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S1 Model details

S1.1 Additional information on the LTP LTD pathway - autophosphorylation

As described in the main text, the following elementary species are included in the model: calcium (Ca), calmodulin (CaM), protein phosphatase 2B
(PP2B) and Ca/CaM-dependent protein kinase II (CaMKII) and protein phosphatase 1 (PP1). CaM is a Ca-binding protein involved in multiple signaling
processes and is strongly implicated in synaptic plasticity. CaM contains four Ca-binding domains, each binding one Ca ion. The binding of Ca by CaM
is a cooperative process. Ca-bound CaM activates PP2B, another protein implicated in molecular processes related to learning which also plays a role in
striatal signaling. The third protein, CaMKII, is a kinase, which is activated by the binding of Ca-CaM. CaMKII molecules exist as dodecamers, consisting
of two hexamer rings. A CaMKII unit that has bound CaM can autophosphorylate when sitting beside an active neighbouring unit in the same hexamer
ring. The phosphorylated unit can remain active even in the absence of Ca-CaM.

S1.2 Additional information about the model reactions 32 (autophosphorylation) and 34

Two of the model reactions are not elementary reversible reactions of the type described in the main text; one of these is different only in the way that it
is irreversible (reaction 34 in Table S2) , the other one is more complicated as it describes the autophosphorylation process of CaMKII monomers.This
process is for practical reasons reduced with the help of a phenomenological rate function, and corresponds to reaction 32 in Table S2. The rate function
faut(x) = kautMaxgaut(x) describes how much active CaMKII units that are autophosphorylated each time step as a function of the proportion of active
CaMKII monomers, x. It consists of a constant kautMax corresponding to the maximum rate, times a function

gaut(x) = 3.90
x2

1 + 2.87x
(S1)

describing the probability that an activated CaMKII monomer has another activated monomer as a neighbour (Li et al., 2012). The constant values within
the function gaut were retrieved by fitting to the data of Figure S3 in Li et al., 2012.

S1.3 Model inputs u, outputs y, initial conditions x0 and experimental conditions (phenoptypes)

The model is described in equation (1) in the main text. There the state x(t) is a vector corresponding to all model species listed in Table S1 (in that same
order). The input u corresponds to the vector of input functions u = ([Ca](t),CaMtot, PP2Btot,CaMKIItot, PP1tot)′, where [Ca](t) is either constant in
time or corresponds to a spike train consisting of 10 spikes with frequency f , initiated after 30s (for a detailed description of the spike train, see Nair
et al., 2014 Figure 12.3 and Figure 12.4), the variables CaMtot, PP2Btot, CaMKIItot and PP1tot are the (time conserved) total amounts of the respective
species given by

CaMtot = (0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)x

PP2Btot = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)x,

CaMKIItot = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)x,

PP1tot = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)x

Further, let

Cabound = (0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0)x,

CaMKIIphospho = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0)x,

and

PP2Bactive = PP2B_CaM_Ca4,

CaMKIIactive = CaMKIIphospho + CaMKII_CaM_Ca4,
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then the outputs/read-outs, y, that are used correspond to

y1 = Cabound(t∗)/CaMtot

y2 = PP2B_CaM(t∗)/(PP2B(t∗) + PP2B_CaM(t∗))

y3 = PP2Bactive(t
∗)/PP2Btot (S2)

y4 = CaMKIIphospho(t∗)/CaMKIItot

y5 =

∫ t=t′+30

t=t′
CaMKIIactive(t)− PP2Bactive(t)dt

where t∗ in our simulations were set to t∗ = 600, which we assume is near steady state and t′ corresponds to the initiation of the Ca-spike train. The
output y5 is normalized by the maximum value from a series of simulations, using different frequencies of the Ca-spike train as input. The normalization
is computed by

ynorm
5,i = y5,i/max

j
(|y5,j |), (S3)

where y5,i, denotes the output of simulation i.
The different experimental conditions (phenotypes) described in the main text are detailed in Table S2. These correspond to the different input-output

curves of Figure 12.3 A-E and Figure 12.4 C in Nair et al., 2014, where each data point i corresponds to a specific input vector ui. The input of one
experiment thus corresponds to the matrixU = (u1, . . . ,un), where n is the number of data points, and we denote one experiment withw = (U , yobs),
where yobs describes which output function that is observed, e.g. yobs = y3 . Note that for each experimental condition, in fact only one of the input
variables is varied and all other kept constant (only one of the rows of U is varied). The experimental data corresponding to one input-output curve are
therefore, for ease of notation, denoted by the vector uexp

w where the components correspond to the values of the varied input variable, and the vector
y

exp
w , where the components correspond to the values of the observed output variable. The corresponding simulated data are denoted similarly ysim

w and
usim
w . The subscript w representing a specific phenotype is omitted when it is clear that we only discuss one specific phenotype.

The initial conditionsx0 for all simulations were CaM = CaMtot, CaMKII = CaMKIItot, PP2B = PP2Btot and PP1 = PP1tot, and all other variables
set to zero, except for the variable that was varied during the experiment.

Table S1. The different substances
in the system presented by Nair
et al., 2014.

Number Name

1 Ca
2 CaM
3 PP2B
4 CaMKII
5 pCaMKII
6 CaM_Ca1
7 CaM_Ca2
8 CaM_Ca3
9 CaM_Ca4
10 PP2B_CaM
11 PP2B_CaM_Ca1
12 PP2B_CaM_Ca2
13 PP2B_CaM_Ca3
14 PP2B _CaM_Ca4
15 CaMKII_CaM
16 CaMKII_CaM_Ca1
17 CaMKII_CaM_Ca2
18 CaMKII_CaM_Ca3
19 CaMKII_CaM_Ca4
20 pCaMKII_CaM
21 pCaMKII_CaM_Ca1
22 pCaMKII_CaM_Ca2
23 pCaMKII_CaM_Ca3
24 pCaMKII_CaM_Ca4
25 PP1
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Table S2. Summary of chemical reactions, inputs u and outputs y of the system described in Nair et al., 2014. The different observed phenotypes (denoted ph1-ph6) correspond to different
experimental setups and ON means that the corresponding reaction is turned on (exists) in the experiment corresponding to that specific phenotype (subsets of reactions are turned off by
setting the corresponding total amount to zero). The prediction (pred) corresponds to Figure 12.4C of Nair et al., 2014. All reactions have reaction rates based on the law of mass action,
except the one marked with ? where the reaction is more complex (see main text for details). A list of all species can be found in Table S1. The names of the forward reaction kinetic
constants kf are given, the names for kr and Kd for the reversible reactions follow the same naming convention. The parameter names of the two irreversible reactions are also given.

ID REACTIONS ph1 ph2 ph3 ph4 ph5 ph6 pred kf (k)

1 CaM + Ca 
 CaM_Ca1 ON - ON ON ON ON ON kf*CaM*Ca
2 CaM_Ca1 + Ca 
 CaM_Ca2 ON - ON ON ON ON ON kf*CaM_Ca1*Ca
3 CaM_Ca2 + Ca 
 CaM_Ca3 ON - ON ON ON ON ON kf*CaM_Ca2*Ca
4 CaM_Ca3 + Ca 
 CaM_Ca4 ON - ON ON ON ON ON kf*CaM_Ca3*Ca
5 CaM + PP2B 
 PP2B_CaM - ON ON ON - - ON kf*CaM*PP2B
6 CaM_Ca1 + PP2B 
 PP2B_CaM_Ca1 - - ON ON - - ON kf*CaM_Ca1*PP2B
7 CaM_Ca2 + PP2B 
 PP2B_CaM_Ca2 - - ON ON - - ON kf*CaM_Ca2*PP2B
8 CaM_Ca3 + PP2B 
 PP2B_CaM_Ca3 - - ON ON - - ON kf*CaM_Ca3*PP2B
9 CaM_Ca4 + PP2B 
 PP2B_CaM_Ca4 - - ON ON - - ON kf*CaM_Ca4*PP2B
10 PP2B_CaM + Ca 
 PP2B_CaM_Ca1 - - ON ON - - ON kf*PP2B_CaM*Ca
11 PP2B_CaM_Ca1 + Ca 
 PP2B_CaM_Ca2 - - ON ON - - ON kf*PP2B_CaM_Ca1*Ca
12 PP2B_CaM_Ca2 + Ca 
 PP2B_CaM_Ca3 - - ON ON - - ON kf*PP2B_CaM_Ca2*Ca
13 PP2B_CaM_Ca3 + Ca 
 PP2B_CaM_Ca4 - - ON ON - - ON kf*PP2B_CaM_Ca3*Ca
14 CaM + CaMKII 
 CaMKII_CaM - - - - ON ON ON kf*CaM*CaMKII
15 CaM_Ca1 + CaMKII 
 CaMKII_CaM_Ca1 - - - - ON ON ON kf*CaM_Ca1*CaMKII
16 CaM_Ca2 + CaMKII 
 CaMKII_CaM_Ca2 - - - - ON ON ON kf*CaM_Ca2*CaMKII
17 CaM_Ca3 + CaMKII 
 CaMKII_CaM_Ca3 - - - - ON ON ON kf*CaM_Ca3*CaMKII
18 CaM_Ca4 + CaMKII 
 CaMKII_CaM_Ca4 - - - - ON ON ON kf*CaM_Ca4*CaMKII
19 CaMKII_CaM + Ca 
 CaMKII_CaM_Ca1 - - - - ON ON ON kf*CaMKII_CaM*Ca
20 CaMKII_CaM_Ca1 + Ca 
 CaMKII_CaM_Ca2 - - - - ON ON ON kf*CaMKII_CaM_Ca1*Ca
21 CaMKII_CaM_Ca2 + Ca 
 CaMKII_CaM_Ca3 - - - - ON ON ON kf*CaMKII_CaM_Ca2*Ca
22 CaMKII_CaM_Ca3 + Ca 
 CaMKII_CaM_Ca4 - - - - ON ON ON kf*CaMKII_CaM_Ca3*Ca
23 CaM_Ca4 + pCaMKII 
 pCaMKII_CaM_Ca4 - - - - ON ON ON kf*CaM_Ca4*pCaMKII
24 CaM_Ca3 + pCaMKII 
 pCaMKII_CaM_Ca3 - - - - ON ON ON kf*CaM_Ca3*pCaMKII
25 CaM_Ca2 + pCaMKII 
 pCaMKII_CaM_Ca2 - - - - ON ON ON kf*CaM_Ca2*pCaMKII
26 CaM_Ca1 + pCaMKII 
 pCaMKII_CaM_Ca1 - - - - ON ON ON kf*CaM_Ca1*pCaMKII
27 CaM + pCaMKII 
 pCaMKII_CaM - - - - ON ON ON kf*CaM*pCaMKII
28 pCaMKII_CaM + Ca 
 pCaMKII_CaM_Ca1 - - - - ON ON ON kf*pCaMKII_CaM*Ca
29 pCaMKII_CaM_Ca1 + Ca 
 pCaMKII_CaM_Ca2 - - - - ON ON ON kf*pCaMKII_CaM_Ca1*Ca
30 pCaMKII_CaM_Ca2 + Ca 
 pCaMKII_CaM_Ca3 - - - - ON ON ON kf*pCaMKII_CaM_Ca2*Ca
31 pCaMKII_CaM_Ca3 + Ca 
 pCaMKII_CaM_Ca4 - - - - ON ON ON kf*pCaMKII_CaM_Ca3*Ca
32 CaMKII_CaM_Ca4 ⇀? pCaMKII_CaM_Ca4 - - - - ON ON ON kautMax?

33 pCaMKII + PP1 
 PP1_pCaMKII - - - - - - ON kf*pCaMKII*PP1
34 PP1_pCaMKII ⇀ CaMKII + PP1 - - - - - - ON k*PP1_pCaMKII

INPUT (u)

1 [Ca](t) varied?? - varied?? varied?? varied?? varied?? varied???

1 CaMtot 25000nM varied?? 30nM 300nM 5000nM 2000nM 10000nM
2 PP2Btot - 100 nM 3 nM 3nM - - 4000nM
3 CaMKIItot - - - - 5000nM 200nM 20000nM
4 PP1tot - - - - - - 5000nM

OUTPUT (y)

Observable/Readout y1 y2 y3 (in %) y3 (in %) y1 y4 (in %) ynorm
5 Defined in Equations S2 and S3.

Type st. st. st. st. st. st. st. st. ≈ st. st. ≈ st. st. after spike train

? The reaction rate of reaction 32 is modeled by a function described in S1.2. ?? The input variable has a time constant value that is varied for each new simulation/experiment. ??? The input variable
corresponds to a time dependent function, a Ca-spike train with a new frequency for each simulation. Abbreviations: st. st. = steady state
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Table S3. The thermodynamic constraint rules connecting different equilibrium constants of the model due to multiple
possible reaction paths when one species is being converted into another.

[Kd*CaM_Ca3*PP2B] = ([Kd*CaM_Ca3*Ca] * [Kd*CaM_Ca4*PP2B]) / [Kd*PP2B_CaM_Ca3*Ca]
[Kd*CaM_Ca2*PP2B] = ([Kd*CaM_Ca2*Ca] * [Kd*CaM_Ca3*PP2B]) / [Kd*PP2B_CaM_Ca2*Ca]
[Kd*CaM_Ca1*PP2B] = ([Kd*CaM_Ca1*Ca] * [Kd*CaM_Ca2*PP2B]) / [Kd*PP2B_CaM_Ca1*Ca]

[Kd*CaM*PP2B] = ([Kd*CaM*Ca] * [Kd*CaM_Ca1*PP2B]) / [Kd*PP2B_CaM*Ca]
[Kd*CaM_Ca3*CaMKII] = ([Kd*CaM_Ca3*Ca] * [Kd*CaM_Ca4*CaMKII]) / [Kd*CaMKII_CaM_Ca3*Ca]
[Kd*CaM_Ca2*CaMKII] = ([Kd*CaM_Ca2*Ca] * [Kd*CaM_Ca3*CaMKII]) / [Kd*CaMKII_CaM_Ca2*Ca]
[Kd*CaM_Ca1*CaMKII] = ([Kd*CaM_Ca1*Ca] * [Kd*CaM_Ca2*CaMKII]) / [Kd*CaMKII_CaM_Ca1*Ca]

[Kd*CaM*CaMKII] = ([Kd*CaM*Ca] * [Kd*CaM_Ca1*CaMKII]) / [Kd*CaMKII_CaM*Ca]
[Kd*CaM_Ca3*pCaMKII] = ([Kd*CaM_Ca3*Ca] * [Kd*CaM_Ca4*pCaMKII]) / [Kd*pCaMKII_CaM_Ca3*Ca]
[Kd*CaM_Ca2*pCaMKII] = ([Kd*CaM_Ca2*Ca] * [Kd*CaM_Ca3*pCaMKII]) / [Kd*pCaMKII_CaM_Ca2*Ca]
[Kd*CaM_Ca1*pCaMKII] = ([Kd*CaM_Ca1*Ca] * [Kd*CaM_Ca2*pCaMKII]) / [Kd*pCaMKII_CaM_Ca1*Ca]

[Kd*CaM*pCaMKII] = ([Kd*CaM*Ca] * [Kd*CaM_Ca1*pCaMKII]) / [Kd*pCaMKII_CaM*Ca]

S2 Details of the ABC-MCMC uncertainty quantification

S2.1 A short introduction to copulas

Lets assume that our aim is to describe the multivariate distribution for the random vector X = (X1, . . . , Xd)′ in some way. The elements of X are
assumed to have continuous marginal distribution functions; Fi(xi) = P (Xi ≤ xi). Copulas are multivariate probability distributions which describe
the dependence structure between the stochastic variables. The copula is a function that connects the multivariate distribution function to the marginal
ones (Fi) as follows.

F (x) = C(F1(x1), . . . , Fd(xd))

It can be shown (Sklar’s theorem) that for continuous marginal distributions, C is unique. The elements of the vector (U1, . . . , Ud) =

(F1(x1), . . . , Fd(xd)) are by definition uniformly distributed. Hence copulas can be viewed as multivariate distribution functions whose one-dimensional
margins are uniform on the interval [0, 1] (Nelsen, 2006).

The pair-copula decomposition of a multivariate distribution is useful in order to describe the distribution in question. Consider the vectorX and the
corresponding density function f(x) = f(x1, . . . , xd) which can be factorized as

f(x1, . . . , xd) = fd(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · . . . · f(x1|x2, . . . , xd)

It can be shown that the multivariate (joint) density can be represented by a number of appropriate pair-copulas times the conditional marginal densities
based on this factorization. For a vector with three components, we have for example (by use of the chain rule)

f(x1, x2, x3) = f1(x1)f(x2|x1)f(x3|x1, x2)

and

f(x2|x1) =
f(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)
= c1,2(F1(x1), F2(x2))f2(x2)

f(x3|x1, x2) = . . . = c2,3|1(F (x2|x1), F (x3|x1))c1,3(F1(x1), F3(x3))f3(x3)

This gives
f(x1, x2, x3) = c1,2(F1(x1), F2(x2))c2,3|1(F (x2|x1), F (x3|x1))c1,3(F1(x1), F3(x3))f1(x1)f3(x3)f2(x2)

The copula pairs can be chosen independently of each other giving a wide range of possible dependence structures, especially for high-dimensional
distributions. Graphical models called vines were introduced to arrange the pair copulas in a tree structure (see e.g Bedford and Cooke, 2002 and Aas
et al., 2009). C- and D-vines are constructed by choosing a specific order of the variables included. R-vines in turn are a more flexible superclass of C-
and D-vines.

S2.2 Example of using copulas

Let’s assume we work with a simple bivariate distribution and that we have a bivariate sample x = [x1,x2]. For each variableX1 andX2, we estimate a
cumulative distribution P (X1 ≤ x1) and P (X2 ≤ x2) (this can be done in R using e.g. the kcde or ecdf functions and in MATLAB using the ksdensity
function). We evaluate these cumulative densities in the sample points [x1,x2] and denote this information z = [z1,z2]. This step maps the sample
points (x) into the [0, 1] space and we fit a copula to z in this space.

We take a single sample s from the copula. s will have two values which are observations in [0, 1]. To translate this information back into the original
sample space, we can use the inverse cumulative density, or simply interpolate from the [0, 1] space back to the original space for each variable using z1

and x1 and z2 and x2, respectively.
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If we take multiple sample points from the copula and transform them back to the original space, we will get a sample on the original scale with the
estimated marginal densities under the dependency modelled by the copula.

We illustrate what results can look like if taking this approach in Figure S1 where we have modelled two variables exhibiting a curvature in sample
space with a copula.
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Fig. S1. Example of modelling two dependent variables with a copula. The top panel shows the histograms for the true sample and the copula sample for each of the two parameters. The
bottom panel shows the two-dimensional densities of the two samples. 2000 sampled points are used in each sample.

S2.3 Normalization of experimental and simulated data for the uncertainty quantification

Let the vector usim
w denote the (varied) input of one phenotype and the vector ysim

w the corresponding output (for simplicity we leave out the phenotype
subscript w below). In order to be able to compare different experimental setups, we log-transformed the input usim

j and set zsim
j = log(usim

j ) where j
indexes the different components of the input vector. The log-transformed input zsim

j and the output ysim
j in each simulation were normalized according to

zsim
N,j =

zsim
j − min(zsim)

max(zsim)− min(zsim)
, ysim
N,j =

ysim
j − min(ysim)

max(ysim)− min(ysim)
(S4)

where zsim
N,j is the normalized version of the jth component zsim

j , and similarly for ysim
N,j . The experimental data yexp and the experimental input (on

the log-scale) zexp were normalized in the same way (using min/max values from the simulated input and outputs).
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S2.4 Distance measure used in the ABC sampling

We have used the following distance measure:

ρ = maxi

minj


√√√√( zsim

N,j − z
exp
N,i

0.5

)2

+

(
ysim
N,j − y

exp
N,i

0.5

)2



where (z
exp
N,i, y

exp
N,i) is the normalized experimental data point i, i = 1 . . . n, and (zsim

N,j , y
sim
N,j) is the normalized simulated data point j, j = 1 . . .m,

and m >> n. The simulated data points were retrieved using a grid on the x-axis (in the order of 100 points). Checking whether ρ < δ, where δ is
the chosen ABC-threshold, corresponds to defining a circle around each normalized experimental point and checking that all circles have a part of the
simulated curve passing through. The circles have a radius equal to 0.5δ, which is a deviation of 100δ% of the average normalized output (0.5) for all
points on the curve, The value of δ was set to 0.1, corresponding to a 10% deviation. We adopt this scheme in order to account for noise in both input and
output variables.

S2.5 Pseudocode for ABC-MCMC sampling with copulas

For each data set corresponding to phenotypes 1-6 the following steps are performed (with the exception of step P3 for phenotype 6):

P1 Pre-calibration sampling (In order to construct a covariance matrix for the MCMC transition kernel as well as finding a starting point for the MCMC
chain.)

P2 ABC-MCMC sampling of viable space (First an adaptive threshold is used to quickly reach the viable space, and next the viable space is sampled.)
P3 Copula estimation (A copula is estimated based on a sample from the posterior distribution of the data set in question.)

For the first dataset (phenotype 1) a uniform marginal prior is used for the parameters, for datasets 2-6 the copula from the previous data set is used as a
prior. The details of each step is described below, where θ is a vector of size p (the number of model parameters), the vector ysim denotes the simulated
output of one phenotype, and the vector yexp denotes the corresponding experimental output.

P1 Pre-calibration sampling
P1.1 Sample independently from the prior f(θ), n number of times to get a set of samples P = (θ1, . . . ,θn).
P1.2 Generate simulated output S = (ysim

1 , . . . ,ysim
n ) from the model for all samples in P .

P1.3 Compute distancesD = (ρ1, . . . , ρn) to the experimental data yexp by the distance measure ρ(ysim
i ,yexp) for all ysim

i in S.
P1.4 Sort P according to distances inD. Save the subsample P ′ corresponding to the 0.01 fraction of smallest distances (in rare cases > 0.01 · n

samples meet ρ ≤ δ, where δ is the chosen similarity cutoff, then all these are kept.)
P1.5 Estimate a covariance matrix Σ1 from P ′ and scale it appropriately in order to use it in transition kernel Q. Also define a diagonal matrix

Σ0 = diag(v1, . . . , vp) of size p (we choose Σ0 to be a diagonal version of Σ1 with smaller variances vi). Pick a random starting point θ′

from P ′.
P2 ABC-MCMC sampling from viable space

P2.1 Generate ysim′ using the model with parameters θ′.
P2.2 Set the distance δcur = ρ(ysim′,yexp) (current value of the adaptive threshold).
P2.3 Propose a move from current θ′ to θ′′ according to the transition kernel Q(θ′ → θ′′). The proposed point θ′′ is drawn from distribution F

where F = 0.95F1 + 0.05F0 in which F1 ∼MVN(θ′,Σ1) and F0 ∼MVN(θ′,Σ0).
P2.4 Generate ysim′′ using the model with parameters θ′′ and calculate the distance δcan = ρ(ysim′′,yexp) (candidate threshold).
P2.5 If δcan ≤ max(δ, δcur) go to P2.6 else return to P2.3.
P2.6 Calculate h(θ′,θ′′) = min(1, f(θ′′)/f(θ′)) where f is the prior (copula) distribution.
P2.7 With probability h, set θ′ = θ′′ and δcur = δcan.
P2.8 If δcur ≤ δ and θ′ = θ′′, accept θ′ as a sample point. Go to P2.3.

P3 Copula estimation
P3.1 Filter the resulting ABC-MCMC samples and keep only sample points that fit all tested phenotypes (e.g. for phenotype 2, only parameters that

fit both phenotype 1 and 2 would be kept).
P3.2 Select a random subset of size approximately 5000 samples (edges of sampled space are explicitly added as well) (θ1, . . .θp) from the set

defined in P3.1.
P3.3 Estimate the marginal cumulative distribution for each parameter k by using the vector θk and evaluate the cumulative distribution in the sample

points θk and denote this zk . Set z = (z1, . . . zp).
P3.4 Fit an R-vine copula to z.

Some notes:
- In the ABC-MCMC step, we use a mixture distribution to propose new steps, in order to build in some flexibility into the transition kernel.
- If the MCMC chain gets stuck for more than 500 iterations in one sample point, the chain is terminated. This happened a few times in our model

fitting, and was most often due to the fact that the chain got stuck before reaching the viable space.
- Several MCMC chains are run in the ABC-MCMC step, with different random starting points but the same transition kernel, and all samples are

merged before the next step.
- A subset of size approximately 5000 samples from the ABC-MCMC step is used to fit the copula. The size of this subset was chosen in order to

maintain a good copula fit while speeding up the fitting process.
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S2.6 Validation of the ABC-MCMC-copula approach

The ABC-MCMC-copula approach was validated in two different ways. First through a small test case for which it is possible to compare the posterior
distributions with the corresponding ones obtained from pure rejection sampling (which we consider to be as close to the ground truth as possible), and
secondly by analysing the distributions obtained in each step of the inverse quantification (i.e. after fitting to each phenotype) and comparing that to the
corresponding approximate distributions from the copulas.

The smaller test case consisted of the submodel corresponding to phenotypes 1-3 of Table S2. For this smaller model we can use the analytical steady
state solutions (S8), (S11) and (S17) to compare with steady state data, which makes it possible to use pure rejection sampling to sample the posterior
distribution. In phenotypes 1-3, only a subset of the parameters of the full model are included, but the dependencies between some of these parameters
are strong.

The pure rejection sampling was done from the uniform priors and in sequence, starting with phenotype 1. It should be noted that performing rejection
sampling with the chosen priors needed the evaluation of more than 300 million sampling points in order to find 5000 points that fitted all three phenotypes.
We compare a sample from the pure rejection sampling approach (red in Figure S2) to a sample from the sequential ABC-MCMC-copula approach (blue
in Figure S2), as well as an approach using only copula fitting together with rejection sampling (green in Figure S2). The third approach was included
to evaluate the effect of the copulas alone, without the MCMC part. All three methods use the same ABC distance criterion to accept sample points (as
described in Section S2.4).

Both the ABC-MCMC-copula and rejection-copula approach have marginal distributions which are very similar to the pure rejection approach. It
can be noted that there is a small tail of the distribution, visible for the parameters Kd*CaM_Ca1*Ca and Kd*CaM_Ca2*Ca, which are not reproduced by
the ABC-MCMC-copula method and just barely for the copula rejection approach. Apart from this tail, which makes up a small fraction of the sample,
we consider the ABC-MCMC-copula approach to reproduce the true posterior very well for this small test. In Figure S3 we also show density plots of
the two most correlated parameter pairs for all three methods. The overall dependencies between the variables are captured well with the ABC-MCMC
copula approach.

The second validation evaluated how well the copula method models the posterior distribution at each step of the full sequential ABC-MCMC-copula
approach. For each step, the MCMC sample from the posterior distribution was compared to a sample from a copula fitted to the same distribution. The
comparison consisted of examining correlation plots of all parameters as well as two-dimensional density plots of the parameter pairs with the lowest and
highest Kullback-Leibler divergence (KLD) between the MCMC and copula samples. The linear correlations are similar/almost identical between the
ABC-MCMC sample and the copula sample (Figure S4) and even if we look at the parameter pair with the highest KLD the two samples have a similar
distribution (Figure S5).

Ideally one would like to have a goodness of fit score for each copula fitting, and there are versions of such tests available. However, current
implementations of these tests are limited to a subset of copula families, and hence not applicable to our setting. Until the implementations of these tests
have been further developed, we recommend visual inspection together with a KLD approach as described above to evaluate the adequacy of the copula.

S2.7 Implementation of copulas and usage in ABC-MCMC framework

Copulas are implemented in several software suites. We have tested and evaluated copulas in both R and MATLAB. Some copulas are
implemented in MATLAB in the Statistics and Machine Learning Toolbox. A set of bivariate Archimedean copulas are available, but multivariate
copulas with more than 2 variables are limited to Gaussian and t-copulas. An external toolbox is available called VineCopulaMatlab toolbox
(https://github.com/MalteKurz/VineCopulaMatlab), which has a rich set of functions to work with C-and D-vine copulas. In R, there are several packages
with different capabilities that implement copulas. For vine copulas, there is the CDVine package (Brechmann and Schepsmeier, 2013) and a development
of this package called the VineCopula package (Schepsmeier et al., 2018) which implements a superclass of C- and D-vine copulas called regular vines
(R-vines).

When initiating the evaluation of copulas to use in this framework, we started by using Gaussian copulas which often are easy to fit and simple to
handle. Unfortunately, such copulas did not adequately fit the sampled distributions (evaluated via comparing samples from the copula with the observed
samples). We then turned to vine copulas and tested first the VineCopulaMatlab toolbox which implements C- and D-vine copulas. However, due to
limitations with portability for the Matlab toolbox, we also implemented our ABC-MCMC methodology with copulas in R based on capabilities in the
VineCopula package. The function RVineStructureSelect was used to select the structure of the vine copula and fit parameters of the chosen bivariate
copulas. Both in MATLAB and R, there are more than 40 copula families that are chosen from when selecting the pair copulas, e.g. Gaussian, Clayton,
Gumbel, Frank, and Joe copulas and their rotations.
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Fig. S2. Overlaid histograms of samples for the nine parameters relevant in a submodel which has been fitted with different methods to phenotypes 1-3.
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Fig. S3. Two-dimensional density plots of the samples for the two most correlated parameter pairs fitted with different methods to phenotypes 1-3.
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Phenotype 4 Phenotype 5
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Fig. S4. Correlation plots over all parameters based on the sample from ABC-MCMC and a sample from the corresponding copula for each fitted phenotype (which are done in sequence).
The bottom triangular part of the matrices correspond to the copula sample and the top part to the MCMC sample.
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Fig. S5. Two-dimensional density plots over the parameter pairs with the highest KLD between the MCMC and copula samples for each fitted phenotype.
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S3 Global sensitivity analysis

S3.1 Normalisation and scale

The sensitivity analysis were performed on the output corresponding to the prediction, ypred. This is a vector which normalized components corresponds
to ynorm

5,i , defined in Equation S3. The binning of the parameters in the sensitivity analysis was performed on the log10-scale.

S3.2 Sensitivity indices

We here describe the calculation of the sensitivity index Si corresponding to the parameter Θi and the predicted output Y , over the posterior distribution
retrieved from the uncertainty quantification (Y and Θi are stochastic variables, and Y corresponds to one component of the vector ypred). The sensitivity
index is defined by Si = VΘi

(EΘ−i
(Y |Θi))/V (Y ), where Θ−i corresponds to all elements of Θ except Θi.

This calculation was inspired by Saltelli et al., 2004 (chapter 5.10), but with major modifications in order to use the existing posterior sample produced
from the ABC. The prediction y is a (complicated) function of the parameters y = h(θ)), i.e. each sample point θ has a corresponding y value (y also
depends on the input u, but to simplify the argument we here assume a specific input, u = u∗). We first want to calculate the inner conditional expected
value EΘ−i

(Y |Θi = θ∗i ), in principle for all different values of θ∗i ∈ Θi. We approximate this by binning the posterior sample with respect to Θi,
into m number of bins of size σ, with midpoint θ∗i,j , and indexed by j = 1, . . . ,m, i.e. EΘ−i

(Y |Θi = θ∗i ) ≈ E(Y |Θi ∈ δθi,j) = E(Y )i,j , where
δθi,j = {θi|θ∗i,j −

1
2
σ < θi < θ∗i,j + 1

2
σ}. Let pj(y|θi ∈ δθi,j) be the conditional distribution of Y given that Θi is in the j:th bin. We denote the

corresponding subsample from the posterior distribution yi,j = (y1
i,j , y

2
i,j , . . . , y

rj
i,j), where rj is the total number of points in the j:th bin. The sample

conditional and unconditional means are:

E(Y )ij = ȳi,j =
1

rj

rj∑
k=1

yki,j

E(Y ) = ȳ =
1∑m
j=1 rj

m∑
j=1

rj∑
k=1

yki,j

The sensitivity index is calculated by:

Si =
Vi

V

Vi =
1∑m
j=1 rj

m∑
j=1

rj(ȳi,j − ȳ)2

V =
1∑m
j=1 rj

m∑
j=1

rj∑
k=1

(yki,j − ȳ)2

S3.3 Monte Carlo filtering

Classification of the input-output curves corresponding to the prediction (the CaMKIIact-PP2Bact balance) The output of the prediction ypred

depends on the input frequency f of the Ca-trains, i.e. ypred = ynorm
5 (f) (see Section S1.3). The different output vectors ypred, corresponding to different

parameters θ, were classified into one of two classes based on whether the following constraint was fulfilled or not:

min
f

(ynorm
5 (f)) < ynorm

5 (f = 0)− 0.1

ynorm
5 (f = fmax) > ynorm

5 (f = 0) + 0.1,

where f = [0 : 1 : 20] and fmax = 20. If the constraint was fulfilled the vector (and the corresponding parameter set θ) were classified as LTD-LTP,
otherwise as non-LTD-LTP.

S4 Characteristics of the posterior distribution
A summary of the characteristics of the marginal posterior distributions is given in Table S4 for the free parameters and for the thermo-constrained
parameters in Table S5. Histograms of the marginal distributions are given in Figure S8.

S5 Mechanistic understanding of sensitive parameters
We here describe, from a mechanistic point of view, why the the parameters that show up as most sensitive in the Monte Carlo filtering sensitivity analysis
have such a large impact on the behaviour in interest.

For the output illustrated in Figure 7 (monotoic versus non-monotonic behavior) the highest scoring parameters correspond toKd*CaMKII_CaM_Ca3*Ca

and Kd*pCaMKII_CaM*Ca (Figure S9), i.e. the Kd values of reactions 22 and 28 in Figure 3. To understand the effect of these parameters we show in
Figure S6 the uncertainty of all relevant species of the model during this experimental context (phenotype 5). To ease understanding, the graphs of
Figure S6 are sorted in the same way as the model species of Figure 3. In Figure S6 it can be seen that there is a large difference in the species behaviours
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Table S4. Arithmetic mean, credibility interval and default parameter value on a
log10-scale for the freeKd-parameters and kautMax based on the marginal posterior
distributions.

Parameter Mean Credibility
interval (95%)

Default
value

Bimodal

Kd*CaM_Ca3*Ca 3.5 (1.9 , 4.5) 4.2 No
Kd*CaM_Ca2*Ca 5.1 (3.9 , 6.8) 4.4 No
Kd*CaM_Ca1*Ca 1.9 (0.5 , 3.5) 3.1 No
Kd*CaM*Ca 4.9 (3.4 , 6.3) 3.7 No
Kd*CaM_Ca4*PP2B -1.6 (-1.9 , -1.3) -1.6 No
Kd*PP2B_CaM_Ca3*Ca 1.0 (-0.3 , 2.1) 1.8 No
Kd*PP2B_CaM_Ca2*Ca 3.1 (1.1 , 4.7) 2.9 No
Kd*PP2B_CaM_Ca1*Ca 2.3 (-0.3 , 4.0) 1.8 Yes
Kd*PP2B_CaM*Ca 2.9 (0.7 , 5.1) 2.8 Yes
Kd*CaM_Ca4*CaMKII 0.8 (-1.0 , 1.7) 1.7 Yes
Kd*CaMKII_CaM_Ca3*Ca 1.8 (0.4 , 3.7) 3.3 No
Kd*CaMKII_CaM_Ca2*Ca 2.5 (0.8 , 5.5) 3.6 No
Kd*CaMKII_CaM_Ca1*Ca 3.2 (0.9 , 6.3) 3.7 No
Kd*CaMKII_CaM*Ca 4.0 (0.8 , 6.2) 3.4 No
Kd*pCaMKII_Ca3*Ca 1.6 (0.4 , 3.2) 3.3 No
Kd*pCaMKII_Ca2*Ca 4.1 (1.7 , 6.0) 3.6 No
Kd*pCaMKII_Ca1*Ca 5.1 (2.4 , 6.4) 3.7 No
Kd*pCaMKII_Ca0*Ca 2.7 (0.6 , 5.6) 3.4 No
Kd*CaM_Ca4*pCaMKIIaut -0.7 (-2.9 , 1.6) -0.1 No
kautMax 0.0 (-1.3 , 4.4) 1.7 Yes

Table S5. Arithmetic mean, credibility interval and default parameter value
for the thermo-constrained Kd-parameters based on the marginal posterior
distributions and rules applied within our model.

Parameter Mean Credibility
interval (95%)

Default
value

Kd*CaM_Ca3*PP2B 0.9 (-1.1 , 2.8) 0.8
Kd*CaM_Ca2*PP2B 2.8 (1.5 , 5.0) 2.3
Kd*CaM_Ca1*PP2B 2.4 (-0.4 , 5.4) 3.5
Kd*CaM*PP2B 4.4 (4.1 , 4.7) 4.4
Kd*CaM_Ca3*CaMKII 2.5 (-0.3 , 4.8) 2.6
Kd*CaM_Ca2*CaMKII 5.1 (2.1 , 7.8) 3.4
Kd*CaM_Ca1*CaMKII 3.7 (-0.5 , 7.7) 2.7
Kd*CaM*CaMKII 4.6 (-0.4 , 9.6) 3.0
Kd*CaM_Ca3*pCaMKIIaut 1.2 (-1.9 , 4.5) 0.8
Kd*CaM_Ca2*pCaMKIIaut 2.2 (-0.7 , 5.6) 1.5
Kd*CaM_Ca1*pCaMKIIaut -1.0 (-4.2 , 3.1) 0.9
Kd*CaM*pCaMKIIaut 1.2 (-1.6 , 4.3) 1.2

between the monotonic and non-monotonic case, especially for [pCaMKII] and [CaMKII_CaM_Ca3] and that this can explain the non-monotounic dip in
the output illustrated in Figure 7 (i.e. dip in Mol Ca bounded per Mol CaM at [Ca] levels between 3<log([Ca])<3.5). In this region [pCaMKII] (which has
no Ca bound) increases a lot when the non-monotonic case is considered, whereas [CaMKII_CaM_Ca3] (which has three Ca bound) decreases from a high
level. Such a behavior should be enforced by a high Kd of reaction 22 as well as reaction 28, and this is exactly what the histograms of the top scoring
parameters show.

When it comes to the LTD/LTP switch the explanation is easier. Comparing the top panels of Figure 8 it can be seen that an important difference between
class LTD/LTP and non-LTD/LTP is that the CaMKIIact-PP2Bact balance is negative for low Ca-frequencies of class LTD/LTP, i.e. there is a lot of active
PP2B (i.e. [PP2B_CaM_Ca4] ) at small frequencies. The parameter shown to be most important in separating between the classes (kf*PP2B_CaM_Ca3*Ca,
see Figure S10) are part of the reaction leading directly to more active PP2B. This parameter corresponds to the binding of the fourth Calcium ion to
PP2B_CaM. When the forward rate of this reaction is high (as for class LTD/LTP in Figure S10) this will result in more PP2B_CaM_Ca4 being formed.
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Fig. S6. Uncertainty in the species concentrations, x(t = 600), for different [Ca] levels using the experimental setting of phenotype 5. The dashed line corresponds to the average behavior
for the non-monotonic class, the solid line to the average behaviour for the monotonic class. The graphs are sorted in the same order as the corresponding species of Figure 3. Concentrations
are in nM.

S6 Retrospective restriction of the posterior sample
The posterior sample was filtered based on experimental ranges from literature to see the effect on the prediction uncertainty as well as the parameter
sensitivity. This was done by rejection sampling from the copula of the posterior sample, using the new restrictions. The results are shown in Figure S7.
As expected, restriction based on the parameter ranges of Table 1 in Stefan et al., 2008 does neither decrease the uncertainty nor change the sensitivity
much as compared to the original analysis (compare Figure S7 left and Figure 6) since the parameters that are restricted do not contribute much to the
uncertainty of the prediction in the first place (Figure 6). However, when one of the most sensitive parameters from the first analysis Kd*CaM*CaMKII

(Figure 6) is restricted according to the range given in the Supplementary table of Pepke et al., 2010 there is a large change in the sensitivity (Figure S7
right), and all parameters that were part of the cluster containing Kd*CaM*CaMKII (Figure 5) have a large reduction in sensitivity (Figure S7 right).
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Fig. S7. Sensitivity analysis of the retrospectively restricted posterior sample. Left: Restriction based on the parameter ranges of Table 1 in Stefan et al., 2008. Right: Restriction based on
the parameter values corresponding to Kd*CaM*CaMKII in the Supplementary table of Pepke et al., 2010.
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S7 Analytical equilibrium model reduction
Analytical solutions were obtained for phenotypes 1-4 (cf. Table S2) as follows: We note that these subsystems only consist of reversible reactions
of the form A + B 
 C, and hence all the reaction fluxes for these subsystems will be of the form kf [A][B] − kr[C]. At equilibrium, all the
reaction fluxes are zero, and so, we can solve the equations by writing them as kf [A][B] = kr[C], and then taking logarithms on both sides, giving
log[A] + log[B]− log[C] = log(Kd). Note that these equations are linear in the logarithm of the species concentrations. The number of such equations
is the same as the number of reactions in the subsystem, and note that different species concentrations will come in as [A], [B] and [C] in the equation
above. To keep track of which species are the reactants and the product in this system, we make use of the stoichiometry matrix. We number the species
and reactions of the subsystem that we are considering, according to some order, and ignore other reactions and species that do not occur in this subsystem.
We denote the unknown equilibrium concentrations by the column vector X , and the equilibrium constants by the column vector Kd. The entries of the
Kd vector will in this section be denoted by Kd1,Kd2, . . . , where the number of the parameter coincides with the ID of the particular reaction (as given
in Table S2). The stoichiometry matrix N is defined by its entries

Nij =


−1 if species i is one of the reactants of reaction j,

1 if species i is the product of reaction j,

0 otherwise.

The system of equations that we need to solve can then be written in matrix form as

−NT log(X) = log(Kd), (S5)

where log(X), logKd denotes the column vector consisting of the logarithms of the entries ofX ,Kd, respectively. This system has nontrivial solutions
if and only if the vector log(Kd) ∈ Ran(NT ) = (kerN)⊥, where Ran(NT ) and ker(N) denote the range of NT and kernel (null space) of
N , respectively. Here, ⊥ denotes the orthogonal complement. The general solution of this system is found as the sum of the general solution to the
corresponding homogeneous equation and a particular solution of the inhomogeneous system. Thus, the number of free parameters in the general solution
is the same as the dimension of the null space of NT . Uniqueness of solutions will only be obtained when the conservation laws are taken into account.
These conservation laws can also be determined from the kernel of NT . The conservation laws are of the form CTX = total amount, where CT is a
fixed row vector of nonnegative integers, of the same length as the number of species in the subsystem. The vector C can be found as a basis vector of
the null space of NT . Now we will find the explicit solutions for the subsystems.

S7.1 Explicit solutions for the subsystem of phenotype 1

The species that are present in this subsystem are CaM, CaM_Ca1, CaM_Ca2, CaM_Ca3, CaM_Ca4. We denote the equilibrium concentrations of these
species with X1, . . . , X5 (with the same order as above). The stoichiometry matrix N is given by

N =


−1 0 0 0

1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1

 .

The system (S5) has nontrivial solutions for all values of the Kd parameters, since ker(N) = {0}. A basis for the null space of NT is C1 :=

{(1, 1, 1, 1, 1)T }. As a particular solution of the system (S5), we take

Xp =

(
Kd1 · Kd2 · Kd3 · Kd4

Ca4
,

Kd2 · Kd3 · Kd4
Ca3

,
Kd3 · Kd4

Ca2
,

Kd4
Ca

, 1

)T
. (S6)

Since the nullspace of NT is one-dimensional, and spanned by C1,we obtain the general solution of (S5) as

X = αC1 ? Xp = αXp, (S7)

where ? denotes the Hadamard (i.e. pointwise) product and αC1 denotes the vector which is formed by raising the number α to each separate entry of
C1. To determine α, we invoke the conservation law CT1 X = totalCaM, and obtain

α(CT1 Xp) = totalCaM.

Solving this equation for α, and substituting the obtained expression for α into (S7), we obtain the equilibrium solution

X =
totalCaM
CT1 Xp

Xp.

Finally, we compute the output for phenotype 1 as

MolCaPerMolCaM =
(0, 1, 2, 3, 4)X

totalCaM
=

(0, 1, 2, 3, 4)Xp

(1, 1, 1, 1, 1)Xp
(S8)

with Xp as in (S6).
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S7.2 Phenotype 2

Only reaction 5 is active in this subsystem, and the equilibrium concentrations are [CaM] =: X1, [PP2B] =: X2, and [PP2B_CaM] =: X3. The
stoichiometry matrix is N = (−1,−1, 1)T . The system (S5) has nontrivial solutions for all values of Kd since ker(N) = {0}. We find a particular
solution (S5) as

Xp := (1, 1,Kd5)T .

The kernel ofNT is spanned byC1 := (1, 0, 1)T andC2 := (0, 1, 1)T . There are two conservation laws: CT1 X = totalCaM andCT2 X = totalPP2B.
The general equilibrium solution is therefore of the form

X = αC1 ? βC2 ? Xp =

 α

β

αβKd5

 ,

and from the conserved quantities we obtain the system of equations

α+ αβKd5 = totalCaM,

β + αβKd5 = totalPP2B.
(S9)

This system is reduced to a quadratic equation in α (by solving the second equation for β and substituting the solution into the first equation). The
quadratic equation has one positive and one negative root, and since α = [CaM] cannot be negative, only the positive root is relevant. This way we obtain

α = −
1

2

(
1

Kd5
+ totalPP2B− totalCaM

)

+

√
1

4

(
1

Kd5
+ totalPP2B− totalCaM

)2

+ totalCaM.

(S10)

Finally, the output MolCaMPerMolPP2B is computed as

MolCaMPerMolPP2B =
[PP2B_CaM]

[PP2B] + [PP2B_CaM]
=

(0, 0, 1)X

(0, 1, 1)X

=
αKd5

1 + αKd5
,

(S11)

with α as in (S10).

S7.3 Phenotypes 3 and 4

The subsystems of phenotype 3 and 4 are the same. The only difference is the total amount of CaM. The subsystem has 11 species, 13 reactions
and 2 conservation laws. The computations are very similar to those of phenotype 2, although the formulas are longer. The species concentrations are
denoted by X1 := [CaM], X2 := [CaM_Ca1], X3 := [CaM_Ca2], X4 := [CaM_Ca3], X5 := [CaM_Ca4], X6 := [PP2B], X7 := [PP2B_CaM],
X8 := [PP2B_CaM_Ca1], X9 := [PP2B_CaM_Ca2], X10 := [PP2B_CaM_Ca3], X11 := [PP2B_CaM_Ca4]. The nullspace of N has dimension 4,
and it is spanned by

W1 := (−1, 0, 0, 0, 1,−1, 0, 0, 0, 1, 0, 0, 0)T ,

W2 := (0,−1, 0, 0, 0, 1,−1, 0, 0, 0, 1, 0, 0)T ,

W3 := (0, 0,−1, 0, 0, 0, 1,−1, 0, 0, 0, 1, 0)T ,

W4 := (0, 0, 0,−1, 0, 0, 0, 1,−1, 0, 0, 0, 1)T .

The system (S5) has a nontrivial solution if and only if log(Kd) ∈ ker(N)⊥, i.e. if and only if log(Kd) is orthogonal to Wj , j = 1, . . . , 4. These
conditions read 

− log(Kd1) + log(Kd5)− log(Kd6) + log(Kd10) = 0,

− log(Kd2) + log(Kd6)− log(Kd7) + log(Kd11) = 0,

− log(Kd3) + log(Kd7)− log(Kd8) + log(Kd12) = 0,

− log(Kd4) + log(Kd8)− log(Kd9) + log(Kd13) = 0,

(S12)

which is equivalent to the Wegscheider conditions for this subsystem (cf. Table S3).
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The null space of NT has dimension 2, and it is spanned by

C1 := (1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1)T ,

C2 := (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)T ,
(S13)

giving rise to the conservation laws C1X = totalCaM and C2X = totalPP2B. A particular solution of (S5) is given by

Xp =



Kd1·Kd2·Kd3·Kd4·Kd9
Ca4

Kd2·Kd3·Kd4·Kd9
Ca3

Kd3·Kd4·Kd9
Ca2

Kd4·Kd9
Ca

Kd9

1

Kd1·Kd2·Kd3·Kd4·Kd9
Ca4·Kd5

Kd2·Kd3·Kd4·Kd9
Ca3·Kd6

Kd3·Kd4·Kd9
Ca2·Kd7
Kd4·Kd9
Ca·Kd8

1



, (S14)

and the general solution is given by
X = αC1 ? βC2 ? Xp,

Where C1 and C2 are given by (S13) and Xp is as in (S14). The conservation laws give rise to the systemC
T
1 (αC1 ? βC2 ? Xp) = totalCaM,

CT2 (αC1 ? βC2 ? Xp) = totalPP2B,

or equivalently, αβ(C1 ? C2)TXp + α(C1 ? (1− C2))TXp = totalCaM,

αβ(C1 ? C2)TXp + β(C2 ? (1− C1))TXp = totalPP2B,
(S15)

where 1 is a column vector of length 11 where all entries are 1. The system (S15) can be simplified further by noting that (C2 ? (1− C1))TXp = 1,
and can be solved in the same way as (S9), leading to the quadratic equation

α2 + α

(
1

(C1 ? C2)TXp
+

totalPP2B− totalCaM
(C1 ? (1− C2))TXp

)
−

totalCaM
((C1 ? C2)TXp)(C1 ? (1− C2))TXp

= 0

in α with one positive and one negative root. Again, it is only the positive root that is valid, and so

α=− 1
2

(
1

(C1?C2)T Xp
+ totalPP2B−totalCaM

(C1?(1−C2))T Xp

)
+

√
1
4

(
1

(C1?C2)T Xp
+ totalPP2B−totalCaM

(C1?(1−C2))T Xp

)2
+ totalCaM

((C1?C2)T Xp)(C1?(1−C2))T Xp
. (S16)

The output for both phenotypes 3 and 4 is

activePP2BPercentage = 100
X11

totalPP2B
= 100

α

1 + α(C1 ? C2)TXp
, (S17)

with α given by (S16), and (C1 ? C2)TXp is the sum of the last five entries of Xp, with Xp given by (S14).

S7.4 Phenotypes 5 and 6

Since the subsystems contains a reaction which is neither elementary nor irreversible, the method that was used in Sections S7.1–S7.3 is not applicable.
For this reason, we have simulated the ODE systems instead of using analytical equilibrium solutions when computing these outputs.
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Fig. S8. Marginal prior and posterior distributions for the model parameters sorted by reduction in entropy (Hdiff). Normalized sample histograms from the prior (blue) and posterior (red)
distributions of the free and thermodynamically constrained Kd parameters of the model. The prior of the free parameters correspond to a sample from a log-uniform distribution centered
around the default parameter values, while the priors of the thermodynamically constrained parameters are the same samples transformed by the constraint rules given in Table S3.
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Fig. S9. Normalized histograms describing the marginal posterior distributions of the model parameters subdivided into two classes depending on the behaviour of the output function
corresponding to phenotype 5. The colors correspond to the classes defined in Figure 7; blue=monotonic (Figure 7, top left), red=non-monotonic (Figure 7, top right). The parameter
histograms are sorted according to the Kolmogorov-Smirnov test statistica.
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Fig. S10. Normalized histograms describing the marginal posterior distributions of the model parameters subdivided into two classes depending on the behaviour of the output function
corresponding to the prediction. The colors correspond to the classes defined in Figure 8; blue=LTD-LTP (Figure 8, top left), red=non-LTD-LTP (Figure 8, top right). The parameter
histograms are sorted according to the Kolmogorov-Smirnov test statistica.
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Fig. S11. The outputs corresponding to phenotype 5 were divided into two classes, monotonic behaviour of the observed output function and non-monotonic behaviour. The subsamples
corresponding to these two classes were further investigated via pairwise projections to find the pairs that cause these different behaviours. The density of parameters resulting in monotonic
output behavior are represented by color shading and the parameters resulting in non-monotonic behaviour are shown as contour plots using the same color scheme. That way the lines are
only visible if there is a difference in the two projected densities. If the densities are very different then the parameters pair is important for this classification. We calculated the Kullback
Leibler Divergence (KLD) for each pair; this picture shows the top 16 pairs with highest KLD values.
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Fig. S12. For illustration purposes, this figure shows the corresponding bottom 16 parameter pairs, ranked by KLD score. The figure was produced in the same fashion as Figure S11. The
contour lines depicting parameters with resulting non-monotonic output behaviour and the color shading (for monotonic behaviour) cannot be distinguished because the densities are so
similar.
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Fig. S13. The outputs corresponding to the prediction were divided into two classes: LTD-LTP or non-LTD-LTP as described in the main text. The subsamples corresponding to these two
classes were further investigated via pairwise projections to find the pairs that cause these different behaviours: color shading shows the density responsible for output behaviour LTD-LTP,
while the contour lines indicate the subsamples density of non-LTD-LTP. If the two projected probability densities are very different then the parameter pair is important for this classification,
in such cases the lines can be seen clearly, they are colored using the same colormap. We calculated the Kullback Leibler Divergence (KLD) for each pair; this picture shows the top 16 pairs
with highest KLD values.
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Fig. S14. For illustration purposes, this figure shows the corresponding bottom 16 parameter pairs, with lowest KLD values. It was produced in the same fashion as Figure S13 and shows
no discernible difference between the two classes for each parameter pair. The color shading indicates the density of parameter vectors of class LTD-LTP while the contour lines represent
the complement of that sample (parameters belonging to class non-LTD-LTP).
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