) ·n) time. Since t̃

depends on the database as well as the digestion setting, which is a constant, the whole

algorithm will be finished in O(n) time.

3 Scoring peptides in the algorithm

In pLink (Yang et al., 2012), Kojak (Hoopmann et al., 2015) and Chen’s speed-up im-

plementation (Chen et al., 2001), all single peptides are scored beforehand. However,

scoring single peptides in advance is not compulsory in Xolik and can be relaxed through

a simple modification. With this modification, Xolik reduces the amount of scoring in

solving the cross-linked peptide identification problem.

Let us start from the analysis of the search space of cross-linked peptides. Let P be the

list of candidate peptides, and it contains n peptides in total. Then the peptide-peptide

combinations are

C = P × P = {(pi, pj) | pi ∈ P, pj ∈ P}, (1)

where pi and pj denote the ith and jth peptide, respectively. The size of C is n2. After

applying the constraint on the precursor mass (i.e., |PM − (M [i] +M [j] +XM)| < ϵ1),

5

the remaining combinations become

C ′ = {(pi, pj) | (pi, pj) ∈ C, |PM − (M [i] +M [j] +XM)| < ϵ1}, (2)

where M [i] and M [j] denote the mass of the ith and jth peptide, respectively. It is easy

to see that n2 is the tight upper bound of the size of C ′.

However, we do not need the whole P to generate C ′. Instead, we need

P ′ =
∪

(pi,pj)∈C′

{pi, pj}. (3)

Obviously,

card(P ′) ≤ card(P) = n. (4)

where card() denotes the cardinality.

P ′ is a smaller peptide list to construct C ′, and therefore, only peptides in P ′ have to

be scored in order to figure out the maximum paired score. If we score all single peptides

beforehand and at the same time card(P ′) ≪ card(P), it means that we waste a lot of

computation power on scoring those “useless” single peptides.

In Xolik, such a waste is avoidable. Instead of scoring all single peptides in advance

before running the Xolik algorithm, the computation of scores is postponed until we really

need the scores for comparison. When we retrieve a score, we ensure that the peptide

corresponding to this score is one of the elements in a pair (pi, pj) ∈ C ′, so that, at the

same time, this peptide is an element in P ′. The score of this peptide is then computed

at the time that we retrieve it. Once the score is computed, it is cached for further use.

Finally, only the peptides in P ′ are scored and scored once, and no computation power

is wasted on scoring peptides in P \ P ′.

6

(a) Venn diagram of PSMs.
(b) Venn diagram of non-redundant cross-
linked peptides.

Figure 1: Venn diagrams of the identification results of ECL2, pLink, Kojak and Xolik
using the E. coli Ribosome dataset under 5% FDR control. (a) shows the Venn diagram of
reported PSMs, and (b) shows the Venn diagram of non-redundant cross-linked peptides.
As shown in the Venn diagrams, the overlapping part between Xolik and ECL2 is much
larger than others. This reflects that the only difference between Xolik and ECL2 is in
the treatment of the precursor mass constraint.

4 Detailed comparison using the E. coli ribosome

dataset

To examine how the identified PSMs are distributed, we compare the reported PSMs of

all tools. A Venn diagram of the identified cross-linked PSMs is shown in Figure 1(a).

More than half of the identifications reported by Xolik can be verified by other tools.

Also, the overlap between Xolik and ECL2 is large, reflecting that the only difference

between Xolik and ECL2 is in the treatment of the precursor mass constraint, which is

the key difference between the pair matching algorithms in Xolik and ECL2. Because

ECL2 doesn’t strictly apply the precursor mass constraint, identifications outsides the

MS1 tolerance range will be reported. These contribute a part of the difference. What’s

more, the occurrence of the identifications outside the MS1 tolerance range will affect

the threshold determined by the FDR controlling algorithm. As a consequence, some

identifications passing the threshold in Xolik may not pass the threshold in ECL2, and

vice versa. These also contribute to the difference in the reported identifications between

Xolik and ECL2.

There is a possibility that more than one spectrum corresponds to the same pair of

peptides. To examine the ability of discovering cross-linked sites, we compare the non-

7

redundant cross-linked peptides identified by these tools. The Venn diagram is shown

in Figure 1(b). The pattern of this Venn diagram is similar to the previous one. The

diagram shows that Xolik identifies more unique cross-linked peptides than the other

tools. Since most of the procedures are the same in ECL2 and Xolik, the performance of

ECL2 on identifying cross-linked sites is close to that of Xolik.

5 Detailed comparison using the human protein dataset

Venn diagrams of the identification results using the human protein dataset are shown in

Figure 2.

(a) Venn diagram of PSMs.
(b) Venn diagram of non-redundant cross-
linked peptides.

Figure 2: Venn diagrams of the identification results of pLink2, Kojak and Xolik using the
human protein dataset under 5% FDR control. (a) shows the Venn diagram of identified
PSMs, and (b) shows the Venn diagram of non-redundant cross-linked peptides.

6 E-value estimation procedure

We follow the same procedure as ECL2 (Yu et al., 2017) to estimate the E-value of the

original XCorr score. The procedure is described as follows:

1. We collect 30000 scores of cross-linked peptides using the original MS1 tolerance.

8

2. If there are fewer than 30000 scores using the original MS1 tolerance, we enlarge

the MS1 tolerance by 1 Da to collect more scores until 30000 scores are collected.

3. We build a score histogram and do a linear regression on the tail of the empirical

log-survival function, using the same method as implemented in Comet (Eng et al.,

2013).

4. We use the fitted line to transform the XCorr score of the identified cross-linked

peptides to the E-value, using the same procedure as in Comet.

7 Illustration of the entire search space

Here we would like to use an scatter plot to illustrate the necessity of searching the entire

space exhaustively. In Figure 3, each dot in the plot denotes one cross-linked peptide pair

identified by Xolik in the HeLa dataset (Section 3.4 in the main text). The vertical axis

denotes the rank of the first single peptide identification, and the horizontal axis denotes

the rank of the second single peptide identification. Here we arrange the single peptides

in such an order that the first single peptide always ranks higher than the second single

peptide, which explains why the dots only occupy the upper right triangular area. The

three colored squares and the red rectangle denote the corresponding top N ranges of

Kojak, pLink, Protein Prospector, and pLink2, respectively. It turns out that there are

indeed some cross-linked peptides whose two single peptides are outside the top N ranges.

Different tools may use different scoring functions. Consequently, the ranks in other

tools may not necessarily be the same as those in Xolik. When a PSM is outside the

top N search space in Xolik, it is not necessarily outside the top N search space of other

tools due to the difference in scoring functions. Figure 3 illustrates the importance of

searching in the entire search space.

9

0 1 2 3 4 5 6
log10(Rank of Peptide #2)

0

1

2

3

4

5

6

lo
g1

0(
Ra

nk
 o
f P

ep
tid

e
#1

)

Kojak
pLink
Protein Prospector

pLink2

Figure 3: Illustration of the search space.

10

8 An example spectrum outside the search space of

Protein Prospector

We provide a positive example to show the importance of searching the entire search

space. We choose Protein Prospector as the example, because it searches both single

peptides up to rank 1000 by default, which is the largest among the tools compared in

Figure 3. This example spectrum can be confidently identified by Xolik but is outside the

default search space of Protein Prospector (Trnka et al., 2014), though the ranks of linear

peptides in Xolik and those in Protein Prospector are not the same. This spectrum is

with the scan number of 39917 in the data file xlink MCM6 Asynch rep2.mzXML in the

HeLa dataset. Xolik assigns the sequence ALKTFVK(3)–DVEQQFKYTQPNICR(7) to

this spectrum, with ranks 4212th and 1st, respectively. This sequence is consistent with

the results reported by Makowski et al., 2016.

Protein Prospector missed this spectrum using its default search space configuration,

namely keeping the top 1000 hits of linear peptide candidates. When we enlarged Protein

Prospectors search space to top 5000 linear peptide candidates, Protein Prospector can

identify this spectrum with the same sequence with ranks 1533rd and 1st, respectively. It

shows that the default search space of Protein Prospector may not be enough to identify

all cross-linked peptides.

The search parameters and the annotation are shown in Figure 4. We accessed

prospector.ucsf.edu on 25 May 2018 to analyze the above spectrum using Protein Prospec-

tor (v5.22.0). Here, we did not add the decoy sequences because Protein Prospectors

decoy sequences are generated by random shuffling, which is different from Xolik. Even

without decoy sequences, one of the ranks is outside the top 1000. It can be expected

that the rank will be greater than the current one after appending the decoy sequences.

11

Figure 4: An example spectrum outside the search space of Protein Prospector.

12

References

Chen, T., Jaffe, J., and Church, G. (2001). Algorithms for identifying protein cross-links

via tandem mass spectrometry. Journal of Computational Biology , 8(6), 571–583.

Eng, J., Fischer, B., Grossmann, J., and MacCoss, M. (2008). A fast SEQUEST cross

correlation algorithm. Journal of Proteome Research, 7(10), 4598–4602.

Eng, J., Jahan, T., and Hoopmann, M. (2013). Comet: An open-source MS/MS sequence

database search tool. Proteomics , 13(1), 22–24.

Hoopmann, M., Zelter, A., Johnson, R., Riffle, M., Maccoss, M., Davis, T., and Moritz, R.

(2015). Kojak: Efficient analysis of chemically cross-linked protein complexes. Journal

of Proteome Research, 14(5), 2190–2198.

Makowski, M., Willems, E., Jansen, P., and Vermeulen, M. (2016). Cross-linking

immunoprecipitation-MS (xIP-MS): Topological analysis of chromatinassociated pro-

tein complexes using single affinity purification. Molecular and Cellular Proteomics ,

15(3), 854–865.

Trnka, M., Baker, P., Robinson, P., Burlingame, A., and Chalkley, R. (2014). Matching

cross-linked peptide spectra: Only as good as the worse identification. Molecular and

Cellular Proteomics , 13(2), 420–434.

Yang, B., Wu, Y.-J., Zhu, M., Fan, S.-B., Lin, J., Zhang, K., Li, S., Chi, H., Li, Y.-X.,

Chen, H.-F., Luo, S.-K., Ding, Y.-H., Wang, L.-H., Hao, Z., Xiu, L.-Y., Chen, S., Ye,

K., He, S.-M., and Dong, M.-Q. (2012). Identification of cross-linked peptides from

complex samples. Nature Methods, 9(9), 904–906.

Yu, F., Li, N., and Yu, W. (2017). Exhaustively identifying cross-linked peptides with a

linear computational complexity. Journal of Proteome Research, 16(10), 3942–3952.

13

