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S1 Technical details

S1.1 Clustering for fiducial marker detection

The fiducial marker detection problem is reduced to a sampling and clustering problem in our procedure.
Here, we would like to introduce the details of clustering for fiducial marker detection.

In our previous Sampling procedure, the whole micrograph has been divided into several subareas. Within
each subarea, a peak position is detected. These peak positions will be considered as the candidates of
fiducial marker positions. Each peak has the correlation value as the score (feature) of shape similarity and
the pixel value as the score (feature) of contrast similarity. The two scores compose the feature space for
the candidates, as shown in Figure S1 (the scores shown here have been normalized and have already been
filtered by a gross threshold of 0.5 for shape).

Figure S1: A demonstration of the feature space for the fiducial marker candidates (from the Centriole
dataset).

With the feature space, the detected positions can be classified into two clusters, i.e., the fiducial marker
cluster and background (non-fiducial marker) cluster. It should be noticed that the fiducial markers always
have a higher contrast and better score of shape. We can find that there are thousands of background
points and hundreds of fiducial markers. Therefore, it is an unbalanced clustering problem. A density-based
clustering (Ankerst et al., 1999) or density estimation is feasible to solve the problem.

Inferred from the central limit theorem, the center of background points follows a Gaussian-like distribu-
tion in the feature space, which makes an expectation-maximization (E-M) clustering with Gaussian mixture
model possible. Our solution follows the classic Gaussian mixture model, in which the distribution of the two
clusters are modeled as Gaussian and the whole system can be written as a linear superposition of Gaussian
in the form as

p(x) =
K∑
k=1

p(k)p(x|k) =
K∑
k=1

πkN (x|µk,Σk), (1)

where the kth component is characterized by Gaussian with weight πk (
∑K
k=1 πk = 1), mean µk and

covariance matrix Σk. K = 2 and all x are the 2D features of the peak positions. Denoting x = [x, y]T ,
letting X represent the score of shape and Y represent the score of contrast, we have

N (x|µ,Σ) =
1

2πσXσY
√

1− ρ2
exp

(
−

1

2(1− ρ2)

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

−
2ρ(x− µX)(y − µY )

σXσY

])
, (2)

and

µ =

(
µX
µY

)
, Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
, (3)

where µX and µY are the mean values of X and Y , σX and σY are the standard deviations of X and Y ,
and ρ is the correlation between X and Y .

S2



Given the features of selected peaks xi, i = 1, .., N , our goal is to maximize the following objective
function:

Q =

N∑
i=1

log

(
2∑
k=1

πkN (xi|µk,Σk)

)
. (4)

The problem here is solved by expectation-maximization algorithm. In the expectation step, we assume
all the parameters of the Gaussian mixture are fixed (the values of πk, µk and Σk are from the initial values
or last turn’s maximization step) and find the probability γ(i, k) for each peak position that belongs to the
background cluster (k = 1) or fiducial marker cluster (k = 2).

E-step:

γ(i, k) =
πkN (xi|µk,Σk)∑2
j=1 πjN (xi|µj ,Σj)

. (5)

At the second step (maximization step), the mixture parameters will be further refined.
M-step:

πk =
1

N

N∑
i=1

γ(i, k), µk =
1

Nπk

N∑
i=1

γ(i, k)xi, Σk =
1

Nπk

N∑
i=1

γ(i, k)(xi − µk)(xi − µk)T . (6)

Repeat the E-step and M-step until convergence. An xi will be classified to fiducial markers if and only if
γ(i, 2) > γ(i, 1).

To achieve a good estimation, the initial partition of the candidates is also important. Our initial guess of
the fiducial markers is based on experiential observations and the following facts: For the normal distribution,
one standard deviation above and below the mean encompasses about 68% of the area; and two standard
deviations above and below the mean encompasses about 95% of the area. Here, we calculate the XY and
the corresponding µXY and σXY . For a candidate, if scorecontrast×scoreshape < µXY +σXY , it is considered
as background; and if scorecontrast× scoreshape > µXY + 2σXY , it is considered as a fiducial marker. Based
on this rule, the E-M clustering is initialized. Figure S2(A) shows the initialization of the clustering (data
extracted from one micrograph of Centriole), where the yellow ones are the ambiguous candidates. After
the convergence, the features from backgrounds and fiducial markers have been clearly classified. By our
previous investigation, the E-M clustering has ≥ 90% fiducial marker detection accuracy for normal datasets.

(A) (B)

Figure S2: Illustration of the clustering in the fiducial marker detection. (A) The initialization of the E-M
clustering. (B) The convergence of the E-M clustering.

S1.2 Fiducial marker tracking

According to the most recent proof of the relationship between the projection model and the tracking
model (Han et al., 2018), it is possible to track the fiducial markers only based on their 2-dimensional (2D)
projections as the positions of fiducial markers on two micrographs are related by affine transformation
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within a very small deviation. Here, the fiducial marker tracking problem is reduced to an incomplete point
set registration problem:

Let “point set” denote the positions of the fiducial markers extracted from a projection. Given two point
sets (M and S) belonging to different views, an affine transformation T (·) applied to the moving “model”
point setM can be found so that there exists a subset of T (M) with the maximum cardinality in which the
points are corresponding to the points from a subset of the static “scene” set S under a selected measure of
distance.

Two different tracking algorithms are implemented in our proposal: (i) the RANSAC-based tracking
algorithm (Han et al., 2015) that can ensure the robustness to noise with relatively slow execution time, and
(ii) the fast tracking algorithm (Han et al., 2018) that solves the tracking problem by algebraic optimization.

S1.2.1 RANSAC-based tracking

In the RANSAC-based tracking algorithm, the point sets from two different projections are divided into
“query set” and “reference set”. Different query sets are generated and fitted into the reference set with an
affine transformation. If the estimated transformation does not degenerate and can cover enough points, the
transformation is recorded as a candidate of the global transformation between the query set and reference
set. Repeat the procedure until there is no improvement of the mapping residual or it reaches the termination
of the consensus query.

Figure S3: Illustration of a four-point congruent set.

The query tree is built based on the reference of four-point-set invariants. A set of four points (in the
following we call it quadrilateral) on one surface consists a system that keeps the cross-ratio invariant under
affine transformation, which has been widely used in computer vision (Aiger et al., 2008). Figure S3 shows
such an example, in which points a1, b1, c1,d1 compose a point set S1 and a point set S2 = {a2, b2, c2,d2}
is generated from S1 under the affine transformation T (·) (T (x2;A, t) = Ax1 + t, where x1 and x2 are
vectors representing points in R2, A is a 2× 2 matrix, and t is the translation). For four-point-set, the ratio
r1 = ‖a1 − e1‖/‖a1 − b1‖ and r2 = ‖c1 − e1‖/‖c1 − d1‖ are preserved under affine transformation, i.e.,
‖a2 − e2‖/‖a2 − b2‖ = r1 and ‖c2 − e2‖/‖c2 − d2‖ = r2. r1 and r2 are used as the search key to reduce
the computational complexity in query. Then, considering the effects of noise, a random sample consensus
(RANSAC)(Fischler and Bolles, 1981) procedure is designed for robust estimation of T (·).

Algorithm 1 elaborates the details of RANSAC-based tracking. Algorithm 1 requires the point set M,
S and a distance threshold d as input and outputs the matched pairs between the point set M and S, and
the implying transformation T (·). Firstly, from the point set S a set of quadrilaterals with wide-base1 is
generalized, i.e., Q = {Qi|Qi is a 4 point subset of S}. A KD-tree (Bentley, 1975) KD(Q) is built based on
the quadrilaterals’ two invariant ratios r1 and r2 (r1 and r2 are used as the search keys). We then do the
following operations:

1. Select a random quadrilateral Pran from S and search on the KD(Q) to obtain a subset of Q (Ψ)
whose invariant ratios are very close to Pran.

2. With Ψ and Pran, several possible transformations can be calculated. For each T (·), apply the T (·) to
M and count the number of points in T (M) that is congruent with S under a loose distance threshold

1A quadrilateral with wide-base means that the diagonals of the quadrilateral are with wide-base, judging from the distance
of two points: Given the maximum of the distances between two arbitrary points inside a shape dmax, if the distance of two
points compared with dmax is not very small, for example, > 0.4dmax, the two points are wide-base.
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3 · d (denoting the operation to count of congruent points between point set X and Y under distance
d as Congr(X ,Y, d) and defining the corresponding congruent points in X as C(X )).

3. If the cardinality Congr(T (M),S, 3·d) produced in the previous step is large enough, try to re-estimate
the transformation T (·) by C(M) and C(S), and recount the congruent subset under a tight distance
threshold d.

4. If the cardinality returned from Congr(T (M),S, ·d) is larger than the current maximal record Cmax,
save the current value and refresh the termination condition I.

5. Repeat Steps 1∼4 until termination.

Here, as shown in Algorithm 1, we use a two-stage estimation for the transformation to overcome the
noise-sensitivity in the least squares estimation. In our solution, the maximum iteration count is refreshed
according to I = log(1− ps)/log(1− pNg ), where ps is the required success probability, pg is the probability
that the randomly selected point fromM also appears in S, and N is the cardinality of the randomly selected
dataset (N = 4). The distance threshold d can be set according to the value of the fiducial marker diameter.

Algorithm 1: RANSAC-based tracking

Input: M, S, d
1 Procedure FindMatch(M,S, d)
2 Generate Q and create search tree KD(Q);
3 Calculate maximum iteration count I;
4 Let i← 0, Cmax ← 0;
5 while i < I do
6 Select a random quadrilateral Pran from M;
7 Obtain Ψ = {Qi|Qi ∈ KD(Q)} whose keys are close to Pran;
8 foreach Qi ∈ Ψ do
9 Estimate T (·) from Pran to Qi;

10 Apply T (·) to M;
11 c← Congr(T (M),S, 3 · d), and obtain C(M) and C(S);
12 if c > 0.5 · Cmax then
13 Re-estimate T (·) by C(M) and C(S);
14 Apply T (·) to M;
15 c← Congr(T (M),S, d);

16 end
17 if c > Cmax then
18 Cmax ← c;
19 Refresh the maximum iteration count I;

20 end

21 end
22 i← i+ 1;

23 end
24 Return matched pairs between C(M) and C(S).

S1.2.2 Probability-based fast tracking

Though the RANSAC-based method is robust, it suffers from the issue of increasing execution time when
the number of fiducial markers becomes large (> 150). A probability-based fast solution is proposed to
compensate the problem of long execution time (Han et al., 2018). In the fast tracking algorithm, the point
sets are represented by the probability density function of a Gaussian kernel, i.e., the Gaussian-mixed model
(GMM). Here, we first introduce the concept of GMM presentation and the algebraic optimization for ideal
conditions of point set registration by coherent point drift (CPD) technique (Myronenko and Song, 2010),
and then our overall fast tracking algorithm.
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For the convenience of discussion, we explicate the “model” point set as M = {ym,m = 1, ...,M} and
the “scene” set as S = {xn, n = 1, ..., N}.

GMM presentation of a point set: a Gaussian kernel-based probability density function can depict
the possibility that a point x is corresponding to another point y:

p(x|y) =
1

2πσ2
exp

(
−
‖x− y‖2

2σ2

)
, (7)

where σ is a similarity punishment. It can be noticed that the probability reaches its maximum if the point
x is identical to y. Similarly, for the point set M, its Gaussian mixture model presentation is defined as
p(x|M) =

∑m
j=1 P (m)p(x|ym), where P (m) is the prior probability of the mth point ym. The consequent

set to set case (M to S) can be reduced from the one point to set case as 1
2πσ2

∑N
n=1

∑M
m=1 wme

− ‖xn−T (ym)‖2

2σ2 ,
where wm is the weight specified by the prior.

It is clear that the sum of the probability density function has the robust similarity form of simrobust =∑∑
g(‖x− y‖2), where g(·) is a Gaussian function. However, it is not a convex function (Jian and Vemuri,

2011). A heuristic solution such as simulated annealing may overcome some local maximums, but it cannot
guarantee a global optimization.

Because the missed or added markers caused by noise or tilt change may easily change the distribution
of fiducial markers, the similarity punishment is a key to ensure a global similarity. We borrow the concept
of the point-spread function (PSF) and full width at half maximum (FWHM) to explain the criteria in σ
determination, considering the similarity between the Gaussian kernel and PSF. A σ in PSF defines the
closeness of two separate emitter (Betzig et al., 2006; Nieuwenhuizen et al., 2013). Here, we would like to
guarantee that almost all the fiducial markers are distinguishable under a given σ, which means that the
peak of the Gaussian function should be retained under summation. Therefore, σ can be determined as

σ = βmin(
1

M

M∑
m=1

dist(ym,M),
1

N

N∑
n=1

dist(xn,S)), (8)

where β ∈ [0.2, 0.5] is the parameter to control the distance interpretation and dist(x,S) refers to the
minimum distance between the point x to the points belonging to S (except itself).

Fast parameter refinement by CPD: To optimize the transformation T (·) in the set to set GMM
presentation, coherent point drift (CPD) (Myronenko and Song, 2010) is introduced. The view of CPD is
from the aspect of assignment and CPD introduces a representation of the outliers.

Given a point x, its probability corresponding to the mth point ym is P (m), and its total probability that
belongs to the point set M is

∑m
j=1 P (m)p(x|ym). Considering the probability that point x may represent

an outlier, let w denote the outlier probability. Assuming x is sampled from the point set S randomly and
the points in M share an equal prior probability, the mixture model takes the form as:

p(x) = w
1

N
+ (1− w)

m∑
j=1

1

M
p(x|ym). (9)

The objective function in the negative log-likelihood fashion is

E(T (·), σ2) = −
N∑
n=1

log

M+1∑
m=1

P (m)p(x|ym), (10)

where P (m) here is the reweighted prior and p(x|yM+1) = w
N represents the probability of outliers. The

negative likelihood function has an obvious advantage that it can be effectively solved by an expectation-
maximization algorithm.

According to Jensen’s inequality, the upper bound of the negative log-likelihood function used in the E-M
algorithm can be defined as:

Q = −
N∑
n=1

M+1∑
m=1

pold(m|xn) log (Pnew(m)pnew(xn|ym)), (11)

where p(m|xn) = P (m)p(xn|ym)/p(xn) is the corresponding probability between ym and xn, the “old”
parameters indicate the guess of values in the E-step and the “new” parameters are determined by minimizing
the expectation of the complete negative log-likelihood function in the M-step. The algorithm iterates the
E-step and M-step until convergence.

E-step:
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Ignoring the constants, the objective function in the E-step can be rewritten as:

Q(A, t, σ2) =
1

2σ2

N∑
n=1

M∑
m=1

pold(m|xn)‖xn − T (ym;A, t)‖2 +
NpD

2
logσ2, (12)

where T (ym;A, t) = Aym + t, Np =
∑N
n=1

∑M
m=1 p

old(m|xn) 6 N (with N = Np only if w = 0), and
pold(m|xn) denotes the posterior probabilities of GMM components calculated using the previous parameter
values:

pold(m|xn) =

exp

(
− 1

2
‖xn−T (ym,A

old,told)

σold
‖2
)

∑M
k=1 exp

(
− 1

2
‖xn−T (yk,A

old,told)

σold
‖2
)

+ 2πσ2 w
1−w

M
N

. (13)

Within a feasible local convex, minimizing the objective function Q in the E-step is equal to solving the
negative log-likelihood function E in Eq.(10).

M-step:

In the M-step, our aim is to find the optimal A and t that minimize the objective function Q. It is
clear that Q has a closed-form expression (Myronenko and Song, 2010). For the convenience of the following
discussion, several representations of variables are introduced:

1. XN×2 = (x1 · · ·xN )T—matrix presentation of the point set S;

2. YM×2 = (y1 · · ·yM )T—matrix presentation of the point set M;

3. 1—the column vector of all ones;

4. d(a)—the diagonal matrix formed from vector a;

5. P—the matrix that is composed by pmn = pold(m|xn).

The solution is to firstly find the root of the partial derivative Q with respect to t and then substitute t
back into the objective function to obtain the matrix A. Here the equation of ∂Q

∂t takes the form as

∂Q

∂t
=

1

σ2

N∑
n=1

M∑
m=1

pold(m|xn) (xn −Aym + t) = 0, (14)

in which the root t is

t =
1

Np

N∑
n=1

M∑
m=1

pold(m|xn)(xn −Aym). (15)

By introducing the variables µx = 1
Np
XTP T1, µy = 1

Np
Y TP1, t can be rewritten as t = µx −Aµy.

Substitute t back into Q and solve the equation of partial derivative ∂Q
∂A , the root A is

A = (X̂TP T Ŷ )(Ŷ T d(P1)Ŷ )−1, (16)

where X̂ = X − 1µTx , Ŷ = Y − 1µTy . σ2 is also updated according to the result of ∂Q
∂σ2 :

σ2 =
1

NpD
(tr(X̂T d(P T 1)X̂)− tr(X̂TP T Ŷ AT )). (17)

After solving the matrix A and t, the moving “model” point setM is then updated by T (ym) = Aym + t.

Overall fast tracking algorithm: As an algebraic solution for non-convex function, CPD still has the
problem of local convergence. Our method tries to overcome the local convergence issue. Given two sets of
fiducial markers S and M, Algorithm 2 illustrates the procedure of fiducial marker tracking based on the
Gaussian mixture model.

The initial value of σ is assigned according to Eq.(8). As a compensation, a grid search of the applicable
value of the transformation matrix A and t with a step size of 2.5σ is conducted at the beginning. The
initial values of A and t with a high value of the robust similarity measure is fed into CPD. Under the
assumption that the pitch angle almost remains unchanged, we can get the simplified version of A according
to the derivation in Han et al. (2018):

A =
si′

si
Rγi′

(
cos βi′
cos βi

tanα sin ∆β
cos βi

0 1

)
R−γi . (18)
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Algorithm 2: Probability-based fast tracking

Input: M,S
1 Procedure FindMatch(M,S)
2 Generate initial estimation of T (·;A, t) by grid search;
3 Select several {T (·)} as initial inputs;
4 foreach Ti(·) ∈ {T (·)} do
5 Estimate Ti(·) by CPD as in previous paragraph;
6 Apply Ti(·) to M;
7 Calculate simrobust(S, Ti(M));
8 if simrobust is large enough then
9 Use Ti(·) and stop trying;

10 end

11 end
12 T (·)← Ti(·);
13 Return T (·).

where βi′ and βi are the corresponding tilt angles of the two micrographs, ∆β = βi′ − βi, γi′ and γi are
the in-plane rotation, si′ and si are the scale change, and α is the patch angle. It should be noted that the
values of si′ and si are very close to each other. The values of βi′ and βi can be assigned from the recorded
tilt angles when designing the search range of A. Considering the real pitch angle in a tilt series, tanα is
a very small value and can be neglected. Therefore, the search range of A is very small. If the tilt angle
interval is not too large, the affine matrix A will degenerate to a rotation matrix. However, it is enough for
an initial estimation of A. The search range of t is limited in half the width of the micrographs, which is
enough considering the actual shift. The transformation which has a high rank of simrobust(X , Ti(Y)) will
be used as the initial seed for further estimation. The fine estimation of transformation T (·) is then carried
out by CPD. The refined value T (·) with the highest simrobust(X , Ti(Y)) is outputted as the final result.

S1.2.3 Divide-and-conquer strategy to refine the tracking

The affine transformation relationship cannot cover all the correspondence of two sets of fiducial markers
under the effect of lens distortion. Fortunately, we notice that the divide-and-conquer strategy can solve this
issue well. Our proposed algorithm against the lens distortion is illustrated in Algorithm 3.

Algorithm 3: Refine transformation T (·) against lens distortion

Input: M, S, T , and distance threshold d
1 Procedure RefineTransform(M,S, T , d)
2 C ← ∅; Φ← ∅;
3 while dist(S, T (M)) < d do
4 Apply T (·) to M;
5 foreach x ∈ S and y ∈M do
6 if dist(x, T (y)) < 0.75d then
7 C ← C ∪ (x, y);
8 end
9 C′ ← ∅;

10 if dist(x, T (y)) < d then
11 C′ ← C′ ∪ (x, y);
12 end

13 end
14 Φ← Φ ∪ T ;
15 Recalculate transformation T by C′;
16 end
17 Return C and Φ.
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The distance threshold d can be set to the diameter of fiducial markers, the same as in RANSAC-based
tracking. The input is the result from RANSAC-based tracking or fast tracking. Firstly, the transformation
T (·) is applied to M and then the peer distance with S is calculated. If the distance of two points from
different point sets is less than the distance threshold d, the point pair is considered as a matched pair. If
the distance is less then 0.75d, the matched pair will be directly outputted; if not, the matched pair will
be used to recalculate the transformation T (·). Here we assume that the distortion is mild and continuous,
as we present in the main manuscript. In the next iteration, we rerun the procedure to generate the
satisfied correspondence until no matched point pair can be found between S and T (M). Finally, multiple
transformation T will be outputted to describe the distortion in the micrographs.

S1.3 Spatial relationship calibration

For the convenience of discussion, we define the coordinate system of tilt series A as the global coordinate
system. Given a rigid transformation that makes rB = Rrigidr

A′ + trigid, where Rrigid and trigid are the

approximate estimation of rigid transformation from rA to rB , and rA
′

is the inversion estimation of rA

from T −1(rB), the projection model of axis B in the coordinate system of A can be denoted as(
uB
vB

)
= sBRγBPRβBRαB

(
Rrigidr

A′ + trigid

)
+ tB . (19)

Considering the observation of projection (uB , vB)T on the coordinate system of A(
uB
vB

)
= sA′RγA′PRβA′RαA′ r

A′ + tA′ , (20)

by substituting Eq.19 to Eq.20, we can get the equation

sBRγBPRβBRαB

(
Rrigidr

A′ + trigid

)
+ tB = sA′RγA′PRβA′RαA′ r

A′ + tA′ , (21)

where the global parameters sA′ , γA′ , βA′ , αA′ , tA′ are unknown. However, the global translation can be

directly calculated by tA′ = sBRγBPRβBRαBtrigid + tB . Our following focus is to solve sA′ , γA′ , βA′ , αA′ .

In detail, we have RαB =

 1 0 0
0 cosαB sinαB
0 − sinαB cosαB

, RβB =

 cosβB 0 − sinβB
0 1 0

sinβB 0 cosβB

, P =

(
1 0 0
0 1 0

)
,

RγB =

(
cos γB sin γB
− sin γB cos γB

)
and Rrigid =

 r0 r1 r2
r3 r4 r5
r6 r7 r8

. By substituting the matrices to Eq.21 and focusing

on the parameters of rA
′
, we can get the equation as

sA′RγA′ P RβA′RαA′ = sBRγBPRβBRαBRrigid (22)

=

(
cos γB sin γB
− sin γB cos γB

)
P

 cosβB sinαB sinβB − cosαB sinβB
0 cosαB sinαB

sinβB − sinαB cosβB cosαB cosβB

 r0 r1 r2
r3 r4 r5
r6 r7 r8


=

(
p0 p1 p2

p3 p4 p5

)
,

where

p0 = sB cos γB(r0 cosβB − r6 cosαB sinβB + r3 sinαB sinβB) + sB sin γB(r3 cosαB + r6 sinαB), (23)

p1 = sB cos γB(r1 cosβB − r7 cosαB sinβB + r4 sinαB sinβB) + sB sin γB(r4 cosαB + r7 sinαB),

p2 = sB cos γB(r2 cosβB − r8 cosαB sinβB + r5 sinαB sinβB) + sB sin γB(r5 cosαB + r8 sinαB),

p3 = sB cos γB(r3 cosαB + r6 sinαB)− sB sin γB(r0 cosβB − r6 cosαB sinβB + r3 sinαB sinβB),

p4 = sB cos γB(r4 cosαB + r7 sinαB)− sB sin γB(r1 cosβB − r7 cosαB sinβB + r4 sinαB sinβB),

p5 = sB cos γB(r5 cosαB + r8 sinαB)− sB sin γB(r2 cosβB − r8 cosαB sinβB + r5 sinαB sinβB).

Here, it should be noted that p0 to p5 are all constants.
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Similarly, we have the details that RαA′ =

 1 0 0
0 cosαA′ sinαA′
0 − sinαA′ cosαA′

, RβA′ =

 cosβA′ 0 − sinβA′
0 1 0

sinβA′ 0 cosβA′

,

and RγA′ =

(
cos γA′ sin γA′
− sin γA′ cos γA′

)
. By substituting the matrices to Eq.23, we can get the following equation:



sA′ cosβA′ cos γA′ = p0,
sA′ (cosαA′ sin γA′ + cos γA′ sinαA′ sinβA′ ) = p1,
sA′ (sinαA′ sin γA′ − cosαA′ cos γA′ sinβA′ ) = p2,
sA′ (− cosβA′ sin γA′ ) = p3,
sA′ (cosαA′ cos γA′ − sinαA′ sinβA′ sin γA′ ) = p4,
sA′ (cos γA′ sinαA′ + cosαA′ sinβA′ sin γA′ ) = p5.

(24)

The estimation of sA′ , γA′ , βA′ , αA′ in Eq. 24 is a non-linear least squares problem, i.e.,

argmin

5∑
i=0

[fi(sA′ , γA′ , βA′ , αA′ )− pi]2 , (25)

where fi represents the left part of the equation. It can be solved by the Gauss-Newton (G-N) algorithm or
the Levenberg-Marquardt (L-M) algorithm (Marquardt, 1963). For either algorithm, the Jacobian matrix is
necessary. Because the system is composed by 6 equations with 4 parameters, the Jacobian matrix is with
6× 4 size, which can be directly derived from the ∂fi

∂sA′
, ∂fi
∂γA′

, ∂fi
∂βA′

and ∂fi
∂αA′

(i = 0, 1..., 5), i.e,

J =

(
∂f

∂sA′
· · ·

∂f

∂αA′

)
=


∂f0

∂sA′
· · ·

∂f0

∂αA′
...

. . .
...

∂f5

∂sA′
· · ·

∂f5

∂αA′

 . (26)

For the tilt series B, there are multiple micrographs. We can either solve the initial transformation on
each individual micrograph or with the whole tilt series. However, from the derivation of Eq. 24 and Eq. 26,
we can find that the parameters of each individual micrograph have no relationship with each other, which
results in the zero value of Jacobian attributes. From the G-N algorithm and L-M algorithm, we can find
that zero values of Jacobian attributes have no contribution to the convergence. Therefore, either solving the
initial transformation on each individual micrograph or solving the initial transformation with the whole tilt
series will lead to the same result. To save the memory and keep the solution simple, in our implementation,
the initial transformation for each micrograph in tilt series B is estimated individually.

S1.4 Sparse modeling of projection parameter estimation

An L-2 norm objective function is used to optimize the parameters:

E =
∑
i

∑
j

(Proji(Xj)− xi,j)2 δi,j , (27)

where X = {Xj} is the set of spatial points to be estimated. Proj(·) is the process of projection defined
in Eq.4 and Eq.5. xi,j is the configured position of fiducial marker and δi,j (δi,j ∈ {0, 1}) indicates whether
the j-th marker is visible in the i-th micrograph.

To practically solve the above estimation, let all parameters (projection parameters and spatial points)
be converted into vector p ∈ Rm, and let f be a mapping that maps p to a vector x̂ ∈ Rn, x̂ = f(p). Thus,
f denotes the projection operation, and x̂ denotes all the predicted projection points (vector x ∈ Rn denotes
the measured projection points). The cost function E can be reformulated as E =

∑
i,j ‖εi,j‖2, where

ε = ‖x− x̂‖ (‖ • ‖ denotes L2-norm) is the residual. Obviously, the original problem has been formulated in
a nonlinear least-square style. Levenberg-Marquardt (L-M) algorithm can be utilized to solve the parameter
optimization problem. The L-M algorithm approximates f in its neighborhood p as f(p+σp) ≈ f(p)+Jσp

when ‖σp‖ is small. J is the Jacobian matrix of f . Note that the number of measured projection points is
much larger than that of calibrated parameters. Thus, m� n, and the Jacobian matrix J is sparse.

In particular, we solve the following equations iteratively:

Φ = (JTJ + µI)−1JT r (28)
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where Φ = (Θ,X), Θ indicates projection parameters, X is the spatial points and r is the residual (i.e.,
difference between measured image points and estimated value over the projection process). J = ∂r/∂Θ. J
is the M ×N Jacobian matrix, M is the number of measured image points and N = nΘ + nX , which is the
sum of the number of projection parameter numbers and spatial points.

Solving Eq.28 directly is possible but ineffective. However, the abundant zero values in J could be
utilized, because some spatial points only have a few projection points. Consider the structure of JTJ ,

JTJ =

(
∂rT

∂Θ
∂r
∂Θ

∂rT

∂Θ
∂r
∂X

∂rT

∂X
∂r
∂Θ

∂rT

∂X
∂r
∂X

)
=

(
C−1

Θ C−1
ΘX

C−1
XΘ C−1

X

)
, (29)

where

C−1
Θ =


∑
j
∂r1j

∂Θ1

T ∂r1j

∂Θ1
0 · · ·

0
∑
j
∂r2j

∂Θ2

T ∂r2j

∂Θ2
· · ·

...
...

. . .

 , (30)

C−1
X =


∑
i
∂ri1
∂X1

T ∂ri1
∂X1

0 · · ·

0
∑
i
∂ri2
∂X2

T ∂ri2
∂X2

· · ·
...

...
. . .

 , (31)

C−1
ΘX =


∂r11
∂Θ1

T ∂r11
∂X1

∂r12
∂Θ2

T ∂r11
∂X1

· · ·
∂r21
∂Θ1

T ∂r21
∂X1

∂r22
∂Θ2

T ∂r22
∂X2

· · ·
...

...
. . .

 . (32)

We found that C−1
Θ and C−1

X are both diagonal matrices. By substituting expressions from Eq.30 to
Eq.32, Eq.28 can be rewritten as the following linear equation:(

A B
BT C

)(
Θ
X

)
=

(
eΘ

eX

)
, (33)

where A = C−1
Θ + µI, C = C−1

X + µI, B = C−1
ΘX , eΘ = ∂rT

∂Θ r and eX = ∂rT

∂X r. A further term of Eq.33 is(
A−BC−1BT 0

BT C

)(
Θ
X

)
=

(
eΘ −BC−1eX

eX

)
. (34)

Therefore, Θ can be solved from the top half of Eq.34, and X can be solved from the bottom half. By
employing the sparse linear problem, we reduce the scale of the problem.

S1.5 Additional choice for the projection model

Based on the non-linear projection theory proposed by (Lawrence et al., 2006), a more complex projection
model is possible to achieve better distortion correction. However, the complex projection model still has
the limitation of model bias and risk of overfitting. AuTom-dualx provides the additional option “-w 2” for
dualxmauto to achieve the following projection model estimation:

u = a0 + a1X + a2Y + a3Z + a4X · Y + a5X · Z + a6Y · Z + a7X ·X + a8Y · Y + a9Z · Z, (35)

v = b0 + b1X + b2Y + b3Z + b4X · Y + b5X · Z + b6Y · Z + b7X ·X + b8Y · Y + b9Z · Z.

In implementation, the estimation will be based on the result of extended projection model with wx, wy, wz.
However, as the application of the complex model has the risk of overfitting, the users should ensure that
the number of fiducial markers is abundant enough (for statistical accuracy, we should have at least two or
three fiducial markers for each coefficient to be determined), the quality of fiducial markers is high enough
and the distribution of the fiducial markers is good enough.
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S1.6 Technological difference between AuTom and IMOD

The main difference between the workflow of AuTom and IMOD is that AuTom uses a globally consistent
alignment for the two tilt series but IMOD uses separate alignment, reconstruction and merging strategy.
In addition, there are also other detailed differences between AuTom and IMOD.

Firstly, AuTom does not need the operation of coarse alignment based on cross-correlation but IMOD
requires such an operation. Though the coarse alignment based on cross-correlation is very fast, it is not
so robust against large image shift and rotation2. In IMOD, the fiducial marker detection is based on peak
picking and hard threshold, while AuTom uses a sampling and clustering strategy. IMOD firstly detects the
fiducial markers around the zero tilt series and then extends the searching to high-tilt micrographs by nearest
neighbor search, based on the coarse alignment results. AuTom directly detects the fiducial markers of each
micrograph with a refinement of each micrograph’s average template. Therefore, AuTom is able to detect
much more potential fiducial markers along the tilt series. In IMOD, the fiducial marker tracking is based
on a pre-reconstruction of spatial fiducial markers from the low-tilt micrographs and the consequent nearest
neighbor search, while AuTom utilizes the information of fiducial marker distribution to estimate a potential
transformation of the fiducial marker positions from different micrographs. Here, IMOD’s fiducial marker
tracking highly depends on the initial detection of fiducial markers and coarse alignment results, whereas the
performance of AuTom will not be affected by the initial positions of micrographs. Theoretically, AuTom
will generate more fiducial marker tracks compared to IMOD but takes slightly longer time (0.1 ∼ 1 seconds
for each micrograph). However, IMOD’s detection and tracking is not so stable and usually needs human
intervention.

For alignment, AuTom uses a two-stage refinement of projection parameters while IMOD refines the pro-
jection parameters for each tilt series separately. In AuTom, sparse bundle adjustment is used to accelerate
the optimization procedure. Therefore, for alignment, the first stage of AuTom is faster than IMOD (6 20
seconds). However, the second stage of AuTom is slower, which may take about 10 ∼ 30 minutes for a system
that contains about 40 fiducial markers, because more projection parameters are used. For IMOD, a process
called “solve match” and “combine” is used in the combination of the reconstruction from two different tilt
series. The “solve match” will generate the transformation matrix for global and localized volumes to be
used by the further combination. The “combine” will reweight the information of reconstruction and produce
a summarized volume (about 10 ∼ 50 minutes for a system with 2048× 2048 size). Here, the “solve match”
in IMOD uses direct least square estimation of the spatial fiducial markers, while AuTom uses a two-step
estimation (affine transformation from 3D point set registration result and rigid transformation approxima-
tion decomposed from affine transformation). Because the least square estimation is not robust to outliers,
IMOD usually requires human intervention to generate an acceptable combination matrix. In AuTom, the
transformation matrix and combination of the two tilt series are processed as described in Section S1.3. Here,
AuTom does not need the volume combination stage. Due to the global projection parameters, AuTom can
produce better alignment consistency between the two tilt series and result in a global reconstruction.

S2 Simulation details

S2.1 Tilt series generation

Because InSilicoTEM (Vulović et al., 2013) does not consider fiducial markers, we used a modified InSili-
coTEM scheme to generate the simulated dataset (Simul)3. The simulated tomogram with 2560×2560×250
voxel that contains 81 volumes of 2WRJ was generated (2WRJ is the default MAP in InSilicoTEM, which is
downsampled by 2 in our simulation). About 45 fiducial markers with a diameter of 18 pixels were embed-
ded. From the tomogram, 51 projections were produced for each tilt axis (+50.0◦ to −50.0◦ at 2◦ intervals).

2https://drive.google.com/file/d/1uCnuCO2VwbAfFB97H7t5s94nRBxdtlZa/view?usp=sharing provides an example of how
large image shift and rotation fails the coarse alignment in IMOD and the consequent process.

3The modified code can be download at https://drive.google.com/file/d/1i9nxRbY5lbfXS-gU2-yjBAj_IW3CuIuC/view?

usp=sharing. Considering the radio damage caused by the electron beam, it is not natural to use dual-axis tomogram in
subtomogram averaging. However, the conclusion drawn from the simulation is universal from the aspect of computational
methodology.
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One problem is that the CTF will affect the projected micrographs. It usually needs a set of tilt series with
different defocus values and thousands of subtomograms to gain a discernible result. However, our aim is
to demonstrate the quality improvement in the simultaneous reconstruction by the fashion of subtomogram
averaging, instead of demonstrating the applicability of dual-axis reconstruction in subtomogram averaging.
Here, to save time but without loss of generality, we tried to generate a set of projections with different
defocus and then produced a noise-stained, phase-flipped averaging of the projections (similar to the 2D
particle information averaging in SPA). Therefore, the simulated projections used here are phase-corrected
and contain the Fourier information in different frequencies. Finally, random translation and rotation that
range in ±150 pixels and ±10◦ were added to make the simulation more similar to an experimental dataset.
The parameters used for simulation are listed below:

% ———————– General processing parameters (proc field)
params.proc.N = 2560; % Image size (field of view)
params.proc.partNum = 81; % Number of particles.
% ———————– Specimen (spec field)
params.spec.source = ’map’; % Options: ’map’, ’pdb’, or ’amorph’
params.spec.mapsample = ’2WRJ VoxSize2.0A.mrc’;
params.spec.potcontribution = ’iasa’; % Potential type. Options: ’iasa’ or ’iasa+pb’
params.spec.motblur = 0; % Motion blur in [A]
params.spec.thick = 50e-09; % Thickness of the specimen[m]
params.spec.imagpot = 0; % Amplitude contrast flag. Options: (=0, none) (=1 constant Q)...
% ———————– Electron-specimen interaction (inter field)
params.inter.type = ’pa’; % Options: ’pa’ (projection), ’wpoa’ (weak-phase)...
params.inter.msdz = 1e-9; % Approximate thickness of the slice for multislice [m]...
% ———————– Microscope (mic field)
params.mic.Cs = 2.7e-3; % Spherical aberration [m]
params.mic.a i = 0.030e-3; % Illumination aperture [rad]
params.mic.C c = 2.7e-3; % Chromatic aberration [m]
params.mic.deltaE = 0.7; % Energy spread of the source [eV]
% ———————– aperture
params.mic.diam obj = 100e-6; % Diameter of objective aperture [m]
params.mic.foc = 4.7e-3; % Focal distance [m]
% ———————– ideal phase plate (optional)
params.mic.PPflag = 0; % Phase plate flag
%———————– Acquisition settings (acquis field)
params.acquis.pixsize = 0.200e-9; % Pixel size in the specimen plane [m]3748
% The interpretation of defocus has been changed in our modified codes
params.acquis.df = [600,700,800,900,1000,1100]*1e-9; % Note: undefocus df> 0; overfocus df< 0
params.acquis.ast = [0]*1e-9; % Astigmatism [m].
params.acquis.astangle = 0*pi/180; % Astigmatism angle [rad]
params.acquis.Voltage = 300e3; % Acceleration voltage
params.acquis.tilt = [-50:2:50]/180*pi; % Tilt geometry
params.acquis.dose on sample = [50]/length(params.acquis.tilt); % Integrated flux [e-/A2]
% ———————– Detector-Camera (cam field)
params.cam.type = ’ideal’; % Options: ’Eagle4k’, ’US4000’,...’ideal’ (100% at Nq)
params.cam.bin = 1; % hardware binning
params.cam.GenMTFasEMG = 1;
params.cam.DQEflag = 0; % Flag for dqe (=0 means NTF = MTF)

Considering the modulation of CTF, we generated a set of projections with defocus range from 600e-9 m
to 1100e-9 m and then averaged the phase-flipped projections with different defocus. Figure S4 demonstrates
the effects of CTF. Our final experiment is based on the obtained average projections, in which the Poisson
and Gaussian noise were added according to the configuration of the camera.
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(A) (B)

Figure S4: Illustration of the CTF curves with defocus from 600e-9 to 1100e-9 (m). (A) The original CTF
curves. (B) The phase flipped averaging.

S2.2 Reconstructed spatial fiducial marker comparison

The “glbpoint.mot” in AuTom-dualx records the final estimation of spatial fiducial markers, and the “ afid.xyz”
in IMOD records the final estimation of spatial fiducial markers for tilt series A (or “ bfid.xyz” for tilt se-
ries B). For Simulation, the simulated spatial fiducial marker locations are known as the ground-truth.
Due to the shift and rotation in tilt series alignment, the estimated spatial fiducial markers will have rigid
transformation compared to the ground-truth. Here, for the fiducial markers recorded in “glbpoint.mot” and
“xxxafid.xyz”, we firstly registered the estimated spatial fiducial markers to the ground-truth and then calcu-
lated the peer-to-peer deviations. In the demonstrated Simul dataset, AuTom-dualx reconstructed 45 spatial
fiducial markers and IMOD reconstructed 44 spatial fiducial markers. Here, we compared the “glbpoint.mot”
with the “Simulafid.xyz”. Figure S5 shows the histogram of the deviations between the estimated spatial
fiducial markers and the ground-truth fiducial marker locations. Here, the average reprojection residual of
IMOD is 0.292 for tilt series A and 0.299 for tilt series B, whereas that of AuTom-dualx is 0.201. And the
average spatial deviation between IMOD’s results and the ground-truth is 0.1318, while the average spatial
deviation between AuTom-dualx’s results and the ground-truth is 0.0511. These results demonstrate that
AuTom-dualx produces better alignment than IMOD. The improvement may be due to two reasons: location
improvement from fiducial marker detection (Han et al., 2015) and the introduction of the dual-axis bundle
adjustment model.

Figure S5: The histogram of the deviations between the estimated spatial fiducial markers and the ground-
truth fiducial marker locations.
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