Supplementary Information (SI)

1 Details of the environmental data processing and estimated kernel weights

Supplementary Figure S1 presents the weights estimated for each environmental data source. Table S 1 presents the preprocessings that were

Fig. S1. Sensitivity analysis of the estimated normalized kernel weights.

applied to the different environmental covariates and the kernel functions used.

2 Details of the variational inference algorithm

For short-hand, the hyper-parameters in the model are denoted jointly by

$$\zeta = \{\alpha_j, \beta_j, \sigma_{q0}^2, \sigma_{e0}^2, \sigma_g^2, \sigma_e^2, \lambda_{g0}, \lambda_g, \lambda_e\},\$$

and the parameters by

$$\Theta = \{\mathbf{a}_{g0}, A_g, A_e, H_g, H_e, \mathbf{g}^*, \mathbf{e}^*, \sigma_*^2\},\$$

where $\sigma_*^2\,=\,(\sigma_1^2,\ldots,\sigma_{N_e}^2).$ In the following the dependence on ζ is omitted for clarity. We assume the factorized variational approximation

and define each factor in the ensemble just like its full conditional:

1

~ ~ ~

$$\begin{split} q(\mathbf{a}_{g0}) &= \mathcal{N}(\mathbf{a}_{g0}; \boldsymbol{\mu}(\mathbf{a}_{g0}), \boldsymbol{\Sigma}(\mathbf{a}_{g0}))) \\ q(A_g) &= \prod_{r=1}^R \mathcal{N}(\mathbf{a}_r^g; \boldsymbol{\mu}(\mathbf{a}_r^g), \boldsymbol{\Sigma}(\mathbf{a}_r^g)) \\ q(A_e) &= \prod_{r=1}^R \mathcal{N}(\mathbf{a}_r^e; \boldsymbol{\mu}(\mathbf{a}_r^e), \boldsymbol{\Sigma}(\mathbf{a}_r^e)) \\ q(H_g) &= \prod_{i=1}^{N_g} \mathcal{N}(\mathbf{h}_i^g; \boldsymbol{\mu}(\mathbf{h}_i^g), \boldsymbol{\Sigma}(\mathbf{h}_i^g)) \\ q(H_e) &= \prod_{j=1}^{N_e} \mathcal{N}(\mathbf{h}_j^e; \boldsymbol{\mu}(\mathbf{h}_j^e), \boldsymbol{\Sigma}(\mathbf{h}_j^e)) \\ q(\mathbf{g}^*) &= \prod_{i=1}^{N_g} \mathcal{N}(g_i; \boldsymbol{\mu}(g_i), \boldsymbol{\Sigma}(g_i)) \\ q(\mathbf{e}^*) &= \prod_{j=1}^{N_e} \mathcal{N}(e_j; \boldsymbol{\mu}(e_j), \boldsymbol{\Sigma}(e_j)) \\ q(\sigma_*^2) &= \prod_{j=1}^{N_e} \mathcal{G}(\sigma_j^{-2}; \boldsymbol{\alpha}(\sigma_j^{-2}), \boldsymbol{\beta}(\sigma_j^{-2})). \end{split}$$

The parameters in the factor distributions can be derived as by Gönen and Kaski (2014), and they are therefore omitted from here.

Initialisation of the variational algorithm. The parameter g^* was initialised to the main genetic effects learnt by <code>GBLUP</code>, and \mathbf{e}^* was initialised to the average yields in the different environments. Parameters H_q and H_e were initialised by applying the regularized Singular Value Decomposition (SVD) implemented in R library ${\tt softImpute}$ to the yield matrix Y after regressing out the initialised main effects g^* and e^* . Parameters \mathbf{a}_{g0} , A_g and A_e were initialised to 0. Environment-specific residual variance parameters σ_*^2 were initialised to environment-specific sample variances.

3 Gains from modelling $G \times E$ for current target population of environments

Our results indicate targeted breeding could improve yields by dividing a single target population of environments (TPE) into several parts, but the same methodology could be used even when developing only 1 variety for a larger population of target environments as in traditional breeding. Traditional breeding makes the implicit assumption that varieties' observed yields $g \in 1,\ldots,G$ in trial experiments in environments (location \times year) $e \in 1, \ldots, E$, are representative of the yield in the TPE, in other words

$$p(\text{yield}_g|\text{TPE}) \approx \frac{1}{E} \sum_e p(\text{yield}_g|\text{environment}_e)$$
 (1)

However, with geographic field use information and weather data widely available, this strong assumption can be replaced with an estimate for the yield in the TPE given the actual fields and their microclimates:

$$p(\text{yield}_g|\text{TPE}) \approx \sum_{f}^{F} P_f \times p(\text{yield}_g|f)$$
 (2)

$$=\sum_{f}^{F} P_{f} \times \int_{\theta_{f}} p(\text{yield}_{g}|\theta_{f}) \times p(\theta_{f}) d\theta_{f}, \quad (3)$$

where $f \in 1, ..., F$, are fields in the TPE used for cultivation of the new $p(\Theta|K_g, K_e, Y) \approx q(\Theta) = q(\mathbf{a}_{g0})q(A_g)q(A_e)q(H_g)q(H_e)q(\mathbf{g}^*)q(\mathbf{e}^*)q(\mathbf{a}_f^*)$ are parameters (e.g. weather conditions) related to a certain

"output" - 2019/1/21 - page 1 - #9

Variable (unit)	transformation	preprocessing parameters	missing value imputation	kernel	
				transformation(s)	
Soil content (%,	log transformation	z-normalization	(none)	linear and	
$N_{\rm covs} = 3)$				Gaussian	
Soil organic	log transformation	z-normalization	(none)	Gaussian	
content (%,					
$N_{\rm covs} = 3)$					
daily rainfall	7-day moving average	z-normalization with 3 rd order	0-imputation	linear and	
(mm,	(6 previous days)	polynomial smoothing		Gaussian	
$N_{\rm covs} = 123)$					
daily average		z-normalization with 3 rd order	0-imputation	linear and	
temperature (C° ,		polynomial smoothing of daily		Gaussian	
$N_{\rm covs} = 12.3$		mean/scale parameters			
growth zone (1-4,		z-normalization	(none)	Gaussian	
$N_{\rm covs} = 1$)					
genotype		Minor allele frequency scaling for SNP	mean imputation	linear kernel	
markers (SNPs,		A: $A = 2 \cdot MAF_A$			
$N_{\rm covs} = 5696)$		$\sqrt{2 \cdot MAF_A \cdot (1 - MAF_A)}$			

Table S1. Preprocessings and kernel functions applied to covariates.

field $f, p(\theta_f)$ is the uncertainty related to these conditions, estimated from historical records, $p(\text{yield}_g | \theta_f)$ is the predictive distribution for the yield under conditions θ_f , obtained from the model, and P_f is the proportion of the total volume cultivated in field f.

4 Details of the cross validation scheme

The data consists of two generations of lines: a parental and progeny generation. Data is available from several years and locations.

Algorithm 1 presents the pseudo code for the 3D nested cross validation used to evaluate performance in new location, on new years for new genotypes.

Table S2 presents a detailed comparison of the proposed cross-validation setup to earlier works.

5 Climatic variation between the trial locations

Statistics about the weather conditions on trial locations on different months and years is presented in Figure S2.

6 Details of the cross validation split

Table S3 presents statistics about the cross validation splits.

7 Details of the sensitivity analysis

In the sensitivity analysis, the effect of the removal of training environments (removing all data from one further location and year from the training set) is obtained by evaluating test set performance with the models trained during cross validation after omitting different validation folds (line 22 in pseudo code): test set performance was evaluated with each of these models to measure the sensitivity of model performance to the decomposition of the training set.

The number of test folds and validation folds corresponding to each location-year combination varies (see Table S 3) due to availability of observations in the data set. The total number of validation folds for the 41 test folds is 343. Information about training and test set sizes and the

Fig. S2. Climatic variation among the different trial locations on different months and years. The dashed lines denote the mean \pm standard deviation.

number of validation folds for different cross validation splits is given in Supplementary Table S 3.

Algorithm 1 3D Nested Cross Validation for New Year, New Location and New Genotype -performance estimation

1: L: set of all locations

- 2: Y: set of all years
- 3: $G_{parental}$: set of all lines in the parental population
- 4: $G_{progeny}$: set of all lines in the progeny population
- 5: Θ : set of model hyperparameter combinations
- 6: Initialise training set (all data), validation set (empty set) and test set (empty set)

7: Assign test set:

8: **for** test location in *L* **do**

9: for test year in Y do

- 10: for set of test genotypes in $G_{progeny}$ do
- Assign all observations from { test location, test year and set of test genotypes} as the test set.
- 12: Omit all other data from the test year, location or lines from the training set (not only combination, each condition individually)

13: Assign validation set:

- 14: **for** validation location in $\{L \setminus \text{test location}\}$ **do**
- 15:for validation year in $\{Y \setminus \text{test year}\}$ do16:for set of validation genotypes in $G_{progeny} \setminus \text{test genotypes}$
- do
- 17: Assign all observations from { validation location, validation year and set of validation genotypes} as the validation set.
 18: Omit all other data from the validation year, location or
- lines from the training set (not only combination, each condition individually)
- 19: Omit all other data $G_{progeny}$ from the training set
- 20:for model hyperparameters θ in Θ do21:Train model on training set
- 22: Compute performance on validation set
- 23: end for
- 24: end for
- 25: end for
- 26: end for
- 27: Select hyperparameter combination by averaging over the different validation sets.
- 28: Assign training set without omitting any validation set, however, omit all data from $G_{progeny}$

29: Train model on the training set

- 30: Compute performance on the test set
- 31: end for
- 32: end for
- 33: **end for**

34: Estimate generalisation performance by averaging over the different test sets.

Gillberg et al.

Publication	New environment	New genotypes	
Burgueño	CV1/CV2: test locations	new lines in CV1:	
et al. (2012)	and years are present	not restricted to the	
(CV1/CV2)	in the location-year	offspring generation. In	
	combinations in the	CV2 the test lines have	
	training data	phenotype observations	
Heslot et al.	Random split, balanced	only 544/2195	
(2014)	wrt years and locs \rightarrow	genotypes have no	
	years and locations not	phenotype observations,	
	new	test set not restricted to	
		the offspring generation	
Albrecht et al.	the year-location	genotypes are new and	
(2014)	combination is new	from the offspring	
	but the test locations		
	and years are present		
	in other location-year		
	combinations in the		
	training data		
Malosetti et al.	time-structured DTD:	all genotypes within the	
(2016)	2/6 test locations new	same family, not from	
	according to strict	the next generation.	
	criteria; physically		
	structured DTD: none		
	of the environments are		
	strictly new (as the year		
	is not new)		
Saint Pierre	location new but year	test lines have phenotype	
et al. (2016)	part of the training set	observations	
(leave-one-			
side-out)	CIV00 1 d	CIV00	
Jarquin <i>et al.</i> (2017)	CV00: new location-	CV00: new genotypes	
(2017)	year combination but	but not from the	
	the location and year	ouspring generation.	
	are present in other	cvu: pnenotype	
	CV0, new location or	for the genetunes	
	UVU: new location or	for the genotypes	
	year		

4

Table S2. Comparison of the proposed in silico setup to the existing setups.

Modelling $G \times E$ with his	istorical weather	information
---------------------------------	-------------------	-------------

	environment	n phenotypes final training set	n validation folds	n phenotypes nested CV mean \pm sd	n phenotypes validation mean \pm sd	yield mean \pm sd	n phenotypes test set
1	Loc B, 2011	5676	10	4197 ± 557	113 ± 46	6685 ± 585	59
2	Loc A, 2011	7049	10	4778 ± 998	113 ± 49	5509 ± 741	59
3	Loc G, 2011	6615	10	4519 ± 953	121 ± 57	6054 ± 620	58
4	Loc B, 2013	5205	9	4028 ± 492	95 ± 58	5061 ± 565	182
5	Loc A, 2012	7294	10	4977 ± 1084	94 ± 36	5799 ± 829	106
6	Loc G, 2012	6709	10	4529 ± 1042	94 ± 36	5186 ± 745	106
7	Loc D, 2012	8406	10	5994 ± 1072	96 ± 38	3617 ± 667	105
8	Loc E, 2013	6990	10	4972 ± 798	103 ± 71	7178 ± 589	91
9	Loc B, 2012	5613	10	4168 ± 557	97 ± 39	4735 ± 768	106
10	Loc G, 2013	5902	10	4086 ± 823	105 ± 67	5223 ± 1025	91
11	Loc B, 2012	5613	8	4126 ± 559	80 ± 21	5414 ± 768	260
12	Loc A, 2012	7294	10	4854 ± 1038	90 ± 36	5760 ± 780	243
13	Loc E, 2013	6990	10	4972 ± 746	84 ± 23	6948 ± 752	153
14	Loc G, 2013	5902	10	4102 ± 818	86 ± 23	5557 ± 811	152
15	Loc C, 2014	8391	10	5786 ± 1018	89 ± 35	3978 ± 481	79
16	Loc B, 2013	5205	9	3891 ± 517	86 ± 23	5932 ± 491	153
17	Loc A, 2013	6141	10	4293 ± 828	86 ± 23	7096 ± 766	153
18	Loc E, 2014	8231	10	5590 ± 953	89 ± 36	4858 ± 556	79
19	Loc B, 2014	5769	9	4022 ± 696	83 ± 21	4408 ± 398	79
20	Loc B, 2014	5769	10	3816 ± 631	120 ± 53	4130 ± 637	106
21	Loc C, 2014	8391	10	5491 ± 888	130 ± 61	4886 ± 784	106
22	Loc E, 2014	8231	10	5352 ± 795	131 ± 64	5378 ± 852	105
23	Loc H, 2015	7450	10	4792 ± 933	122 ± 59	4411 ± 379	64
24	Loc F, 2015	8205	10	5524 ± 935	122 ± 59	7287 ± 694	64
25	Loc B, 2015	5610	10	3778 ± 682	113 ± 51	5699 ± 903	64
26	Loc B, 2013	5731	6	4758 ± 371	68 ± 19	5167 ± 1095	488
27	Loc G, 2013	6703	9	4805 ± 1029	68 ± 20	5544 ± 892	244
28	Loc E, 2013	7996	8	6036 ± 1017	65 ± 19	7175 ± 782	244
29	Loc C, 2014	9393	5	7190 ± 1273	55 ± 12	5232 ± 499	120
30	Loc F, 2015	9409	3	7546 ± 1493	91 ± 0	7053 ± 811	39
31	Loc E, 2014	9172	6	7034 ± 1275	56 ± 11	5600 ± 459	120
32	Loc B, 2015	6432	2	5642 ± 276	91 ± 0	7463 ± 489	39
33	Loc B, 2014	6504	6	5212 ± 891	119 ± 97	3571 ± 591	91
34	Loc E, 2014	9172	8	6748 ± 1393	133 ± 158	5485 ± 791	91
35	Loc C, 2014	9393	8	6838 ± 1422	156 ± 160	4494 ± 606	91
36	Loc H, 2015	8652	5	6170 ± 1526	243 ± 150	4013 ± 554	42
37	Loc B, 2015	6432	4	4881 ± 1037	182 ± 72	6537 ± 659	42
38	Loc B, 2015	6432	6	5135 ± 903	152 ± 73	7829 ± 596	64
39	Loc F, 2015	9409	8	7159 ± 1439	186 ± 138	6167 ± 924	64
40	Loc H, 2015	8652	8	6402 ± 1439	186 ± 138	7224 ± 671	63
41	Loc C, 2015	9111	6	6531 ± 1445	213 ± 152	5356 ± 1024	60

 Table S3. Statistics about the different training, validation and test splits used in the cross validation.

5