Supplementary Materials
Holistic optimization of an RNA-seq workflow for
multi-threaded environments

February 1, 2019

Appendix 1: Details of optimized implementation

Original implementation structure

The original implementation consisted of a master bash script to handle the
setup of the directories and passing of parameters to the two Python scripts
that performed the UMI based quantitation of the RNA-seq data. The output
files were text files that had the counts for each gene. For the purposes of
benchmarking, we moved the system call to BWA from within the Python script
to a shell script. This allowed us to time and measure the memory consumption
of that component separately.

Optimized implementation

The optimized workflow duplicated the bash script and replaced the Python
scripts with compiled C++ executables that took the same arguments (and
have some additional configuration options such as the number of threads).

The details of the implementation for the three components of the workflow,
split, align, and merge follow:

e Split: The split executable reads and decompresses if necessary, a list
of paired-end fastq files and splits them into separate fastq files with the
sequence tag as part of the title line. Files are organized by the well as
specified by the barcode in the sequence tag.

The software asks the user for a file which lists the barcodes and wells that
they map to. It also asks the user for the maximum allowable number of
base pair variations due to sequence errors that can be tolerated when
matching the wells. Since the barcodes are small (6 bases), the split
software maps the sequence to an integer and generates a lookup table
for all possible tags and maps them to a well when the identity of the
well is unambiguous and the variation in base pairs is within tolerance.



All other sequences are mapped an ”unmatched” well value. This is a
constant time operation and is very fast due to the small size of the table.

The first read sequence is then read and the barcode matched. This is
appended to the title line for the read. The actual sequence from the cDNA
is read from the second read. The well is determined from the barcode
and the newly constructed read is written to the corresponding fastq file.
Unmatched barcodes are written to an unmatched fastq file. This task
is parallelized using OpenMP. Each thread operates on a separate pair of
input paired-end fastq files, and then generates a separate set of output
well-specific files.

The major optimizations are in the parallelization at the level of input
files, the fast lookup and resolution of barcodes and the separation of the
reads by wells. The last step is a key optimization for later steps.

Align: The align step is performed using a shell script. The script asks
the user how many threads to use (parameter nThreads). The master
thread assembles a list of all the fastq files from the split step (typically
the number of pairs of input files times the number of wells). It then
spawns nThreads processes that call BWA. Each thread goes through the
list of fastq files, and checks whether another thread has created a lock
file indicating it is working on that file. When finding a fastq file to work
on, the worker thread writes a new lock file to prevent other threads from
operating over the same file. The added parallelism increases the speed of
the align step by 70% when using 16 threads.

Merge: The original merge step did not have reads organized by file and
compiled the counts using a single thread and a single large hash table.
The new merge uses OpenMP to generate and manage threads that work
simultaneously on different files.

The division of files by wells also reduces the size of the hash (since the
barcode part of the sequence tag is the same in each file) and the hash
table (the number of reads is also reduced). The code further increases
the efficiency of hashing by first mapping the sequence tag to an integer
and using an unordered_set to check for uniqueness. The original imple-
mentation used the sequence concatenated with metadata to form a string
that is hashed using a default Python text hashing function. Hashing of
a long string requires several passes of the hash function and is slower
than hashing a 64 bit integer. However, the major savings in speed and
memory are due to the division of the data into files sorted by wells. This
is especially important when 384 well plates are used instead of 96 well
plates and when using many threads, which will consume more memory.

A major implementation difference in the merge procedure is the filtering
by UMI. The original UMI paper assumes that any additional reads with
the same UMI that map to the same position are amplification artifacts
and should be discarded. The merge module follows this recipe by de-
fault but also allows the user flexibility to exclude reads with the same



UMI that map nearby, which could happen, for example, due to minor
sequencing errors or ambiguities. However, the original Python merge
implementation excluded duplicate UMI’s that mapped to the same gene
even if they mapped to different positions. Our merge procedure does
have a that flag that allows this alternative approach. Figure S1 in the
supplemental materials compares the lists of differentially expressed genes
that are obtained when using gene level and position level filtering of reads
with identical UMI’s.

Testing of optimized implementation

Testing of the optimized implementation is complicated by 3 factors. The first
is the difference in the manner that UMI filtering is performed. The second
is the fact that BWA will produce slightly different alignments even when the
same reads are organized in different files. This is due to the way that it handles
equally scoring alignments by choosing one at random. Finally, the implemen-
tations of the sorting by Python and C++ differ on how ties are handled.

During initial development, we split the files and filtered duplicate UMI’s
in the same manner as the original. This produced the identical counts as the
original. Some results were sorted slightly differently due to the differences in
sorting between Python and C++. However, the splitting and the filtering are
key to the optimization and correctness of the new implementation and will pro-
duce slightly different results from the original implementation. Consequently,
after these features were added, we only tested whether the optimized software
produced the same results as previous implementations. For all benchmarks,
the output files were compared to the single thread runs and were identical ex-
cept for the order of items which had not been sorted and were written to the
file in a different order by the different threads.

Appendix 2: Benchmark data

See Table S1 and Table S2 in the Appendix show the raw median data in Figure
1 in the main manuscript.

Table S1: Execution times in hours:minutes:seconds. The median execution
time across three trials is shown.

Split Align Merge Total
Implementation | Threads time time time time
Original 1 5:31:06 | 19:38:09 | 4:16:12 | 29:25:27
Optimized 1 3:14:51 | 17:10:16 | 0:50:37 | 21:15:44
Original 4 5:48:43 | 6:33:31 | 4:19:17 | 16:41:31
Optimized 4 1:04:18 | 5:06:22 | 0:17:59 | 6:28:39
Original 16 5:22:31 | 4:02:41 | 4:17:49 | 13:43:01
Optimized 16 0:53:02 | 2:24:58 | 0:12:43 | 3:30:43




Table S2: Memory usage in Gigabytes. The median memory usage across three
trials is shown.

Split | Align | Merge | Max
Implementation | Threads | RAM | RAM | RAM | RAM
Original 1 1.710 | 0.350 | 13.228 | 13.228
Optimized 1 0.008 | 0.351 | 0.923 | 0.923
Original 4 1.710 | 1.398 | 13.228 | 13.228
Optimized 4 0.021 | 1.402 | 1.477 | 1.477
Original 16 1.710 | 5.592 | 13.228 | 13.228
Optimized 16 0.069 | 5.609 | 3.571 | 5.609

Table S3: Effect of optimized computational module (combinations of split,
align, merge) on total median run time.

Optimization Total run time (16 Threads)
None 13:43:01
Split 9:13:32
Align 12:05:18
Merge 9:37:55
Split and Align 7:35:49
Split and Merge 5:08:26
Align and Merge 8:00:12
Split, Align and Merge 3:30:43

Appendix 3: Comparison of biological results



Gene level filter

Map position filter

Original Optimized Original Optimized

HBB HBB HBB HBB

RGS5 RGS5 RGS5 RGS5

FABP4 FABPA FABP4 SLN

PTX3 PTX3 BRPF1

TRIB3 TRIB3

SLN SLN SLN FABP4

DHRS3 DHRS3 DHRS3 ASPN

OMD OMD OGN

GADD458B GADD458B

DDIT3 DDIT3
ASPN ASPN ASPN

TNFAIP6 TNFAIPG TNFAIP6
AHNAK AHNAK

ACTA2 ACTA2

and saAl
ERV3-1 ERV3-1

SREBF1 SREBF1

OGN OGN

KLF6 BRPF1

BRPF1 KLF6 TNFAIP6

Figure S1: Comparison of differentially expressed gene lists. As detailed in the
SOP, EdgeR was used to obtain a set of the top differentially expressed genes
in the presence and absence of the drug Trastuzumab. We applied the same
analysis to transcript counts obtained from the Soumillon Python scripts and
the transcript counts from our optimized software. The 20 genes that show the
greatest difference in expression between control and treatment groups are listed.
The Soumillon Python scripts excluded reads with identical UMIs that map to
the same gene. The original method described by Bray et al. excludes identical
UMIs that map to the same position. By default, the optimized software uses
position based filtering but has the option (-g flag) for gene level filtering. We
compare gene lists obtained from both types of filtering with the original gene
list. Identically ranked genes are in green, genes that appear in both lists but in
different order are in yellow and genes that appear in one of the two lists are in
red. When gene level filtering is used by the optimized software, the results are
almost identical to those obtained using the original Python scripts with only a
transposition between the final two genes in the list. The small differences are
due to actual differences from BWAs use of random numbers to choose between
equally good alignments. This has been confirmed by manually examining the
intermediate SAM files. When the default position based filtering is used there
are significant changes in the identity and ordering of the top 20 genes. When
coverage is large, we expect significant differences, as the gene level filtering
results in exclusion of a greater numbeP of reads than position level filtering.



