
Supplementary Material

A. Deriving dimensionless equation(for single cell)

The dimensionless equation has been derived through several steps. From governing equations we have:
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In above equation each parameter has its own dimension:

[B] ≡ concentration, [N ] ≡ concentration

[aN ] ≡ [aB] ≡ [βN ] ≡ [βB] ≡ concentration

time

[αN ] ≡ [αB] ≡ 1

time
[KNB] ≡ [KBN ] ≡ [KBB] ≡ concentration
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Next, dimensionless parameters are specified:
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ãN =
aN

αN .KNB
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First: dividing both equations by αB, thus we have:
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and considering t̃ = αBt:
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. Rewriting equations:
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Ñ =

1

αB

βN (KBBB̃
KBN

)n

1 + (KBBB̃
KBN

)n
+
aN
αB

− αN
αB

KNBÑ (8)
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Again, rewriting both equations lead to:
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Ñ =

βN
KNB.αB

(KBBB̃
KBN

)n

1 + (KBBB̃
KBN

)n
+

aN
KNB.αB

− αN
αB
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Third: assuming: β̃B = βB
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and eventually final equation obtained:
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+ ãN − Ñ
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B. Deriving dimensionless equation(by considering interaction via diffusion)

For cell population simulation first equation changes as follows:
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Same as previous section we have:
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and considering t̃ = αBt:
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Rewriting both equations lead to:
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Ñ =

βN
KNB.αB

(KBBB̃
KBN

)n

1 + (KBBB̃
KBN

)n
+

aN
KNB.αB

− αN
αB
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∂x2
+
∂2Ñ
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We can go even further in non-dimensionalization by considering three more dimensionless parameters:
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And rewriting the equations:
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Ñ = λ.β̃N

r2B̃
n

1 + r2B̃n
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This equation shows that only ratio of diffusion of Noggin and BMP4 is important in pattern formation and
this non-dimension parameter is what matters for pattern formation. because in our simulations x and y are not
”dimensionless-able” we use Eq. 31 as our base equation.

Final equation obtained as follows:
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+ ãB − B̃ + d(

∂2B̃

∂x̃2
+
∂2B̃

∂ỹ2
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C. Implementation details

Simulations have been performed with Morpheus software. In order to perform analysis and run simulation,
initial condition, boundary condition and numerical solver for solving partial differential equation must be specified.
In the following, a detailed description of these conditions will be explained precisely.

Equations 10,11 in the main text, are executed within each cell in the population. Production rate is non-
zero within each cell and in the extracellular space only degradation and diffusion occurs. In order to consider
this effect in the Morpheus, we have assumed a variable which is called ”is Cell”; this variable distinguishes the
regions where the cell is present and not present. Furthermore, according to the model assumptions described
in the previous section, degradation rate outside and inside of the cell is different from each other. So the final
model is executed in Morpheus as follows:

d
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Ñ = is Cell ∗ (λ.β̃N
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where deg1 and deg2 are the degradation rate of BMP4 and Noggin respectively outside of the cell (their ratio
remains the same as inside the cell).

Furthermore, initial conditions should be described clearly. Different initial conditions can lead to different
behaviors in dynamical system. In our proposed model, we have considered that BMP4 has been distributed
homogeneously in the field and Noggin is not present in the field at the beginning (except negligible amount inside
the cells) which is in agreement with Warmflash14 et al. paper.

BMP4init : 5 +Normal(0, 1) (37)

Noggininit : is Cell ∗ (0.1 +Normal(0, 0.0005)) (38)

The response of the system is robust with respect to the noise level. 40% deviation in noise standard deviation
does not have any effect on the response and behavior of the system.

D. Effects of parameters

In this section, we will go through assessing the effect of each parameter in final pattern and giving some
intuition and analysis about it as well as analyzing of the dynamical system have been proposed in this paper. We
have run grid search over parameter space and observed the effect of each parameter on emerging pattern. These
simulations have consolidated our understanding of how the pattern changes with respect to each parameter and
it gives us a better insight into our proposed model. In each simulation, all the parameters have been set based
on Table. 2 (in original paper) and we are only manipulating one variable in logarithmic scale to see its influence
on the behavior.
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Figure S1: Effect of βN on pattern formation and cell fate decision. Increasing βN can increase Noggin production
and consequently reduce BMP4 production.

The first parameter we are considering is βN . The pattern changes in a very intuitive way with respect to βN .
βN is production rate of Noggin and increasing it can cause the increase of Noggin production, which consequently
reduce the amount of BMP4. We see behavior is completely consistent with our intuitive analysis.

Figure S2: how pattern changes by increasing r2. The pattern is completely independent of r2 and we see no
difference in the images.

r2 does not have huge impact on the behavior. It is obvious that the pattern is robust to r2. By inspecting
dynamical systems equations carefully, we can deduce that r2 can only influence the transient behavior of the
system and the steady-state response is completely independent of r2.

r1 has very great importance in cell fate decision. r1 indicates how Noggin and BMP4 cooperate for binding
to BMP4 promoter and whether their binding is independent or not. For example, r1 = 1 implies that binding
of BMP4 and Noggin to BMP4 promoter is completely independent, r1 = 0 implies that their interaction has no
effect on the final pattern and each value other than these two represents some sorts of dependency in binding.
The system is not acting in a very intuitive way with respect to r1 and the system is very sensitive to the variation
of this parameter. For example, in our model, r1 = 0.1 can lead to proper behavior. So, for the system has right
behavior, it must be set to a certain value and we can hypothesize that evolution has tuned this parameter.
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Figure S3: How increasing r1 can influence pattern formation. r1 indicate the level of interaction between BMP4
and Noggin for binding to BMP4 promoter and the system is very sensitive to this variable.

λ is a dimensionless parameter and represents the ratio of Noggin degradation rate to BMP4 degradation rate.
During running different simulations, we have observed that the value of λ should be less than one in order the
right pattern emerges. As we increase λ gradually, BMP4 disappears from the environment. Moreover, when the
value of λ is greater than one, we can’t see the appearance of oscillatory behavior by increasing colony diameter,
which is another evidence that reveals the value of this parameter must be less than one.

Figure S4: λ has the significant effect on behavior. If it exceeds one, it will disrupt the pattern. It depends on
the half-life of BMP4 and Noging and its value can be tuned under evolution.

Figure S5: Effect of n parameter on the final cell fate differentiation. Increasing n causes sharper decreasing in
BMP radial pattern but smoother increasing in Noggin pattern structure.
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As the order of sigmoidal function in the dynamical system equation goes up, the derivative of each element
in equation behaves in shaper manner. Based on diffusion rates and the interaction between BMP and Noggin,
this changing may affect the final pattern. We expect that this alteration has more effect on BMP due to its lower
diffusion rate and the result in S5 confirm this intuition.

Figure S6: Effect of different diffusion rate on pattern formation as well as cell fate decision.

Diffusion plays an important role in pattern formation and for the appearance of oscillatory behavior, the
diffusion rate of inhibitor (Noggin) should be greater than BMP4. In order to examine how diffusion can change
pattern formation and determining the effect of diffusion, we designed different simulations with different diffusion
coefficient. We observed that diffusion plays a central role in pattern formation and its variation can have a
dramatic effect on the pattern and consequently on the fate determination.

Figure S7: Effect of different geometric confinements on pattern formation and cell fate decision.

We were curious to see how the pattern changes with respect to geometry. Most of the in vitro experiments
have been done on circular micropattern; but, in the real situation, cells confront with situations where the
boundary is not circular. Moreover, we can observe that the pattern formation is initiated from the boundary
and gradually spread towards the center. But the situation becomes more interesting when the cells have put on
concave or perforated geometry.
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