
1

Supplementary Materials

6 Shouji Filter

6.1 Examining the Effect of Different Window Sizes on the Accuracy of the Shouji Algorithm.
In Fig. 4, we experimentally evaluate the effect of different window sizes on the false accept rate of Shouji. We observe that as we increase the window
size, the rate of dissimilar sequences that are accepted by Shouji decreases. This is because individual matches (i.e., single zeros) are usually useless and
they are not necessarily part of the common subsequences. As we increase the search window size, we are ignoring these individual matches and instead
we only look for longer streaks of consecutive zeros. We also observe that a window size of 4 columns provides the lowest false accept rate (i.e., the
highest accuracy).

Fig. 4: The effect of the window size on the rate of the falsely-accepted sequences (i.e., dissimilar sequences that are considered as similar ones by Shouji filter). We observe
that a window width of 4 columns provides the highest accuracy. We also observe that as window size increases beyond 4 columns, more similar sequences are rejected by
Shouji, which should be avoided.

6.2 The Shouji Algorithm and Its Analysis
We provide the Shouji algorithm along with analysis of its computational complexity (asymptotic run time and space complexity). Shouji divides the
problem of finding the common subsequences into at most m subproblems, as described in Algorithm 1 (line 9). Each subproblem examines each of the
2E+1 bit-vectors and finds the 4-bit subsequence that has the largest number of zeros within the sliding window (line 13 to line 23). Once found, Shouji
also compares the found subsequence with its corresponding subsequence in the Shouji bit-vector and stores the subsequence that has more zeros in the
Shouji bit-vector (line 24). Now, let c be a constant representing the run time of examining a subsequence of 4 bits long. Then, the time complexity of the
Shouji algorithm is as follows:

TShouji(m) = c.m .(2E+2) (2)
This demonstrates that the Shouji algorithm runs in linear time with respect to the sequence length and edit distance threshold. The Shouji algorithm
maintains 2E+1 diagonal bit-vectors and an additional auxiliary bit-vector (i.e., the Shouji bit-vector) for each two given sequences. The space complexity
of the Shouji algorithm is as follows:

DShouji(m) = m .(2E+2) (3)
Hence, the Shouji algorithm requires linear space with respect to the sequence length and edit distance threshold. Next, we describe the hardware
implementation details of the Shouji filter.

6.3 Hardware Implementation
We present the FPGA chip layout for our hardware accelerator in Fig. 5. As we illustrated in the main manuscript, Section 2.3, we implement the first
step of our Shouji algorithm, building neighborhood map, using shift registers and bitwise XOR operations. The second step of the Shouji algorithm is
identifying the diagonally-consecutive matches. This key step involves finding the 4-bit vector that has the largest number of zeros. For each search
window, there are 2E+1 diagonal bit-vectors and an additional Shouji bit-vector. To enable the computation to be performed in a parallel fashion, we
build 2E+2 counters. As presented in Fig. 5, each counter counts the number of zeros in a single bit-vector. The counter takes four bits as input and
generates three bits that represent the number of zeros within the window. Each counter requires three 4-input LUTs, as each LUT has a single output
signal. In total, we need 6E+6 4-input LUTs to build a single search window. All bits of the counter output are generated at the same time, as the
propagation delay through an FPGA look-up table is independent of the implemented function (Xilinx, November 17, 2014). The comparator is
responsible for selecting the 4-bit subsequence that maximizes the number of consecutive matches based on the output of each counter and the Shouji bit-
vector. Finally, the selected 4-bit subsequence is then stored in the Shouji bit-vector at the same corresponding location.

53%

17%

4% 1%

0%

15%

30%

45%

60%

1 2 3 4

Fa
lse

 A
cc

ep
t R

at
e

Window Size (columns)

2

Algorithm 1: Shouji Comments

Input: text (T), pattern (P), edit distance threshold (E).
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).

 1: m ← length(T);
 2: for i ← 1 to m do
 3: for j ← i-E to i+E do
 4: if T[i] == P[j] then
 5: N[i,j] ← 0;
 6: else N[i,j]← 1;

Step 1: Building
neighborhood map (N)

Output: 2E+1 diagonal

bit-vectors

 7: for i ← 1 to m do Shouji[i] ← 1; //initializing Shouji bit-vector to 1’s
 8: Z ← [0000]; // Z is 4-bit vector that stores the longest streak of diagonally-consecutive zeros
 9: for i ← 1 to m do // slide the search window by a single step
10: for j ← 1 to E do // iterate over the diagonals
11: // function CZ(D) counts the occurrence of zeros in its input bit-vector D
12: // Compare jth lower diagonal with jth upper diagonal
13: if CZ(N[i+j:i+3+j,i:i+3]) > CZ(N[i:i+3,i+j:i+3+j]) then
14: Z ← N[i+j:i+3+j,i:i+3];
15: // If jth lower and jth upper diagonals have the same number of
16: // zeros then selects the diagonal that starts with zeros
17: else if CZ(N[i+j:i+3+j,i:i+3]) == CZ(N[i:i+3,i+j:i+3+j]) then
18: if N[i+j,i]==0 then Z ← N[i+j:i+3+j,i:i+3];
19: else if N[i,i+j]==0 then Z ← N[i:i+3,i+j:i+3+j];
20: // Compare Z with the jth upper diagonal
21: else Z ← N[i:i+3,i+j:i+3+j];
22: // Compare Z with main diagonal and Shouji bit-vector
23: if CZ(N[i:i+3,i:i+3]) > CZ(Z) then Z ← N[i:i+3,i:i+3];
24: if CZ(Z) > CZ(Shouji[i:i+3]) then Shouji[i:i+3] ← Z;

Step 2: Identifying the

Diagonally-Consecutive
Matches

25: if CZ(Shouji) ≥ m-E then return 1;
26: else return 0;

Step 3: Filtering out
Dissimilar Sequences

Algorithm 2: CZ (count zeros) function

Function: CZ() counts the number of occurrences of zeros.
Input: bit-vector D.
Output: number of occurrences of zeros.
 1: count ← 0;
 2: for i ← 1 to length(D) do
 3: if D[i] == 0 then
 4: count ← count + 1;
 5: return count;

3

Fig. 5: FPGA chip layout for Shouji and block diagram of the search window scheme implemented in a Xilinx VC709 FPGA for a single filtering unit.

7 MAGNET Filter
First, we provide the MAGNET (Alser et al., July 2017) algorithm and describe its main filtering mechanism. Second, we analyze the computational
complexity of the MAGNET algorithm. Third, we provide details about the hardware implementation of the MAGNET algorithm.

7.1 Overview
MAGNET (Alser et al., July 2017) is another filter that uses a divide-and-conquer technique to find all the E+1 common subsequences, if any, and sum
up their length. By calculating their total length, we can estimate the total number of edits between the two given sequences. If the total length of the E+1
common subsequences is less than m-E, then there exist more common subsequences than E+1 that are associated with more edits than allowed. If so,
then MAGNET excludes the two given sequences from optimal alignment calculation. We present the algorithm of MAGNET in Algorithm 3.

Algorithm 3: MAGNET Comments

Input: text (T), pattern (P), edit distance threshold (E).
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).

 1: m ← length(T);
 2: for i ← 1 to m do
 3: for j ← i-E to i+E do
 4: if T[i] == P[j] then
 5: N[i,j] ← 0;
 6: else N[i,j]← 1;

Step 1: Building
neighborhood map (N)

Output: 2E+1 diagonal

bit-vectors

 7: for i ← 1 to m do
 8: MAGNET[i] ← 1; // Initializing MAGNET bit-vector
 9: [MAGNET, calls] ← EXEN(N, 1, m, E, MAGNET, 1);

Step 2 - Step 4

10: // Function CZ() returns number of zeros
11: if CZ(MAGNET) ≥ m-E then return 1; else return 0;

Step 5: Filtering out
Dissimilar Sequences

Finding the common subsequences involves four main steps. (1) Building the neighborhood map. Similar to Shouji, MAGNET starts with building

the 2E+1 diagonal bit-vectors of the neighborhood map for the two given sequences (Algorithm 3, lines 2-6). (2) Extraction. Each diagonal bit-vector
nominates its local longest subsequence of consecutive zeros. Among all nominated subsequences, a single subsequence is selected as a global longest

m

m

m

Text

0's
Counter

Shōji
bit-vector

m search windows for processing
sequences of length m characters

Pattern

Edit
distance
threshold

42
.5

m
m

42.5mm

 Shouji logic slices
 PCIe controller

Filtering Unit

4 4
Search

Window m

2E+1 diagonals
4 . . .

. . .

4
4

Search
Window m-1

2E+1 diagonals
4 . . .

. . .

44
2E+1

diagonals

4. . .

. . .

B
ui

ld
in

g
N

ei
gh

bo
rh

oo
d

M
ap

(2
E

+1
 d

ia
go

na
l b

it-
ve

ct
or

s)

. . .

Z1

Zm-1

Zm

4

4

4

. . .

3

3

3
. . .

0's
Counter

0's
Counter

0's
Counter se

le
ct

 th
e

ve
ct

or
 th

at

ha
s

th
e

hi
gh

es
t #

 o
f 0

's

Search Window 1

2E+1

≥ m-E?

1: similar
0: dissimilar

Step 1 Step 2 Step 3

4

subsequence based on its length (Algorithm 4, lines 2-11). MAGNET evaluates if the length of the global longest subsequence is less
than	⌈(𝑚 − 𝐸)/(𝐸 + 1)⌉, then the two sequences contain more edits than allowed, which cause the common subsequences to be shorter (i.e., each edit
results in dividing the sequence pair into more common subsequences). If so, then the two sequences are rejected (Algorithm 4, lines 12-13). Otherwise,
MAGNET stores the length of the global longest subsequence to be used towards calculating the total length of all E+1 common subsequences. The lower
bound equality occurs when all edits are equispaced and all E+1 subsequences are of the same length. (3) Encapsulation. The next step is essential to
preserve the original edit (or edits) that causes a single common sequence to be divided into smaller subsequences. MAGNET penalizes the found
subsequence by two edits (one for each side). This is achieved by excluding from the search space of all bit-vectors the indices of the found subsequence
in addition to the index of the surrounding single bit from both left and right sides (Algorithm 4, lines 14-17). (4) Divide-and-Conquer Recursion. In
order to locate the other E non-overlapping subsequences, MAGNET applies a divide-and-conquer technique where we decompose the problem of finding
the non-overlapping common subsequences into two subproblems. While the first subproblem focuses on finding the next long subsequence that is located
on the right-hand side of the previously found subsequence in the first extraction step (Algorithm 4, line 15), the second subproblem focuses on the other
side of the found subsequence (Algorithm 4, line 17). Each subproblem is solved by recursively repeating all the three steps mentioned above, but without
evaluating again the length of the longest subsequence. MAGNET applies two early termination methods that aim to reduce the execution time of the
filter. The first method is evaluating the length of the longest subsequence in the first recursion call (Algorithm 4, lines 12-13). The second method is
limiting the number of the subsequences to be found to at most E+1, regardless of their actual number for the given sequence pair (Algorithm 4, line 1).
(5) Filtering out Dissimilar Sequences. Once after the termination, if the total length of all found common subsequences is less than m-E, then the two
sequences are rejected. Otherwise, they are considered to be similar and the alignment can be measured using sophisticated alignment algorithms.

Algorithm 4: EXEN function Comments

Function: EXEN() extracts the longest subsequence of consecutive zeros and generate two
subproblems.
Input: Neighborhood map (N), start index (SI), end index (EI), E, MAGNET bit-vector, number of
recursion calls.
Output: updated MAGNET bit-vector, updated number of calls.

 1: if (SI ≤ EI and calls ≤ E+1) then // Early termination condition
 2: // Function CCZ() returns number and indices of longest
 3: // subsequence of diagonally consecutive zeros
 4: for j ← 1 to E do //Extraction
 5: [X,s1,e1] ← CCZ(N[SI+j,SI],EI); // Lower diagonal
 6: [Y,s2,e2]	← CCZ(N[SI,SI+j],EI); // Upper diagonal
 7: if X > Y then s ← s1; e ← e1;
 8: else s ← s2; e ← e2;
 9: [X,s1,e1]	← CCZ(N[SI,SI],EI);
10: if X > (e-s+1) then
11: s ← s1; e ← e1;

Step 2: Extracting the
longest subsequence of

consecutive zeros

12: if (calls=1 and (e-s+1)<⌈(𝑚 − 𝐸)/(𝐸 + 1)⌉) then
13: return [MAGNET, 0];

Early termination condition
(only in first call)

14: // Right subproblem with encapsulation
15: [MAGNET, calls] ← EXEN(N,e+2,EI, E,MAGNET, calls+1);
16: // Left subproblem with encapsulation
17: [MAGNET, calls] ← EXEN(N,SI, s-2, E, MAGNET, calls+1);

Step 3: Encapsulating the
found longest subsequence

and Step 4: Divide-and-
Conquer Recursion

18: return [MAGNET, calls];
19: else return [MAGNET, calls-1];

7.2 Analysis of the MAGNET Algorithm
We analyze the asymptotic run time and space complexity of the MAGNET algorithm. MAGNET applies a divide-and-conquer technique that divides
the problem of finding the common subsequences into two subproblems in each recursion call. In the first recursion call, the extracted common
subsequence is of length at least	𝑎 = ⌈(𝑚 − 𝐸) (𝐸 + 1)⁄ ⌉ bases. This reduces the problem of finding the common subsequences from m to at most m-a,
which is further divided into two subproblems: a left subproblem and a right subproblem. For the sake of simplicity, we assume that the size of the left
and the right subproblems decreases by a factor of b and c, respectively, as follows:

m = 𝑎 + 2 +𝑚/𝑏 +𝑚/𝑐 (4)
The addition of 2 bases is for the encapsulation bits added at each recursion call. Now, let TMAGNET(m) be the time complexity of MAGNET algorithm, for
identifying non-overlapping subsequences. If it takes O(km) time to find the global longest subsequence and divide the problem into two subproblems,
where k = 2E+1 is the number of bit-vectors, we get the following recurrence equation:

TMAGNET(m) = TMAGNET(m/b) + TMAGNET(m/c) + O(km) (5)
Given that the early termination condition of MAGNET algorithm restricts the recursion depth as follows:

Recursion tree depth = ⌈𝑙𝑜𝑔6(𝐸 + 1)⌉ − 1 (6)
Solving the recurrence in (5) using (4) and (6) by applying the recursion-tree method provides a loose upper-bound to the time complexity as follows:

TMAGNET(m) = 𝑂(𝑘𝑚)	. ∑ ;<
=
+ <

>
?
@⌈ABCD(EF<)⌉G<

@HI
≈ 𝑂(𝑓𝑘𝑚) (7)

5

where f is a fractional number satisfies the following range: 1≤f<2. This in turn demonstrates that the MAGNET algorithm runs in linear time with respect
to the sequence length and edit distance threshold and hence it is computationally inexpensive. The space complexity of the MAGNET algorithm is as
follows:

DMAGNET(m) = DMAGNET(m/b) + DMAGNET(m/c) + (km+m)
≈ 𝑂(𝑓𝑘𝑚 + 𝑓𝑚) (8)

Hence, MAGNET algorithm requires linear space with respect to the read length and edit distance threshold. Next, we describe the hardware
implementation details of MAGNET filter.

7.3 Hardware Implementation
We outline the challenges that are encountered in implementing the MAGNET filter to be used in our accelerator design. Implementing the MAGNET
algorithm on an FPGA is more challenging than implementing the Shouji algorithm due to the random location and variable length of each of the E+1
common subsequences. Verilog-2011 imposes two challenges on our architecture as it does not support variable-size partial selection and indexing of a
group of bits from a vector (McNamara, 2001). In particular, the first challenge lies in excluding the extracted common subsequence along with its
encapsulation bits from the search space of the next recursion call. The second challenge lies in dividing the problem into two subproblems, each of which
has an unknown size at design time. To address these limitations and tackle the two design challenges, we keep the problem size fixed at each recursion
call. We exclude the longest found subsequence from the search space by amending all bits of all 2E+1 bit-vectors that are located within the indices
(locations) of the encapsulation bits to ‘1’s. This ensures that we exclude the longest found subsequence and its corresponding location in all other bit-
vectors during the subsequent recursion calls. We build the MAGNET accelerator using the same FPGA board as that used for Shouji for a fair comparison.

8 Examples of Applying the Shouji and MAGNET algorithms
In this section, we provide three examples of applying the Shouji and MAGNET filtering algorithms to different sequence pairs. In Fig. 6, we set the edit
distance threshold to 4 in these examples. The diagonal vectors of the neighborhood map are horizontally presented in the same order of the diagonal
vectors for a better illustration. In the first two examples (Fig. 6(a) and Fig. 6(b)), we observe that MAGNET is highly accurate in providing the exact
location of the edits in the MAGNET bit-vector. This is due to two main reasons. First, MAGNET finds the exact length of each common subsequence
by performing multiple individual iteration for each common subsequence. Second, it manually encapsulates each found longest subsequence of
consecutive zeros by ones, which ensures to maintain the edits in the MAGNET bit-vector. On the contrary, Shouji uses overlapping search windows to
detect segments of consecutive zeros. If two segments of consecutive zeros are overlapped within a single search window, then the edit between the two
segments is sometimes eliminated by the overlapping zeros of the two segments as shown in Fig. 6(a).

Pairwise alignment can be performed as a global alignment, where two sequences of the same length are aligned end-to-end, or a local alignment,
where subsequences of the two given sequences are aligned. It can also be performed as a semi-global alignment (called glocal), where the entirety of one
sequence is aligned towards one of the ends of the other sequence. To ensure correct pre-alignment filtering and avoid rejecting a correct alignment, pre-
alignment filter needs to consider counting the number of edits in a similar way to that of optimal alignment algorithm. This means that if the optimal
alignment algorithm performs local alignment, then the pre-alignment filter should also perform local edit distance calculation. This can be achieved by
not considering the leading and trailing edits in the total count of edits between two given sequences. Fig 6(a) and Fig. 6(b) show examples of global pre-
alignment filtering. Fig 6(c) shows an example of local pre-alignment filtering, where the two given sequences have different lengths. While Shouji is
conceptually able to perform local pre-alignment and glocal pre-alignment filtering, such support is not currently implemented in our public release of
Shouji (https://github.com/CMU-SAFARI/Shouji). The current implementation of Shouji performs only global pre-alignment filtering that requires the
text and reference sequences to be of the same length.

6

(a)

(b)

(c)

Fig. 6: Examples of applying the Shouji and MAGNET filtering algorithms to three different sequence pairs, where the edit distance threshold is set to 4. We present the content
of the neighborhood map along with the Shouji and MAGNET bit-vectors. In (a) and (b), we apply Shouji and MAGNET algorithms starting from the leftmost column towards
the rightmost column (end-to-end) to perform global pre-alignment filtering. In (c), we ignore the ones that are located at the two ends of the final bit-vector to perform local pre-
alignment filtering.

9 Dataset Description
Table 5 provides the configuration used for the -e parameter of mrFAST (Alkan et al., 2009) for each of the 12 datasets. We use Edlib (Šošić and Šikić,
2017) to assess the number of similar (i.e., having edits fewer than or equal to the edit distance threshold) and dissimilar (i.e., having more edits than the
edit distance threshold) pairs for each of the 12 datasets across different user-defined edit distance thresholds. We provide these details for set 1, set 2, set
3, and set 4 in Table 6. We provide the same details for set 5, set 6, set 7, and set 8 in Table 7 and for set 9, set 10, set 11, and set 12 in Table 8.

Table 5: Benchmark illumina-like datasets (read-reference pairs). We map each read set to the human reference genome in order to generate
four datasets using different mappers’ edit distance thresholds (using the -e parameter).

Accession no. ERR240727_1 SRR826460_1 SRR826471_1

Sequence Length 100 150 250

HTS Illumina HiSeq 2000 Illumina HiSeq 2000 Illumina HiSeq 2000

Dataset Set_1 Set_2 Set_3 Set_4 Set_5 Set_6 Set_7 Set_8 Set_9 Set_10 Set_11 Set_12

mrFAST -e 2 3 5 40 4 6 10 70 8 12 15 100

Amount of Edits Low-edit High-edit Low-edit High-edit Low-edit High-edit

Read : TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
Reference : TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

Upper Diagonal-4 : ----110111111100111111110101100001010001011010011111101101100110110011010101011101111111101011000000
Upper Diagonal-3 : ---0110110101011111111111110111111111110010011110111111001000100100010011111110110111111000000110001
Upper Diagonal-2 : --001111011001011011101100010111110011
Upper Diagonal-1 : -000111110111001001100011101111111111100100111101111110010001001000100111111101101111110111111110111

Main Diagonal : 0000000000000000000001110110000101000101101001111110110110011011001101010101110111111111101111111111
Lower Diagonal-1 : 000111110111001001101011010111111111011111011111101111111011111101111011111100001011010101101111111-
Lower Diagonal-2 : 00111101100101101111011111100100010101110011100111011011111111111111010101111011010101001100111111--
Lower Diagonal-3 : 0110110101011111111010110101111111011110111111111101101101111110111110111101111111111111110011111---
Lower Diagonal-4 : 110111111100111110110001111100000101110101100111110010100111110011100100111101011011111111000111----

Shouji bit-vector : 0000000000000000000100010001000000
MAGNET bit-vector : 00000000000000000000010100010001000000

Read : CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCAGGATGCTGTTATGTGAGT
Reference : CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCGGATGCTGTTATTTGAGTAG

Upper Diagonal-4 : ----011111101111111111110000011111011001111111011101111111110111111110100110000101111110101101111011
Upper Diagonal-3 : ---1111001111101011011100110010110110011111111101111011110110101101011101001001111111111011010101110
Upper Diagonal-2 : --11100111111101101111101010110111110101101101011111011110011111110010110111011011110111111100110011
Upper Diagonal-1 : -111111011110111111110110011011101011001001111111111111111010101110110001011110011010100101001111100

Main Diagonal : 00101010110101111111011011110010100011111111011010010111
Lower Diagonal-1 : 111111011110111111110110011011101011001001111100000000000000000000000000000000001011111110110111111-
Lower Diagonal-2 : 11100111111101101111101010110111110101101101110101011010111111101101111001010001000000000000100000--
Lower Diagonal-3 : 1111001111101011011100110010110110011111111001111111111101010111011000101111001101111111011101111---
Lower Diagonal-4 : 011111101111111111110000011111011001111111110111101111001111111001011011101101111111110110101101----

Shouji bit-vector : 0001000000000000000000000000000000000100000000000010000100
MAGNET bit-vector : 00100000000000000000000000000000000010000000000010000010

Read : ACTGTTCTCCCTTTGAAATCTCAGTATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAAAAAATTACCGTTTT
Reference : TTTTACTGTTCTCCCTTTGAATACAATAGATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA

Upper Diagonal-4 : ----00000000000000000110111110010100010110100111111011011001101100110101----------------------------
Upper Diagonal-3 : ---11111011100100110001110111111111110010011110111111001000100100010011-----------------------------
Upper Diagonal-2 : --111101100101101110111001001000------------------------------
Upper Diagonal-1 : -11011010101111111111011111111111111001001111011111100100010010001001-------------------------------

Main Diagonal : 11011111110011111111110110001101000101101001111110110110011011001101--------------------------------
Lower Diagonal-1 : 1010100111101111101111110111111111011111011111101111111011111101111---------------------------------
Lower Diagonal-2 : 010011111010111101110111100110010101110011100111011011111111111111----------------------------------
Lower Diagonal-3 : 10011011001111101010100101111111011110111111111101101101111110111-----------------------------------
Lower Diagonal-4 : 0010101100111111011111111100100101110101100111110010100111110011------------------------------------

Shouji bit-vector : 00000000000000000000000100001000111111111111111111111111111111
MAGNET bit-vector : 00110000000000000000011010001000111111111111111111111111111111

MAGNET finds 4 editsShouji finds 2 edits

7

Table 6: Details of our first four datasets (set 1, set 2, set 3, and set 4). We use Edlib to benchmark the accepted (i.e., aligned) pairs and the
rejected (i.e., unaligned) pairs for edit distance thresholds of E=0 up to E=10 edits.

Dataset Set_1 Set_2 Set_3 Set_4
E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected
0 381,901 29,618,099 124,531 29,875,469 11,989 29,988,011 11 29,999,989
1 1,345,842 28,654,158 441,927 29,558,073 44,565 29,955,435 18 29,999,982
2 3,266,455 26,733,545 1,073,808 28,926,192 108,979 29,891,021 24 29,999,976
3 5,595,596 24,404,404 2,053,181 27,946,819 206,903 29,793,097 27 29,999,973
4 7,825,272 22,174,728 3,235,057 26,764,943 334,712 29,665,288 29 29,999,971
5 9,821,308 20,178,692 4,481,341 25,518,659 490,670 29,509,330 34 29,999,966
6 11,650,490 18,349,510 5,756,432 24,243,568 675,357 29,324,643 83 29,999,917
7 13,407,801 16,592,199 7,091,373 22,908,627 891,447 29,108,553 177 29,999,823
8 15,152,501 14,847,499 8,531,811 21,468,189 1,151,447 28,848,553 333 29,999,667
9 16,894,680 13,105,320 10,102,726 19,897,274 1,469,996 28,530,004 711 29,999,289
10 18,610,897 11,389,103 11,807,488 18,192,512 1,868,827 28,131,173 1,627 29,998,373

Table 7: Details of our second four datasets (set_5, set_6, set_7, and set_8). We report the accepted and the rejected pairs for edit distance
thresholds of E=0 up to E=15 edits.

Dataset Set_5 Set_6 Set_7 Set_8
E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected
0 1,440,497 28,559,503 248,920 29,751,080 444 29,999,556 201 29,999,799
1 1,868,909 28,131,091 324,056 29,675,944 695 29,999,305 327 29,999,673
3 2,734,841 27,265,159 481,724 29,518,276 927 29,999,073 444 29,999,556
4 3,457,975 26,542,025 612,747 29,387,253 994 29,999,006 475 29,999,525
6 5,320,713 24,679,287 991,606 29,008,394 1,097 29,998,903 529 29,999,471
7 6,261,628 23,738,372 1,226,695 28,773,305 1,136 29,998,864 546 29,999,454
9 7,916,882 22,083,118 1,740,067 28,259,933 1,221 29,998,779 587 29,999,413
10 8,658,021 21,341,979 2,009,835 27,990,165 1,274 29,998,726 612 29,999,388
12 10,131,849 19,868,151 2,591,299 27,408,701 1,701 29,998,299 710 29,999,290
13 10,917,472 19,082,528 2,923,699 27,076,301 2,146 29,997,854 796 29,999,204
15 12,646,165 17,353,835 3,730,089 26,269,911 3,921 29,996,079 1,153 29,998,847

Table 8: Details of our third four datasets (set_9, set_10, set_11, and set_12). We report the accepted and the rejected pairs for edit distance
thresholds of E=0 up to E=25 edits.

Dataset Set_9 Set_10 Set_11 Set_12
E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected
0 707,517 29,292,483 43,565 29,956,435 4,389 29,995,611 49 29,999,951
2 1,462,242 28,537,758 88,141 29,911,859 8,970 29,991,030 163 29,999,837
5 1,973,835 28,026,165 119,100 29,880,900 12,420 29,987,580 301 29,999,699
7 2,361,418 27,638,582 145,290 29,854,710 15,405 29,984,595 375 29,999,625
10 3,183,271 26,816,729 205,536 29,794,464 22,014 29,977,986 472 29,999,528
12 3,862,776 26,137,224 257,360 29,742,640 27,817 29,972,183 520 29,999,480
15 4,915,346 25,084,654 346,809 29,653,191 37,710 29,962,290 575 29,999,425
17 5,550,869 24,449,131 409,978 29,590,022 44,225 29,955,775 623 29,999,377
20 6,404,832 23,595,168 507,177 29,492,823 54,650 29,945,350 718 29,999,282
22 6,959,616 23,040,384 572,769 29,427,231 62,255 29,937,745 842 29,999,158
25 7,857,750 22,142,250 673,254 29,326,746 74,761 29,925,239 1,133 29,998,867

8

10 Evaluating the Number of Falsely-Accepted Sequence Pairs and Falsely-Rejected Sequence Pairs
We evaluate the number of falsely-accepted pairs and falsely-rejected pairs for Shouji, MAGNET, SHD (Xin et al., 2015), and GateKeeper (Alser et al.,
2017). We list the number of falsely-accepted and falsely-rejected sequences in Table 9, Table 10, and Table 11 for read lengths of 100 bp, 150 bp, and
250 bp, respectively.

The false reject rate is the ratio of the number of similar sequences that are rejected (falsely-rejected pairs) by the filter and the number of similar
sequences that are accepted by the optimal sequence alignment algorithm. The false reject rate should always be equal to 0%. Using our 12 low-edit and
high-edit datasets for three different sequence lengths, we observe that Shouji, SHD, and GateKeeper do not filter out correct sequence pairs; hence, they
provide a 0% false reject rate. The reason is the way we find the common subsequences. We always look for the subsequences that have the largest
number of zeros, such that we maximize the number of matches and minimize the number of edits that cause the division of one long common sequence
into shorter subsequences. However, this is not the case for MAGNET. We observe that MAGNET provides a very low false reject rate of less than
0.00045% for an edit distance threshold of at least 4% of the sequence length. This is due in large part to the greedy choice of always selecting the longest
common subsequence regardless of its contribution to the total number of edits. On the contrary, Shouji always examines whether or not the selected 4-
bit segment that has the largest number of zeros decreases the number of edits in the Shouji bit-vector before considering the 4-bit segment to be part of
the common subsequences. In Fig. 7, we show an example of where MAGNET falsely considers two given sequences as dissimilar ones, while they differ
by less than the edit distance threshold. This example shows that MAGNET’s greedy approach of finding the common subsequences fails in finding the
two common subsequences that are highlighted in blue. Instead, MAGNET finds another four shorter subsequences that result in increasing the number
of mismatches in the MAGNET bit-vector.

Fig. 7: An example of a falsely-rejected sequence pair using the MAGNET algorithm for an edit distance threshold of 6. The random zeros (highlighted in red) confuse the
MAGNET filter, causing it to select shorter segments of random zeros instead of a longer common subsequences (highlighted in blue).

Pattern : CAAACTGGGTGGAGCCCACCACAGCTCAAAGGAAGCCTGCCTTCCTCTGTAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAA
Text : CAAACTGGGTGGAGCCCACAACAGCTCAAGGAGGCCTGCCTGCCTCTATAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAAC

Upper Diagonal-6 : ------1111111011111110110111001111111011110110110111001101111111111010001100011101110100111011001101
Upper Diagonal-5 : -----11111101011101110010100111111111111111110011111111111000111111110001111010010101000101011111010
Upper Diagonal-4 : ----011110001111110111111111111011111110111011011111101110110111111110000011011101110001101011011111
Upper Diagonal-3 : ---1111111001011110100110111111010111000000001110110111111011111110110011111100010000010101001111101
Upper Diagonal-2 : --10111101011011010010011101111000111101110100111101111010010111100110111111111101100100101110001011
Upper Diagonal-1 : -100111001101110011111111111011101111111111110010111110110110011000111101100101010101000101011111111

Main Diagonal : 0000000000000000000100000000010111101110111011111110111011011110000111001111111100110000111111111101
Lower Diagonal-1 : 100111001101110011001111111000001000000001000001000-
Lower Diagonal-2 : 10111101011011010111011101101010010111010101111111011101101111000011100111111110011000011111111110--
Lower Diagonal-3 : 1111111001011110000010111111111111111111111001001111011011001100011110110010101010100010101111111---
Lower Diagonal-4 : 011110001111110011111111111101011110111011011111111101001011110011011111111110110010010111000101----
Lower Diagonal-5 : 11111101011101010011100111100011100001000111011111111101111111011001111110001000001010100111110-----
Lower Diagonal-4 : 1111111011111110110111011110111101010101111111110111011011111111000001101110111000110101101111------

MAGNET bit-vector : 0000000000000000000100000000011000101000000001010001

142 3 5 6 7

MAGNET should select this identical segment instead of the one highlighted in red

9

Table 9: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji,
MAGNET, GateKeeper, and SHD using four datasets, set_1, set_2, set_3, and set_4, with a read length of 100 bp.

Accepted Rejected FA FR FA FR FA FR FA FR
0 381,901 29,618,099 10 0 0 0 963,941 0 0 0
1 1,345,842 28,654,158 783,185 0 783,185 0 800,099 0 333,320 0
2 3,266,455 26,733,545 2,704,128 0 2,704,128 0 1,876,518 0 1,283,004 0
3 5,595,596 24,404,404 5,237,529 0 5,237,529 0 2,428,301 0 2,674,876 0
4 7,825,272 22,174,728 8,231,507 0 8,231,507 0 2,662,902 1 4,399,886 0
5 9,821,308 20,178,692 11,195,124 0 11,195,124 0 2,916,838 0 6,452,280 0
6 11,650,490 18,349,510 13,781,651 0 13,781,651 0 3,406,303 4 9,373,309 0
7 13,407,801 16,592,199 14,283,519 0 14,283,519 0 4,026,433 19 11,113,616 0
8 15,152,501 14,847,499 13,814,295 0 13,814,295 0 4,745,672 27 11,990,529 0
9 16,894,680 13,105,320 13,105,305 0 13,105,305 0 5,319,627 41 11,693,396 0

10 18,610,897 11,389,103 11,389,103 0 11,389,103 0 5,673,172 31 10,664,722 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 124,531 29,875,469 2 0 0 0 317,396 0 0 0
1 441,927 29,558,073 276,271 0 276,271 0 265,663 0 114,225 0
2 1,073,808 28,926,192 1,273,787 0 1,273,787 0 779,683 0 524,886 0
3 2,053,181 27,946,819 3,370,661 0 3,370,661 0 1,257,472 0 1,494,883 0
4 3,235,057 26,764,943 6,695,487 0 6,695,487 0 1,621,885 1 3,085,801 0
5 4,481,341 25,518,659 10,798,431 0 10,798,431 0 1,995,105 0 5,410,196 0
6 5,756,432 24,243,568 15,305,752 0 15,305,752 0 2,574,171 2 9,218,900 0
7 7,091,373 22,908,627 17,347,813 0 17,347,813 0 3,391,117 5 12,401,268 0
8 8,531,811 21,468,189 18,015,876 0 18,015,876 0 4,485,756 19 14,865,877 0
9 10,102,726 19,897,274 19,897,204 0 19,897,204 0 5,639,763 38 15,670,345 0

10 11,807,488 18,192,512 18,192,512 0 18,192,512 0 6,691,920 52 15,222,777 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 11,989 29,988,011 1 0 0 0 32,576 0 0 0
1 44,565 29,955,435 30,065 0 30,065 0 27,639 0 13,060 0
2 108,979 29,891,021 153,613 0 153,613 0 77,792 0 61,519 0
3 206,903 29,793,097 466,411 0 466,411 0 133,654 0 200,269 0
4 334,712 29,665,288 1,254,259 0 1,254,259 0 193,569 0 521,359 0
5 490,670 29,509,330 2,767,674 0 2,767,674 0 268,750 0 1,206,373 0
6 675,357 29,324,643 6,227,154 0 6,227,154 0 385,154 0 2,983,331 0
7 891,447 29,108,553 9,695,580 0 9,695,580 0 585,853 0 5,431,357 0
8 1,151,447 28,848,553 12,921,874 0 12,921,874 0 931,084 1 8,532,786 0
9 1,469,996 28,530,004 28,529,540 0 28,529,540 0 1,466,018 9 11,228,839 0

10 1,868,827 28,131,173 28,131,173 0 28,131,173 0 2,251,403 6 13,630,704 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 11 29,999,989 0 0 0 0 7 0 0 0
1 18 29,999,982 14 0 14 0 5 0 2 0
2 24 29,999,976 155 0 155 0 2 0 15 0
3 27 29,999,973 1,196 0 1,196 0 4 0 216 0
4 29 29,999,971 7,436 0 7,436 0 13 0 1,986 0
5 34 29,999,966 32,792 0 32,792 0 82 0 10,551 0
6 83 29,999,917 155,134 0 155,134 0 298 0 57,258 0
7 177 29,999,823 417,444 0 417,444 0 1,030 0 214,005 0
8 333 29,999,667 1,031,480 0 1,031,480 0 3,129 0 675,029 0
9 711 29,999,289 29,997,022 0 29,997,022 0 8,234 0 1,742,476 0

10 1,627 29,998,373 29,998,373 0 29,998,373 0 19,013 0 3,902,535 0

ShoujiEdlib
Read Aligner Pre-alignment Filter

Se
t_

4
Se

t_
3

Se
t_

2
Se

t_
1

E SHD GateKeeper MAGNET

10

Table 10: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji,
MAGNET, GateKeeper, and SHD using four datasets, set_5, set_6, set_7, and set_8, with a read length of 150 bp.

Accepted Rejected FA FR FA FR FA FR FA FR
0 1,440,497 28,559,503 0 0 0 0 428,412 0 0 0
1 1,868,909 28,131,091 173,573 0 173,573 0 156,891 0 113,519 0
3 2,734,841 27,265,159 2,080,279 0 2,080,279 0 725,873 0 1,539,365 0
4 3,457,975 26,542,025 4,023,762 0 4,023,762 0 1,064,344 0 3,042,831 0
6 5,320,713 24,679,287 9,258,602 0 9,258,602 0 1,430,272 0 6,025,592 0
7 6,261,628 23,738,372 12,481,853 0 12,481,853 0 1,532,024 2 8,219,336 0
9 7,916,882 22,083,118 22,076,837 0 22,076,837 0 1,874,734 20 14,568,337 0

10 8,658,021 21,341,979 21,341,979 0 21,341,979 0 2,194,275 10 16,920,389 0
12 10,131,849 19,868,151 19,868,151 0 19,868,151 0 3,294,672 42 18,270,597 0
13 10,917,472 19,082,528 19,082,528 0 19,082,528 0 4,066,617 46 18,095,207 0
15 12,646,165 17,353,835 17,353,835 0 17,353,835 0 5,810,797 62 16,993,568 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 248,920 29,751,080 0 0 0 0 75,136 0 0 0
1 324,056 29,675,944 31,406 0 31,406 0 28,456 0 20,294 0
3 481,724 29,518,276 440,577 0 440,577 0 131,460 0 309,015 0
4 612,747 29,387,253 1,023,901 0 1,023,901 0 199,248 0 718,847 0
6 991,606 29,008,394 4,165,422 0 4,165,422 0 334,729 0 2,222,934 0
7 1,226,695 28,773,305 7,137,889 0 7,137,889 0 405,052 0 3,762,706 0
9 1,740,067 28,259,933 28,215,257 0 28,215,257 0 600,124 0 10,299,935 0

10 2,009,835 27,990,165 27,990,165 0 27,990,165 0 753,866 2 13,826,393 0
12 2,591,299 27,408,701 27,408,701 0 27,408,701 0 1,336,246 10 17,542,652 0
13 2,923,699 27,076,301 27,076,301 0 27,076,301 0 1,835,774 19 18,371,563 0
15 3,730,089 26,269,911 26,269,911 0 26,269,911 0 3,354,276 33 19,528,254 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 444 29,999,556 0 0 0 0 251 0 0 0
1 695 29,999,305 104 0 104 0 77 0 94 0
3 927 29,999,073 191 0 191 0 68 0 180 0
4 994 29,999,006 643 0 643 0 53 0 421 0
6 1,097 29,998,903 47,924 0 47,924 0 57 0 19,097 0
7 1,136 29,998,864 175,481 0 175,481 0 74 0 70,540 0
9 1,221 29,998,779 29,595,345 0 29,595,345 0 461 0 857,547 0

10 1,274 29,998,726 29,998,726 0 29,998,726 0 1,017 0 1,829,338 0
12 1,701 29,998,299 29,998,299 0 29,998,299 0 4,218 0 4,893,299 0
13 2,146 29,997,854 29,997,854 0 29,997,854 0 8,620 0 6,955,205 0
15 3,921 29,996,079 29,996,079 0 29,996,079 0 31,783 0 12,854,488 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 201 29,999,799 0 0 0 0 126 0 0 0
1 327 29,999,673 58 0 58 0 42 0 43 0
3 444 29,999,556 90 0 90 0 35 0 83 0
4 475 29,999,525 267 0 267 0 28 0 137 0
6 529 29,999,471 18,110 0 18,110 0 25 0 6,259 0
7 546 29,999,454 79,418 0 79,418 0 27 0 27,092 0
9 587 29,999,413 29,698,666 0 29,698,666 0 108 0 404,742 0

10 612 29,999,388 29,999,388 0 29,999,388 0 231 0 935,486 0
12 710 29,999,290 29,999,290 0 29,999,290 0 965 0 2,514,950 0
13 796 29,999,204 29,999,204 0 29,999,204 0 2,018 0 3,693,298 0
15 1,153 29,998,847 29,998,847 0 29,998,847 0 8,448 0 8,034,737 0

Pre-alignment Filter
Edlib SHD GateKeeper MAGNET Shouji

Se
t_

8
Se

t_
7

Se
t_

6

E
 Read Aligner

Se
t_

5

11

Table 11: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji,
MAGNET, GateKeeper, and SHD using four datasets, set_9, set_10, set_11, and set_12, with a read length of 250 bp.

Accepted Rejected FA FR FA FR FA FR FA FR
0 707,517 29,292,483 0 0 0 0 479,104 0 0 0
2 1,462,242 28,537,758 238,368 0 238,368 0 143,066 0 174,366 0
5 1,973,835 28,026,165 1,546,126 0 1,546,126 0 226,864 0 1,071,218 0
7 2,361,418 27,638,582 3,933,916 0 3,933,916 0 347,819 1 2,775,419 0

10 3,183,271 26,816,729 26,816,729 0 26,816,729 0 624,927 1 6,669,084 0
12 3,862,776 26,137,224 26,137,224 0 26,137,224 0 825,468 9 11,147,373 0
15 4,915,346 25,084,654 25,084,654 0 25,084,654 0 1,066,633 14 18,406,823 0
17 5,550,869 24,449,131 24,449,131 0 24,449,131 0 1,235,999 23 20,971,826 0
20 6,404,832 23,595,168 23,595,168 0 23,595,168 0 1,695,351 35 22,223,170 0
22 6,959,616 23,040,384 23,040,384 0 23,040,384 0 2,241,984 42 22,271,215 0
25 7,857,750 22,142,250 22,142,250 0 22,142,250 0 3,514,515 54 21,849,454 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 43,565 29,956,435 0 0 0 0 28,540 0 0 0
2 88,141 29,911,859 13,092 0 13,092 0 8,367 0 11,238 0
5 119,100 29,880,900 113,106 0 113,106 0 14,685 0 77,095 0
7 145,290 29,854,710 364,611 0 364,611 0 24,919 0 227,073 0

10 205,536 29,794,464 29,794,464 0 29,794,464 0 45,768 0 782,844 0
12 257,360 29,742,640 29,742,640 0 29,742,640 0 63,557 2 2,195,021 0
15 346,809 29,653,191 29,653,191 0 29,653,191 0 92,443 1 7,573,911 0
17 409,978 29,590,022 29,590,022 0 29,590,022 0 116,740 1 11,603,069 0
20 507,177 29,492,823 29,492,823 0 29,492,823 0 165,502 2 16,075,487 0
22 572,769 29,427,231 29,427,231 0 29,427,231 0 217,274 6 19,167,498 0
25 673,254 29,326,746 29,326,746 0 29,326,746 0 376,323 7 24,778,497 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 4,389 29,995,611 0 0 0 0 2,933 0 0 0
2 8,970 29,991,030 1,405 0 1,405 0 890 0 1,173 0
5 12,420 29,987,580 12,185 0 12,185 0 1,704 0 8,489 0
7 15,405 29,984,595 41,555 0 41,555 0 2,644 0 24,946 0

10 22,014 29,977,986 29,977,986 0 29,977,986 0 4,759 0 145,053 0
12 27,817 29,972,183 29,972,183 0 29,972,183 0 6,729 1 833,703 0
15 37,710 29,962,290 29,962,290 0 29,962,290 0 9,498 0 5,088,387 0
17 44,225 29,955,775 29,955,775 0 29,955,775 0 12,134 0 9,832,285 0
20 54,650 29,945,350 29,945,350 0 29,945,350 0 18,366 0 16,815,067 0
22 62,255 29,937,745 29,937,745 0 29,937,745 0 25,411 2 20,798,178 0
25 74,761 29,925,239 29,925,239 0 29,925,239 0 44,377 1 26,094,659 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 49 29,999,951 0 0 0 0 53 0 0 0
2 163 29,999,837 71 0 71 0 44 0 55 0
5 301 29,999,699 249 0 249 0 49 0 161 0
7 375 29,999,625 698 0 698 0 48 0 212 0

10 472 29,999,528 29,999,528 0 29,999,528 0 42 0 5,627 0
12 520 29,999,480 29,999,480 0 29,999,480 0 45 0 64,225 0
15 575 29,999,425 29,999,425 0 29,999,425 0 82 0 775,314 0
17 623 29,999,377 29,999,377 0 29,999,377 0 175 0 2,052,498 0
20 718 29,999,282 29,999,282 0 29,999,282 0 417 0 5,679,869 0
22 842 29,999,158 29,999,158 0 29,999,158 0 593 0 10,277,297 0
25 1,133 29,998,867 29,998,867 0 29,998,867 0 1,174 0 19,676,652 0

SHD GateKeeper MAGNET ShoujiE
 Read Aligner Pre-alignment Filter

Edlib

Se
t_

12
Se

t_
11

Se
t_

10
Se

t_
9

12

11 Evaluating the Number of Falsely-Accepted and Falsely-Rejected Pairs Using Single End and
Paired End Reads

We assess the accuracy of Shouji using both single end and paired end reads. We first map 3' reads from ERR240727.fastq (i.e., reads from
ERR240727_2.fastq) to the human reference genome (GRCh37) using mrFAST (Alkan et al., 2009) with an edit distance threshold of 2. We then use the
first 30 million read-reference pairs that are produced by mrFAST before performing alignment to examine the filtering accuracy of Shouji. In Table 12,
we show the number of falsely-accepted and falsely-rejected pairs of Shouji using these 30 million pairs over different edit distance thresholds. Generating
the read-reference pairs in this way allows us to examine the filtering accuracy of Shouji using both aligned (i.e., pairs that have edits no more than the
allowed edit distance threshold) and unaligned (i.e., pairs that have edits more than the allowed edit distance threshold) pairs. We use the same method to
generate set_1 from ERR240727_1.fastq, as we describe in Section 3.1 in the main manuscript. We observe that the accuracy of Shouji using 3' reads
from ERR240727.fastq remains almost the same as that of Shouji when we use 5' reads from ERR240727.fastq (which we show in Table 9 when we use
set_1). Next, we map both 5' reads and 3' reads from ERR240727.fastq to the human reference genome using the mrFAST mapper in paired end mode.
We then use the first 30 million read-reference pairs that are produced by mrFAST before performing alignment to examine the filtering accuracy of
Shouji. In Table 13, we show the number of falsely-accepted and falsely-rejected pairs of Shouji using these 30 million pairs. We observe the results are
similar when using paired end reads as when using single end reads. Based on Table 12 and Table 13, we conclude that the evaluation of our pre-alignment
filter does not depend on the paired end sequencing or paired end reads. Similarly with any dynamic programming sequence alignment algorithm, Shouji
always examines a single reference segment with a single read individually and independently from the way this pair is generated. The read mapper is
responsible for generating the read-reference pairs that must be verified using a dynamic programming sequence alignment algorithm. Shouji examines
these pairs (before using the computationally-expensive sequence alignment algorithms) regardless of the algorithm (e.g., single end read mapping or
paired end read mapping) used to generate these pairs.

Table 12: Number of falsely-accepted and falsely-rejected sequence pairs of Shouji using single end reads from ERR240727_2.fastq mapped to
the human reference genome. We use Edlib (Šošić and Šikić, 2017) to generate the ground truth edit distance value for each sequence pair.

Table 13: Number of falsely-accepted and falsely-rejected sequence pairs of Shouji using paired end reads from ERR240727.fastq mapped to
the human reference genome. We use Edlib (Šošić and Šikić, 2017) to generate the ground truth edit distance value for each sequence pair.

Aligned Unaligned Aligned Unaligned Falsely-Accepted Falsely-Rejected
0 206,252 29,793,748 206,252 29,793,748 0 0
1 1,359,165 28,640,835 1,680,722 28,319,278 321,557 0
2 3,308,445 26,691,555 4,562,146 25,437,854 1,253,701 0
3 5,673,028 24,326,972 8,290,885 21,709,115 2,617,857 0
4 7,929,996 22,070,004 12,171,061 17,828,939 4,241,065 0
5 9,920,919 20,079,081 16,051,171 13,948,829 6,130,252 0
6 11,710,868 18,289,132 20,532,091 9,467,909 8,821,223 0
7 13,409,936 16,590,064 23,845,857 6,154,143 10,435,921 0
8 15,078,030 14,921,970 26,405,117 3,594,883 11,327,087 0
9 16,727,424 13,272,576 27,901,872 2,098,128 11,174,448 0
10 18,339,408 11,660,592 28,680,484 1,319,516 10,341,076 0

E
Edlib baseline Shouji

Aligned Unaligned Aligned Unaligned Falsely-Accepted Falsely-Rejected
0 0 30,000,000 0 30,000,000 0 0
1 373,921 29,626,079 453,808 29,546,192 79,887 0
2 1,318,319 28,681,681 1,947,127 28,052,873 628,808 0
3 3,207,952 26,792,048 5,224,261 24,775,739 2,016,309 0
4 5,500,950 24,499,050 9,227,434 20,772,566 3,726,484 0
5 7,709,237 22,290,763 13,305,866 16,694,134 5,596,629 0
6 9,698,512 20,301,488 18,208,145 11,791,855 8,509,633 0
7 11,529,693 18,470,307 22,281,600 7,718,400 10,751,907 0
8 13,293,029 16,706,971 25,736,052 4,263,948 12,443,023 0
9 15,041,936 14,958,064 27,833,759 2,166,241 12,791,823 0
10 16,782,466 13,217,534 28,890,050 1,109,950 12,107,584 0

E
Edlib baseline Shouji

13

12 FPGA Acceleration of Shouji and MAGNET
We analyze the benefits of accelerating the CPU implementation of our pre-alignment filters Shouji and MAGNET using FPGA hardware. As we show
in Table 14, our hardware accelerators are two to three orders of magnitude faster than the equivalent CPU implementations of Shouji and MAGNET.

Table 14: Execution time (in seconds) of the CPU implementations of Shouji and MAGNET filters and that of their hardware-accelerated
versions (using a single filtering unit).

E Shouji-CPU Shouji-FPGA Speedup MAGNET-CPU MAGNET-FPGA Speedup
Sequence Length = 100

2 474.27 2.89 164.11x 632.02 2.89 218.69x
5 1,305.15 2.89 451.61x 1,641.57 2.89 568.02x

Sequence Length = 250
2 1,689.09 2.89* 584.46x 5,567.62 2.89* 1,926.51x
5 6,096.61 2.89* 2,109.55x 14,328.28 2.89* 4,957.88x

 * Estimated based on the resource utilization and data throughput

13 Execution time breakdown of Read Mapping combined with Shouji
We provide the total runtime breakdown of mrFAST (v. 2.6.1) (Alkan et al., 2009) and BWA-MEM (Li, 2013) with Shouji as a pre-alignment filter. We
break down the execution time of read mapping with Shouji into 1) read-reference pair generation time, 2) Shouji filtering time, 3) Shouji pre-processing
time, 4) Shouji transfer time, and 5) dynamic programming alignment time. The sum of these five runtime values provides the total execution time of
read mapping with Shouji as a pre-alignment filter (8th column of Table 15 entitled total execution time). We provide the total execution time breakdown
of mrFAST (v. 2.6.1 that includes FastHASH (Xin et al., 2013)) (Alkan et al., 2009) and BWA-MEM (Li, 2013) with Shouji compared to the baseline
(i.e., the last column of Table 15 represents the runtime of mrFAST and BWA-MEM without Shouji) in Table 15. We map all reads from ERR240727_1
(100 bp) to GRCh37 with an edit distance threshold of 2% and 5%. Based on Table 15, we make the following key observation: the dynamic programming
alignment time drops by a factor of 4-24 (the 7th column of Table 15 compared with the 10th column of Table 15) after integrating Shouji with read
mapping as a pre-alignment step.

We conclude that the ability of Shouji to accelerate read mapping scales very well over a wide range of edit distance threshold values.

Table 15: Total execution time breakdown (in seconds) of mrFAST and BWA-MEM with and without Shouji, for an edit distance threshold of
2% and 5%. The green shaded columns represent the processing time spent by each step of the original read mapper (without Shouji). The
orange and blue shaded columns represent the processing time spent by each step of the accelerated read mapper (with the addition of Shouji as
a pre-alignment step). The orange shaded columns represent the processing time spent by Shouji on the FPGA board and the host CPU.

pre-
processing

Transfer
time

2 175.02 0.0616 3.2239 0.2919 16.6929 195.2902 175.02 67.08 242.1

5 198.02 1.3176 53.9911 6.2457 242.8571 502.4315 198.02 2333.99 2532.01

2 622.1 0.0010 0.0516 0.0050 4.8219 626.9794 622.1 46.02 668.12

2* 623.03 0.0124 0.6477 0.0622 2.0729 625.8252 623.03 47.08 670.11

5 649.02 0.0010 0.0521 0.0050 4.7089 653.7870 649.02 46.12 695.14

5* 650.01 0.0129 0.6740 0.0647 1.9190 652.6806 650.01 46.08 696.09

m
rF

AS
T

BW
A-

M
EM

Read mapping time without Shouji (baseline)

Read-ref pair
generation

time

Alignment
time

Total
execution

time

E

Read mapping time with Shouji

Read-ref pair
generation time

Shouji (FPGA)
filtering time

Shouji (CPU)
Alignment

time

Total
execution

time

14

14 Edlib, Parasail, SHD, mrFAST, and BWA-MEM Configurations
In Table 16, we list the software packages that we cover in our performance evaluation, including their version numbers and function calls used.

Table 16: Read aligners and pre-alignment filters used in our performance evaluations.

Edlib: November 5 2017
Banded Levenshtein Distance:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));
edlibFreeAlignResult(resultEdlib);
if (resultEdlib.editDistance!= -1)
 Accepted =1;
else Accepted =0;

Banded Levenshtein Distance with backtracking:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));
char* cigar = edlibAlignmentToCigar(resultEdlib.alignment, resultEdlib.alignmentLength, EDLIB_CIGAR_STANDARD);
free(cigar);
edlibFreeAlignResult(resultEdlib);

Parasail: January 7 2018
function = parasail_lookup_function("nw_banded");
result = function(RefSeq, ReadLength, ReadSeq, ReadLength,10, 1, ErrorThreshold,¶sail_blosum62);
if(parasail_result_is_trace(result)==1){
 parasail_traceback_generic(RefSeq, ReadLength, ReadSeq, ReadLength, "Query:", "Target:", ¶sail_blosum62, result, '|', ':', '.', 50, 14, 0);
 if (result->score != 0) {
 cigar2=parasail_result_get_cigar(result, RefSeq, ReadLength, ReadSeq, ReadLength, ¶sail_blosum62);
 parasail_cigar_free(cigar2);
 }
}

SHD: November 7 2017, compiled using g++-4.9
for (k=1;k<=1+ (ReadLength/128);k++)
 totalEdits= totalEdits + (bit_vec_filter_sse1(read_t, ref_t, length, ErrorThreshold));

mrFAST: November 29 2017
./mrfast-2.6.1.0/mrfast --search human_g1k_v37.fasta --seq ../ERR240727_1_100bp.fastq -e 2

The human reference genome can be downloaded from:
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz

Extracting read-reference pairs:

1- Add the following to line 1786 of https://github.com/BilkentCompGen/mrfast/blob/master/MrFAST.c
2- Extract reference segment:

for (n = 0; n < 100; n++) printf(“%d”, _msf_refGen[n + genLoc + _msf_refGenOffset - 1 - leftSeqLength]);
3- Extract read sequence:

printf("\t%s\n", _tmpSeq);

BWA-MEM: November 25 2018
./bwa mem -w 3 ../human_g1k_v37.fasta ../../../Desktop/Filters_29_11_2016/ERR240727_1_100bp.fastq

Report all secondary alignments:
./bwa mem -a -w 3 ../human_g1k_v37.fasta ../../../Desktop/Filters_29_11_2016/ERR240727_1_100bp.fastq

Extracting read-reference pairs:

1- Add the following code between line 166 and line 167 of https://github.com/lh3/bwa/blob/master/bwa.c
2- Extract reference segment:

for (i = 0; i < rlen; ++i) putchar("ACGTN"[(int)rseq[i]]); putchar('\t');
3- Extract read sequence:

for (i = 0; i < l_query; ++i) putchar("ACGTN"[(int)query[i]]); putchar('\n');

15

REFERENCES
Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman, J. O., Baker, C., Malig, M. and Mutlu, O. (2009)

Personalized copy number and segmental duplication maps using next-generation sequencing, Nature genetics, 41, 1061-1067.
Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O. and Alkan, C. (2017) GateKeeper: a new hardware architecture for accelerating pre-alignment in

DNA short read mapping, Bioinformatics, 33, 3355-3363.
Alser, M., Mutlu, O. and Alkan, C. (July 2017) Magnet: Understanding and improving the accuracy of genome pre-alignment filtering, Transactions on

Internet Research 13.
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv preprint arXiv:1303.3997.
McNamara, M. (2001) IEEE Standard Verilog Hardware Description Language. The Institute of Electrical and Electronics Engineers, Inc. IEEE Std,

1364-2001.
Šošić, M. and Šikić, M. (2017) Edlib: a C/C++ library for fast, exact sequence alignment using edit distance, Bioinformatics, 33, 1394-1395.
Xilinx (November 17, 2014) 7 Series FPGAs Configurable Logic Block User Guide. Xilinx.
Xin, H., Greth, J., Emmons, J., Pekhimenko, G., Kingsford, C., Alkan, C. and Mutlu, O. (2015) Shifted Hamming Distance: A Fast and Accurate SIMD-

Friendly Filter to Accelerate Alignment Verification in Read Mapping, Bioinformatics, 31, 1553-1560.
Xin, H., Lee, D., Hormozdiari, F., Yedkar, S., Mutlu, O. and Alkan, C. (2013) Accelerating read mapping with FastHASH, BMC genomics, 14, S13.

