Supplementary Materials

6 Shouji Filter

6.1 Examining the Effect of Different Window Sizes on the Accuracy of the Shouji Algorithm.

In Fig. 4, we experimentally evaluate the effect of different window sizes on the false accept rate of Shouji. We observe that as we increase the window size, the rate of dissimilar sequences that are accepted by Shouji decreases. This is because individual matches (i.e., single zeros) are usually useless and they are not necessarily part of the common subsequences. As we increase the search window size, we are ignoring these individual matches and instead we only look for longer streaks of consecutive zeros. We also observe that a window size of 4 columns provides the lowest false accept rate (i.e., the highest accuracy).

Fig. 4: The effect of the window size on the rate of the falsely-accepted sequences (i.e., dissimilar sequences that are considered as similar ones by Shouji filter). We observe that a window width of 4 columns provides the highest accuracy. We also observe that as window size increases beyond 4 columns, more similar sequences are rejected by Shouji, which should be avoided.

6.2 The Shouji Algorithm and Its Analysis

We provide the Shouji algorithm along with analysis of its computational complexity (asymptotic run time and space complexity). Shouji divides the problem of finding the common subsequences into at most m subproblems, as described in Algorithm 1 (line 9). Each subproblem examines each of the $2 E+1$ bit-vectors and finds the 4-bit subsequence that has the largest number of zeros within the sliding window (line 13 to line 23). Once found, Shouji also compares the found subsequence with its corresponding subsequence in the Shouji bit-vector and stores the subsequence that has more zeros in the Shouji bit-vector (line 24). Now, let c be a constant representing the run time of examining a subsequence of 4 bits long. Then, the time complexity of the Shouji algorithm is as follows:

$$
\begin{equation*}
T_{\text {Shouji }}(m)=\text { c.m } .(2 E+2) \tag{2}
\end{equation*}
$$

This demonstrates that the Shouji algorithm runs in linear time with respect to the sequence length and edit distance threshold. The Shouji algorithm maintains $2 E+1$ diagonal bit-vectors and an additional auxiliary bit-vector (i.e., the Shouji bit-vector) for each two given sequences. The space complexity of the Shouji algorithm is as follows:

$$
\begin{equation*}
D_{\text {Shouji }}(m)=m .(2 E+2) \tag{3}
\end{equation*}
$$

Hence, the Shouji algorithm requires linear space with respect to the sequence length and edit distance threshold. Next, we describe the hardware implementation details of the Shouji filter.

6.3 Hardware Implementation

We present the FPGA chip layout for our hardware accelerator in Fig. 5. As we illustrated in the main manuscript, Section 2.3, we implement the first step of our Shouji algorithm, building neighborhood map, using shift registers and bitwise XOR operations. The second step of the Shouji algorithm is identifying the diagonally-consecutive matches. This key step involves finding the 4-bit vector that has the largest number of zeros. For each search window, there are $2 E+1$ diagonal bit-vectors and an additional Shouji bit-vector. To enable the computation to be performed in a parallel fashion, we build $2 E+2$ counters. As presented in Fig. 5, each counter counts the number of zeros in a single bit-vector. The counter takes four bits as input and generates three bits that represent the number of zeros within the window. Each counter requires three 4 -input LUTs, as each LUT has a single output signal. In total, we need $6 E+64$-input LUTs to build a single search window. All bits of the counter output are generated at the same time, as the propagation delay through an FPGA look-up table is independent of the implemented function (Xilinx, November 17, 2014). The comparator is responsible for selecting the 4-bit subsequence that maximizes the number of consecutive matches based on the output of each counter and the Shouji bitvector. Finally, the selected 4-bit subsequence is then stored in the Shouji bit-vector at the same corresponding location.


```
Algorithm 2: CZ (count zeros) function
Function: CZ() counts the number of occurrences of zeros.
Input: bit-vector \(D\).
Output: number of occurrences of zeros.
    : count \(\leftarrow 0\);
    for \(i \leftarrow 1\) to length( \(D\) ) do
            if \(D[i]==0\) then
                count \(\leftarrow\) count +1 ;
5: return count;
```


Fig. 5: FPGA chip layout for Shouji and block diagram of the search window scheme implemented in a Xilinx VC709 FPGA for a single filtering unit.

7 MAGNET Filter

First, we provide the MAGNET (Alser et al., July 2017) algorithm and describe its main filtering mechanism. Second, we analyze the computational complexity of the MAGNET algorithm. Third, we provide details about the hardware implementation of the MAGNET algorithm.

7.1 Overview

MAGNET (Alser et al., July 2017) is another filter that uses a divide-and-conquer technique to find all the $E+1$ common subsequences, if any, and sum up their length. By calculating their total length, we can estimate the total number of edits between the two given sequences. If the total length of the $E+1$ common subsequences is less than $m-E$, then there exist more common subsequences than $E+1$ that are associated with more edits than allowed. If so, then MAGNET excludes the two given sequences from optimal alignment calculation. We present the algorithm of MAGNET in Algorithm 3.

Algorithm 3: MAGNET	Comments
Input: text (T), pattern (P), edit distance threshold (E).	
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).	
1: $m \leftarrow$ length(T);	
2: for $i \leftarrow 1$ to m do	Step 1: Building
3: \quad for $j \leftarrow i-E$ to $i+E$ do	neighborhood map (N)
4: if $T[i]==P[j]$ then	
5: $\quad N[i, j] \leftarrow 0$;	Output: 2E+1 diagonal
6: \quad else $N[i, j] \leftarrow 1$;	
7: for $i \leftarrow 1$ to m do	
8: MAGNET[i] $\leftarrow 1$; // Initializing MAGNET bit-vector	Step 2 - Step 4
9: [MAGNET, calls] $\leftarrow \operatorname{EXEN}(N, 1, m, E, M A G N E T, 1)$;	
10: // Function CZ() returns number of zeros	Step 5: Filtering out
11: if $C Z(M A G N E T) \geq m$ - then return 1; else return 0 ;	Dissimilar Sequences

Finding the common subsequences involves four main steps. (1) Building the neighborhood map. Similar to Shouji, MAGNET starts with building the $2 E+1$ diagonal bit-vectors of the neighborhood map for the two given sequences (Algorithm 3, lines 2-6). (2) Extraction. Each diagonal bit-vector nominates its local longest subsequence of consecutive zeros. Among all nominated subsequences, a single subsequence is selected as a global longest
subsequence based on its length (Algorithm 4, lines 2-11). MAGNET evaluates if the length of the global longest subsequence is less than $[(m-E) /(E+1)]$, then the two sequences contain more edits than allowed, which cause the common subsequences to be shorter (i.e., each edit results in dividing the sequence pair into more common subsequences). If so, then the two sequences are rejected (Algorithm 4, lines 12-13). Otherwise, MAGNET stores the length of the global longest subsequence to be used towards calculating the total length of all $E+l$ common subsequences. The lower bound equality occurs when all edits are equispaced and all $E+l$ subsequences are of the same length. (3) Encapsulation. The next step is essential to preserve the original edit (or edits) that causes a single common sequence to be divided into smaller subsequences. MAGNET penalizes the found subsequence by two edits (one for each side). This is achieved by excluding from the search space of all bit-vectors the indices of the found subsequence in addition to the index of the surrounding single bit from both left and right sides (Algorithm 4, lines 14-17). (4) Divide-and-Conquer Recursion. In order to locate the other E non-overlapping subsequences, MAGNET applies a divide-and-conquer technique where we decompose the problem of finding the non-overlapping common subsequences into two subproblems. While the first subproblem focuses on finding the next long subsequence that is located on the right-hand side of the previously found subsequence in the first extraction step (Algorithm 4, line 15), the second subproblem focuses on the other side of the found subsequence (Algorithm 4, line 17). Each subproblem is solved by recursively repeating all the three steps mentioned above, but without evaluating again the length of the longest subsequence. MAGNET applies two early termination methods that aim to reduce the execution time of the filter. The first method is evaluating the length of the longest subsequence in the first recursion call (Algorithm 4, lines 12-13). The second method is limiting the number of the subsequences to be found to at most $E+1$, regardless of their actual number for the given sequence pair (Algorithm 4 , line 1).
(5) Filtering out Dissimilar Sequences. Once after the termination, if the total length of all found common subsequences is less than $m-E$, then the two sequences are rejected. Otherwise, they are considered to be similar and the alignment can be measured using sophisticated alignment algorithms.

Algorithm 4: EXEN function	Comments
Function: EXEN() extracts the longest subsequence of consecutive zeros and generate two subproblems. Input: Neighborhood map (N), start index ($S I$), end index ($E I$), E, MAGNET bit-vector, number of recursion calls.	
Output: updated MAGNET bit-vector, updated number of calls. 1: if (SI $\leq \mathrm{El}$ and calls $\leq \mathrm{E}+1$) then // Early termination condition	
```// Function CCZ() returns number and indices of longest // subsequence of diagonally consecutive zeros for \(j \leftarrow 1\) to \(E\) do \(/ /\) Extraction \([X, s 1, e 1] \leftarrow C C Z(N[S I+j, S I], E I) ; / /\) Lower diagonal \([Y, s 2, e 2] \leftarrow C C Z(N[S 1, S 1+j], E 1) ; / /\) Upper diagonal if \(X>Y\) then \(s \leftarrow s 1 ; e \leftarrow e 1\); else \(s \leftarrow s 2 ; e \leftarrow e 2\); \([X, s 1, e 1] \leftarrow C C Z(N[S I, S I], E I) ;\) if \(X>(e-s+1)\) then \(s \leftarrow s 1 ; e \leftarrow e 1 ;\)```	Step 2: Extracting the longest subsequence of consecutive zeros
12: if (calls=1 and $(e-s+1)<[(m-E) /(E+1)])$ then   13: return [MAGNET, 0];	Early termination condition (only in first call)
14: // Right subproblem with encapsulation   15: $\quad[M A G N E T$, calls] $\leftarrow \operatorname{EXEN}(N, e+2, E I, E, M A G N E T, c a l l s+1) ;$   16: // Left subproblem with encapsulation   17: $\quad[M A G N E T$, calls] $\leftarrow \operatorname{EXEN}(N, S I, s-2, E, M A G N E T$, calls +1$)$;	Step 3: Encapsulating the found longest subsequence and Step 4: Divide-andConquer Recursion
18: return [MAGNET, calls];   19: else return [MAGNET, calls-1];	

### 7.2 Analysis of the MAGNET Algorithm

We analyze the asymptotic run time and space complexity of the MAGNET algorithm. MAGNET applies a divide-and-conquer technique that divides the problem of finding the common subsequences into two subproblems in each recursion call. In the first recursion call, the extracted common subsequence is of length at least $a=\lceil(m-E) /(E+1)\rceil$ bases. This reduces the problem of finding the common subsequences from $m$ to at most $m$ - $a$, which is further divided into two subproblems: a left subproblem and a right subproblem. For the sake of simplicity, we assume that the size of the left and the right subproblems decreases by a factor of $b$ and $c$, respectively, as follows:

$$
\begin{equation*}
m=a+2+m / b+m / c \tag{4}
\end{equation*}
$$

The addition of 2 bases is for the encapsulation bits added at each recursion call. Now, let $T_{M A G N E T}(m)$ be the time complexity of MAGNET algorithm, for identifying non-overlapping subsequences. If it takes $O(\mathrm{~km})$ time to find the global longest subsequence and divide the problem into two subproblems, where $k=2 E+1$ is the number of bit-vectors, we get the following recurrence equation:

$$
\begin{equation*}
T_{M A G N E T}(m)=T_{M A G N E T}(\mathrm{~m} / \mathrm{b})+T_{M A G N E T}(\mathrm{~m} / \mathrm{c})+O(\mathrm{~km}) \tag{5}
\end{equation*}
$$

Given that the early termination condition of MAGNET algorithm restricts the recursion depth as follows:

$$
\begin{equation*}
\text { Recursion tree depth }=\left\lceil\log _{2}(E+1)\right\rceil-1 \tag{6}
\end{equation*}
$$

Solving the recurrence in (5) using (4) and (6) by applying the recursion-tree method provides a loose upper-bound to the time complexity as follows:

$$
\begin{align*}
T_{M A G N E T}(m) & =O(k m) \cdot \sum_{x=0}^{\left[\log _{2}(E+1) \mid-1\right.}\left(\frac{1}{b}+\frac{1}{c}\right)^{x} \\
& \approx O(f k m) \tag{7}
\end{align*}
$$

where $f$ is a fractional number satisfies the following range: $l \leq f<2$. This in turn demonstrates that the MAGNET algorithm runs in linear time with respect to the sequence length and edit distance threshold and hence it is computationally inexpensive. The space complexity of the MAGNET algorithm is as follows:

$$
\begin{align*}
D_{M A G N E T}(m) & =D_{M A G N E T}(m / b)+D_{M A G N E T}(m / c)+(k m+m) \\
& \approx O(f k m+f m) \tag{8}
\end{align*}
$$

Hence, MAGNET algorithm requires linear space with respect to the read length and edit distance threshold. Next, we describe the hardware implementation details of MAGNET filter.

### 7.3 Hardware Implementation

We outline the challenges that are encountered in implementing the MAGNET filter to be used in our accelerator design. Implementing the MAGNET algorithm on an FPGA is more challenging than implementing the Shouji algorithm due to the random location and variable length of each of the $E+1$ common subsequences. Verilog-2011 imposes two challenges on our architecture as it does not support variable-size partial selection and indexing of a group of bits from a vector (McNamara, 2001). In particular, the first challenge lies in excluding the extracted common subsequence along with its encapsulation bits from the search space of the next recursion call. The second challenge lies in dividing the problem into two subproblems, each of which has an unknown size at design time. To address these limitations and tackle the two design challenges, we keep the problem size fixed at each recursion call. We exclude the longest found subsequence from the search space by amending all bits of all $2 E+1$ bit-vectors that are located within the indices (locations) of the encapsulation bits to ' 1 's. This ensures that we exclude the longest found subsequence and its corresponding location in all other bitvectors during the subsequent recursion calls. We build the MAGNET accelerator using the same FPGA board as that used for Shouji for a fair comparison.

## 8 Examples of Applying the Shouji and MAGNET algorithms

In this section, we provide three examples of applying the Shouji and MAGNET filtering algorithms to different sequence pairs. In Fig. 6, we set the edit distance threshold to 4 in these examples. The diagonal vectors of the neighborhood map are horizontally presented in the same order of the diagonal vectors for a better illustration. In the first two examples (Fig. 6(a) and Fig. 6(b)), we observe that MAGNET is highly accurate in providing the exact location of the edits in the MAGNET bit-vector. This is due to two main reasons. First, MAGNET finds the exact length of each common subsequence by performing multiple individual iteration for each common subsequence. Second, it manually encapsulates each found longest subsequence of consecutive zeros by ones, which ensures to maintain the edits in the MAGNET bit-vector. On the contrary, Shouji uses overlapping search windows to detect segments of consecutive zeros. If two segments of consecutive zeros are overlapped within a single search window, then the edit between the two segments is sometimes eliminated by the overlapping zeros of the two segments as shown in Fig. 6(a).

Pairwise alignment can be performed as a global alignment, where two sequences of the same length are aligned end-to-end, or a local alignment, where subsequences of the two given sequences are aligned. It can also be performed as a semi-global alignment (called glocal), where the entirety of one sequence is aligned towards one of the ends of the other sequence. To ensure correct pre-alignment filtering and avoid rejecting a correct alignment, prealignment filter needs to consider counting the number of edits in a similar way to that of optimal alignment algorithm. This means that if the optimal alignment algorithm performs local alignment, then the pre-alignment filter should also perform local edit distance calculation. This can be achieved by not considering the leading and trailing edits in the total count of edits between two given sequences. Fig 6(a) and Fig. 6(b) show examples of global prealignment filtering. Fig 6(c) shows an example of local pre-alignment filtering, where the two given sequences have different lengths. While Shouji is conceptually able to perform local pre-alignment and glocal pre-alignment filtering, such support is not currently implemented in our public release of Shouji (https://github.com/CMU-SAFARI/Shouji). The current implementation of Shouji performs only global pre-alignment filtering that requires the text and reference sequences to be of the same length.

Read : TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA Reference : TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

Upper Diagonal-4 Upper Diagonal-3 Upper Diagonal-2 Upper Diagonal-1

Main Diagonal
Lower Diagonal-1
Lower Diagonal-2 Lower Diagonal-3 Lower Diagonal-4

Shouji bit-vector MAGNET bit-vector
----110111111100111111110101100001010001011010011111101101100110110011010101011101111111101011000000 $---0110110101011111111111110111111111110010011110111111001000100100010011111110110111111000000110001$ $--00111101100101101110110000000000000000000000000000000000000000000000000000000000000000010111110011$ $-000111110111001001100011101111111111100100111101111110010001001000100111111101101111110111111110111$ 0000000000000000000001110110000101000101101001111110110110011011001101010101110111111111101111111111 $000111110111001001101011010111111111011111011111101111111011111101111011111100001011010101101111111-$ $00111101100101101111011111100100010101110011100111011011111111111111010101111011010101001100111111--$ $0110110101011111111010110101111111011110111111111101101101111110111110111101111111111111110011111---$ $110111111100111110110001111100000101110101100111110010100111110011100100111101011011111111000111----$

0000000000000000000100010000000000000000000000000000000000000000000000000000000000000000000001000000 0000000000000000000001010000000000000000000000000000000000000000000000000000000000000000010001000000

## (a)

CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCAGGATGCTGTTATGTGAGT CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCGGATGCTGTTATTTGAGTAG

Upper Diagonal-4 Upper Diagonal-3 Upper Diagonal-2 Upper Diagonal-1

Main Diagonal Lower Diagonal-1 Lower Diagonal-2 Lower Diagonal-3 Lower Diagonal-4

## Shouji bit-vector

 MAGNET bit-vector----011111101111111111110000011111011001111111011101111111110111111110100110000101111110101101111011 ---11110011111010110111001100101101100111111111011110111101101011010111010010011111111111011010101110 $--11100111111101101111101010110111110101101101011111011110011111110010110111011011110111111100110011$ $-111111011110111111110110011011101011001001111111111111111010101110110001011110011010100101001111100$ 0000000000000000000000000000000000000000000000101010110101111111011011110010100011111111011010010111 $111111011110111111110110011011101011001001111100000000000000000000000000000000001011111110110111111-$ $11100111111101101111101010110111110101101101110101011010111111101101111001010001000000000000100000--$ $1111001111101011011100110010110110011111111001111111111101010111011000101111001101111111011101111---$ $011111101111111111110000011111011001111111110111101111001111111001011011101101111111110110101101----$

0000000000000000000000000000000000000000000001000000000000000000000000000000000100000000000010000100 0000000000000000000000000000000000000000000000100000000000000000000000000000000010000000000010000010

## (b)

## Read : ACTGTTCTCССTTTGAAATCTCAGTATATCTATATTTCССТСTGGCTACATTTAAAATTTCCCCTTTA

Reference : TTTTACTGTTCTCССTTTGAATACAATAGATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
Upper Diagonal-4
Upper Diagonal-3
Upper Diagonal-2 Upper Diagonal-1

Main Diagonal
Lower Diagonal-1
Lower Diagonal-2
Lower Diagonal-3 Lower Diagonal-4

Shouji bit-vector MAGNET bit-vector
----000000000000000001101111100101000101101001111111011011001101100110101
---111110111001001100011101111111111110010011110111111001000100100010011 $--11110110010110111011100100100000000000000000000000000000000000000000$
$-11011010101111111111011111111111111001001111011111100100010010001001-$
 1010100111101111101111110111111111011111011111101111111011111101111
0100111110101111011101111001100101011100111001110110111111111111111
10011011001111101010100101111111011110111111111101101101111110111
 Shouji finds 2 edits : 000000000000000000000010000100000000000000000000000000000000000000111111111111111111111111111 0011000000000000000001101000100000000000000000000000000000000000000000111111111111111111111111111111

Fig. 6: Examples of applying the Shouji and MAGNET filtering algorithms to three different sequence pairs, where the edit distance threshold is set to 4 . We present the content of the neighborhood map along with the Shouji and MAGNET bit-vectors. In (a) and (b), we apply Shouji and MAGNET algorithms starting from the leftmost column towards the rightmost column (end-to-end) to perform global pre-alignment filtering. In (c), we ignore the ones that are located at the two ends of the final bit-vector to perform local prealignment filtering.

## 9 Dataset Description

Table 5 provides the configuration used for the -e parameter of mrFAST (Alkan et al., 2009) for each of the 12 datasets. We use Edlib (Šošić and Šikić, 2017) to assess the number of similar (i.e., having edits fewer than or equal to the edit distance threshold) and dissimilar (i.e., having more edits than the edit distance threshold) pairs for each of the 12 datasets across different user-defined edit distance thresholds. We provide these details for set 1 , set 2 , set 3 , and set 4 in Table 6 . We provide the same details for set 5 , set 6 , set 7 , and set 8 in Table 7 and for set 9 , set 10 , set 11 , and set 12 in Table 8 .

Table 5: Benchmark illumina-like datasets (read-reference pairs). We map each read set to the human reference genome in order to generate four datasets using different mappers' edit distance thresholds (using the ee parameter).

Accession no.	ERR240727_1				SRR826460_1				SRR826471_1			
Sequence Length	100				150				250			
HTS	Illumina HiSeq 2000				Illumina HiSeq 2000				Illumina HiSeq 2000			
Dataset	Set_1	Set_2	Set_3	Set_4	Set_5	Set_6	Set_7	Set_8	Set_9	Set_10	Set_11	Set_12
mrFAST - $e$	2	3	5	40	4	6	10	70	8	12	15	100
Amount of Edits	Low	edit	High	-edit	Low	edit	High	-edit	Low	-edit	Hig	-edit

Table 6: Details of our first four datasets (set 1, set 2, set 3, and set 4). We use Edlib to benchmark the accepted (i.e., aligned) pairs and the rejected (i.e., unaligned) pairs for edit distance thresholds of $E=0$ up to $E=10$ edits.

Dataset	Set_1		Set_2		Set_3		Set_4	
$E$	Accepted	Rejected	Accepted	Rejected	Accepted	Rejected	Accepted	
Rejected								
0	381,901	$29,618,099$	124,531	$29,875,469$	11,989	$29,988,011$	11	
1	$1,345,842$	$28,654,158$	441,927	$29,558,073$	44,565	$29,955,435$	18	
2	$3,266,455$	$26,733,545$	$1,073,808$	$28,926,192$	108,979	$29,891,021$	$29,99,989$	
3	$5,595,596$	$24,404,404$	$2,053,181$	$27,946,819$	206,903	$29,793,097$	27	
4	$7,825,272$	$22,174,728$	$3,235,057$	$26,764,943$	334,712	$29,665,288$	29	
	$9,821,308$	$20,178,692$	$4,481,341$	$25,518,659$	490,670	$29,509,330$	34	
69,976								
6	$11,650,490$	$18,349,510$	$5,756,432$	$24,243,568$	675,357	$29,324,643$	83	
7	$13,407,801$	$16,592,199$	$7,091,373$	$22,908,627$	891,447	$29,108,553$	177	
8	$15,152,501$	$14,847,499$	$8,531,811$	$21,468,189$	$1,151,447$	$28,848,553$	333	
9	$16,894,680$	$13,105,320$	$10,102,726$	$19,897,274$	$1,469,996$	$28,530,004$	711	
10	$18,610,897$	$11,389,103$	$11,807,488$	$18,192,512$	$1,868,827$	$28,131,173$	1,627	

Table 7: Details of our second four datasets (set_5, set_6, set_7, and set_8). We report the accepted and the rejected pairs for edit distance thresholds of $E=0$ up to $E=15$ edits.

Dataset	Set_5		Set_6		Set_7			Set_8	
$E$	Accepted	Rejected	Accepted	Rejected	Accepted	Rejected	Accepted	Rejected	
0	$1,440,497$	$28,559,503$	248,920	$29,751,080$	444	$29,999,556$	201	$29,999,799$	
1	$1,868,909$	$28,131,091$	324,056	$29,675,944$	695	$29,999,305$	327	$29,999,673$	
3	$2,734,841$	$27,265,159$	481,724	$29,518,276$	927	$29,999,073$	444	$29,999,556$	
4	$3,457,975$	$26,542,025$	612,747	$29,387,253$	994	$29,999,006$	475	$29,999,525$	
6	$5,320,713$	$24,679,287$	991,606	$29,008,394$	1,097	$29,998,903$	529	$29,999,471$	
7	$6,261,628$	$23,738,372$	$1,226,695$	$28,773,305$	1,136	$29,998,864$	546	$29,999,454$	
9	$7,916,882$	$22,083,118$	$1,740,067$	$28,259,933$	1,221	$29,998,779$	587	$29,999,413$	
10	$8,658,021$	$21,341,979$	$2,009,835$	$27,990,165$	1,274	$29,998,726$	612	$29,999,388$	
12	$10,131,849$	$19,868,151$	$2,591,299$	$27,408,701$	1,701	$29,998,299$	710	$29,999,290$	
13	$10,917,472$	$19,082,528$	$2,923,699$	$27,076,301$	2,146	$29,997,854$	796	$29,999,204$	
15	$12,646,165$	$17,353,835$	$3,730,089$	$26,269,911$	3,921	$29,996,079$	1,153	$29,998,847$	

Table 8: Details of our third four datasets (set_9, set_10, set_11, and set_12). We report the accepted and the rejected pairs for edit distance thresholds of $E=0$ up to $E=25$ edits.

$\begin{gathered} \text { Dataset } \\ E \\ \hline \end{gathered}$	Set_9		Set_10		Set_11		Set_12	
	Accepted	Rejected	Accepted	Rejected	Accepted	Rejected	Accepted	Rejected
0	707,517	29,292,483	43,565	29,956,435	4,389	29,995,611	49	29,999,951
2	1,462,242	28,537,758	88,141	29,911,859	8,970	29,991,030	163	29,999,837
5	1,973,835	28,026,165	119,100	29,880,900	12,420	29,987,580	301	29,999,699
7	2,361,418	27,638,582	145,290	29,854,710	15,405	29,984,595	375	29,999,625
10	3,183,271	26,816,729	205,536	29,794,464	22,014	29,977,986	472	29,999,528
12	3,862,776	26,137,224	257,360	29,742,640	27,817	29,972,183	520	29,999,480
15	4,915,346	25,084,654	346,809	29,653,191	37,710	29,962,290	575	29,999,425
17	5,550,869	24,449,131	409,978	29,590,022	44,225	29,955,775	623	29,999,377
20	6,404,832	23,595,168	507,177	29,492,823	54,650	29,945,350	718	29,999,282
22	6,959,616	23,040,384	572,769	29,427,231	62,255	29,937,745	842	29,999,158
25	7,857,750	22,142,250	673,254	29,326,746	74,761	29,925,239	1,133	29,998,867

## 10 Evaluating the Number of Falsely-Accepted Sequence Pairs and Falsely-Rejected Sequence Pairs

We evaluate the number of falsely-accepted pairs and falsely-rejected pairs for Shouji, MAGNET, SHD (Xin et al., 2015), and GateKeeper (Alser et al., 2017). We list the number of falsely-accepted and falsely-rejected sequences in Table 9, Table 10, and Table 11 for read lengths of $100 \mathrm{bp}, 150 \mathrm{bp}$, and 250 bp , respectively.

The false reject rate is the ratio of the number of similar sequences that are rejected (falsely-rejected pairs) by the filter and the number of similar sequences that are accepted by the optimal sequence alignment algorithm. The false reject rate should always be equal to $0 \%$. Using our 12 low-edit and high-edit datasets for three different sequence lengths, we observe that Shouji, SHD, and GateKeeper do not filter out correct sequence pairs; hence, they provide a $0 \%$ false reject rate. The reason is the way we find the common subsequences. We always look for the subsequences that have the largest number of zeros, such that we maximize the number of matches and minimize the number of edits that cause the division of one long common sequence into shorter subsequences. However, this is not the case for MAGNET. We observe that MAGNET provides a very low false reject rate of less than $0.00045 \%$ for an edit distance threshold of at least $4 \%$ of the sequence length. This is due in large part to the greedy choice of always selecting the longest common subsequence regardless of its contribution to the total number of edits. On the contrary, Shouji always examines whether or not the selected 4 bit segment that has the largest number of zeros decreases the number of edits in the Shouji bit-vector before considering the 4-bit segment to be part of the common subsequences. In Fig. 7, we show an example of where MAGNET falsely considers two given sequences as dissimilar ones, while they differ by less than the edit distance threshold. This example shows that MAGNET's greedy approach of finding the common subsequences fails in finding the two common subsequences that are highlighted in blue. Instead, MAGNET finds another four shorter subsequences that result in increasing the number of mismatches in the MAGNET bit-vector.

MAGNET should select this identical segment instead of the one highlighted in red Pattern : CAAACTGGGTGGAGCCCACCACAGCTCAAAGGAAGCCTGCCTTCCTCTGTAGGCTCCAלCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAA Text : CAAACTGGGTGGAGCCCACAACAGCTCAAGGAGGCCTGCCTGCCTCTATAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAAC Upper Diagonal-6 : -------11111110111111101101110011111111011110119110111001101111111111010001100011101110100111011001101 Upper Diagonal-5 : -----11111101011101110010100111111111111111111dq111111111110001111111110001111010010101000101011111010 Upper Diagonal-4 : ----01111000111111011111111111110111111101110110111111011101101111111110000011011101110001101011011111 Upper Diagonal-3 : ---1111111001011110100110111111010111000000001110110111111011111110110011111100010000010101001111101 Upper Diagonal-2 : --1011110101101101001001110111100011110111010 1111101111010010111100110111111111101100100101110001011 Upper Diagonal-2 : --10111101011011010010011101111100011110111010 U (11101111010010111100110111111111101100100101110001011 Upper Diagonal-1 $:-1001110011011100111111111011101111111111119110011110110110011000111101100101010101000101011111111$
Main Diagonal : 0000000000000000010000000010111101110111011111101110110111100001110011111111001100001111111111010 Lower Diagonal-1 : 100111001101110011001111111000001000000001000001000000000000000000000000000000000000000000000000000 Lower Diagonal-2 : 101111010110110101110111011010100101110101011111110111011011110000111100111111110011000011111111110-Lower Diagonal-3 : 1111111001011110000010111111111111111111111001001111011011001100011110110010101010100010101111111--Lower Diagonal-4 : $011110001111110011111111111101011110111011011111111101001011110011011111111110110010010111000101---$
 MAGNET bit-vector : 00000000000000000001000000000110001010000000010100000000000000000000000000000000000000000000000000001

Fig. 7: An example of a falsely-rejected sequence pair using the MAGNET algorithm for an edit distance threshold of 6 . The random zeros (highlighted in red) confuse the MAGNET filter, causing it to select shorter segments of random zeros instead of a longer common subsequences (highlighted in blue).

Table 9: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji, MAGNET, GateKeeper, and SHD using four datasets, set_1, set_2, set_3, and set_4, with a read length of 100 bp .

	E	$\begin{aligned} & \text { Read Aligner } \\ & \hline \text { Edlib } \end{aligned}$		Pre-alignment Filter							
				SHD		GateKeeper		MAGNET		Shouji	
		Accepted	Rejected	FA	FR	FA	FR	FA	FR	FA	FR
$\begin{aligned} & \mathrm{H}_{1} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	0	381,901	29,618,099	10	0	0	0	963,941	0	0	0
	1	1,345,842	28,654,158	783,185	0	783,185	0	800,099	0	333,320	0
	2	3,266,455	26,733,545	2,704,128	0	2,704,128	0	1,876,518	0	1,283,004	0
	3	5,595,596	24,404,404	5,237,529	0	5,237,529	0	2,428,301	0	2,674,876	0
	4	7,825,272	22,174,728	8,231,507	0	8,231,507	0	2,662,902	1	4,399,886	0
	5	9,821,308	20,178,692	11,195,124	0	11,195,124	0	2,916,838	0	6,452,280	0
	6	11,650,490	18,349,510	13,781,651	0	13,781,651	0	3,406,303	4	9,373,309	0
	7	13,407,801	16,592,199	14,283,519	0	14,283,519	0	4,026,433	19	11,113,616	0
	8	15,152,501	14,847,499	13,814,295	0	13,814,295	0	4,745,672	27	11,990,529	0
	9	16,894,680	13,105,320	13,105,305	0	13,105,305	0	5,319,627	41	11,693,396	0
	10	18,610,897	11,389,103	11,389,103	0	11,389,103	0	5,673,172	31	10,664,722	0
	E	Accepted	Rejected	FA	FR	FA	FR	FA	FR	FA	FR
$\begin{aligned} & N_{1} \\ & \stackrel{\sim}{\sim} \end{aligned}$	0	124,531	29,875,469	2	0	0	0	317,396	0	0	0
	1	441,927	29,558,073	276,271	0	276,271	0	265,663	0	114,225	0
	2	1,073,808	28,926,192	1,273,787	0	1,273,787	0	779,683	0	524,886	0
	3	2,053,181	27,946,819	3,370,661	0	3,370,661	0	1,257,472	0	1,494,883	0
	4	3,235,057	26,764,943	6,695,487	0	6,695,487	0	1,621,885	1	3,085,801	0
	5	4,481,341	25,518,659	10,798,431	0	10,798,431	0	1,995,105	0	5,410,196	0
	6	5,756,432	24,243,568	15,305,752	0	15,305,752	0	2,574,171	2	9,218,900	0
	7	7,091,373	22,908,627	17,347,813	0	17,347,813	0	3,391,117	5	12,401,268	0
	8	8,531,811	21,468,189	18,015,876	0	18,015,876	0	4,485,756	19	14,865,877	0
	9	10,102,726	19,897,274	19,897,204	0	19,897,204	0	5,639,763	38	15,670,345	0
	10	11,807,488	18,192,512	18,192,512	0	18,192,512	0	6,691,920	52	15,222,777	0
	E	Accepted	Rejected	FA	FR	FA	FR	FA	FR	FA	FR
$\begin{aligned} & m_{1} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	0	11,989	29,988,011	1	0	0	0	32,576	0	0	0
	1	44,565	29,955,435	30,065	0	30,065	0	27,639	0	13,060	0
	2	108,979	29,891,021	153,613	0	153,613	0	77,792	0	61,519	0
	3	206,903	29,793,097	466,411	0	466,411	0	133,654	0	200,269	0
	4	334,712	29,665,288	1,254,259	0	1,254,259	0	193,569	0	521,359	0
	5	490,670	29,509,330	2,767,674	0	2,767,674	0	268,750	0	1,206,373	0
	6	675,357	29,324,643	6,227,154	0	6,227,154	0	385,154	0	2,983,331	0
	7	891,447	29,108,553	9,695,580	0	9,695,580	0	585,853	0	5,431,357	0
	8	1,151,447	28,848,553	12,921,874	0	12,921,874	0	931,084	1	8,532,786	0
	9	1,469,996	28,530,004	28,529,540	0	28,529,540	0	1,466,018	9	11,228,839	0
	10	1,868,827	28,131,173	28,131,173	0	28,131,173	0	2,251,403	6	13,630,704	0
	E	Accepted	Rejected	FA	FR	FA	FR	FA	FR	FA	FR
$\begin{aligned} & {\underset{\sim}{1}}^{\stackrel{\rightharpoonup}{\sim}} \end{aligned}$	0	11	29,999,989	0	0	0	0	7	0	0	0
	1	18	29,999,982	14	0	14	0	5	0	2	0
	2	24	29,999,976	155	0	155	0	2	0	15	0
	3	27	29,999,973	1,196	0	1,196	0	4	0	216	0
	4	29	29,999,971	7,436	0	7,436	0	13	0	1,986	0
	5	34	29,999,966	32,792	0	32,792	0	82	0	10,551	0
	6	83	29,999,917	155,134	0	155,134	0	298	0	57,258	0
	7	177	29,999,823	417,444	0	417,444	0	1,030	0	214,005	0
	8	333	29,999,667	1,031,480	0	1,031,480	0	3,129	0	675,029	0
	9	711	29,999,289	29,997,022	0	29,997,022	0	8,234	0	1,742,476	0
	10	1,627	29,998,373	29,998,373	0	29,998,373	0	19,013	0	3,902,535	0

Table 10: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji, MAGNET, GateKeeper, and SHD using four datasets, set_5, set_6, set_7, and set_8, with a read length of 150 bp .


Table 11: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji, MAGNET, GateKeeper, and SHD using four datasets, set_9, set_10, set_11, and set_12, with a read length of 250 bp.


## 11 Evaluating the Number of Falsely-Accepted and Falsely-Rejected Pairs Using Single End and Paired End Reads

We assess the accuracy of Shouji using both single end and paired end reads. We first map 3' reads from ERR240727.fastq (i.e., reads from ERR240727_2.fastq) to the human reference genome (GRCh37) using mrFAST (Alkan et al., 2009) with an edit distance threshold of 2 . We then use the first 30 million read-reference pairs that are produced by mFAST before performing alignment to examine the filtering accuracy of Shouji. In Table 12, we show the number of falsely-accepted and falsely-rejected pairs of Shouji using these 30 million pairs over different edit distance thresholds. Generating the read-reference pairs in this way allows us to examine the filtering accuracy of Shouji using both aligned (i.e., pairs that have edits no more than the allowed edit distance threshold) and unaligned (i.e., pairs that have edits more than the allowed edit distance threshold) pairs. We use the same method to generate set_1 from ERR240727_1.fastq, as we describe in Section 3.1 in the main manuscript. We observe that the accuracy of Shouji using 3' reads from ERR240727.fastq remains almost the same as that of Shouji when we use $5^{\prime}$ reads from ERR240727.fastq (which we show in Table 9 when we use set_1). Next, we map both $5^{\prime}$ reads and 3 ' reads from ERR240727.fastq to the human reference genome using the mrFAST mapper in paired end mode. We then use the first 30 million read-reference pairs that are produced by mrFAST before performing alignment to examine the filtering accuracy of Shouji. In Table 13, we show the number of falsely-accepted and falsely-rejected pairs of Shouji using these 30 million pairs. We observe the results are similar when using paired end reads as when using single end reads. Based on Table 12 and Table 13, we conclude that the evaluation of our pre-alignment filter does not depend on the paired end sequencing or paired end reads. Similarly with any dynamic programming sequence alignment algorithm, Shouji always examines a single reference segment with a single read individually and independently from the way this pair is generated. The read mapper is responsible for generating the read-reference pairs that must be verified using a dynamic programming sequence alignment algorithm. Shouji examines these pairs (before using the computationally-expensive sequence alignment algorithms) regardless of the algorithm (e.g., single end read mapping or paired end read mapping) used to generate these pairs.

Table 12: Number of falsely-accepted and falsely-rejected sequence pairs of Shouji using single end reads from ERR240727_2.fastq mapped to the human reference genome. We use Edlib (Šošić and Šikić, 2017) to generate the ground truth edit distance value for each sequence pair.

$E$	Edlib baseline		Shouji			
	Aligned	Unaligned	Aligned	Unaligned	Falsely-Accepted	Falsely-Rejected
0	206,252	29,793,748	206,252	29,793,748	0	0
1	1,359,165	28,640,835	1,680,722	28,319,278	321,557	0
2	3,308,445	26,691,555	4,562,146	25,437,854	1,253,701	0
3	5,673,028	24,326,972	8,290,885	21,709,115	2,617,857	0
4	7,929,996	22,070,004	12,171,061	17,828,939	4,241,065	0
5	9,920,919	20,079,081	16,051,171	13,948,829	6,130,252	0
6	11,710,868	18,289,132	20,532,091	9,467,909	8,821,223	0
7	13,409,936	16,590,064	23,845,857	6,154,143	10,435,921	0
8	15,078,030	14,921,970	26,405,117	3,594,883	11,327,087	0
9	16,727,424	13,272,576	27,901,872	2,098,128	11,174,448	0
10	18,339,408	11,660,592	28,680,484	1,319,516	10,341,076	0

Table 13: Number of falsely-accepted and falsely-rejected sequence pairs of Shouji using paired end reads from ERR240727.fastq mapped to the human reference genome. We use Edlib (Šošić and Šikić, 2017) to generate the ground truth edit distance value for each sequence pair.

$\boldsymbol{E}$	Edlib baseline		Shouji			
	Aligned	Unaligned	Aligned	Unaligned	Falsely-Accepted	Falsely-Rejected
0	0	$30,000,000$	0	$30,000,000$	0	0
1	373,921	$29,626,079$	453,808	$29,546,192$	79,887	0
2	$1,318,319$	$28,681,681$	$1,947,127$	$28,052,873$	628,808	0
3	$3,207,952$	$26,792,048$	$5,224,261$	$24,775,739$	$2,016,309$	0
4	$5,500,950$	$24,499,050$	$9,227,434$	$20,772,566$	$3,726,484$	0
5	$7,709,237$	$22,290,763$	$13,305,866$	$16,694,134$	$5,596,629$	0
6	$9,698,512$	$20,301,488$	$18,208,145$	$11,791,855$	$8,509,633$	0
7	$11,529,693$	$18,470,307$	$22,281,600$	$7,718,400$	$10,751,907$	0
8	$13,293,029$	$16,706,971$	$25,736,052$	$4,263,948$	$12,443,023$	
9	$15,041,936$	$14,958,064$	$27,833,759$	$2,166,241$	$12,791,823$	
10	$16,782,466$	$13,217,534$	$28,890,050$	$1,109,950$	$12,107,584$	

## 12 FPGA Acceleration of Shouji and MAGNET

We analyze the benefits of accelerating the CPU implementation of our pre-alignment filters Shouji and MAGNET using FPGA hardware. As we show in Table 14, our hardware accelerators are two to three orders of magnitude faster than the equivalent CPU implementations of Shouji and MAGNET.

Table 14: Execution time (in seconds) of the CPU implementations of Shouji and MAGNET filters and that of their hardware-accelerated versions (using a single filtering unit).

$\boldsymbol{E}$	Shouji-CPU	Shouji-FPGA	Speedup	MAGNET-CPU	MAGNET-FPGA	Speedup
		Sequence Length $=100$				
2	474.27	2.89	164.11 x	632.02	2.89	218.69 x
5	$1,305.15$	2.89	451.61 x	$1,641.57$	2.89	568.02 x
Sequence Length $=250$						
2	$1,689.09$	$2.89^{*}$	584.46 x	$5,567.62$	$2.89^{*}$	$1,926.51 \mathrm{x}$
5	$6,096.61$	$2.89^{*}$	$2,109.55 \mathrm{x}$	$14,328.28$	$2.89^{*}$	$4,957.88 \mathrm{x}$
* Estimated based on the resource utilization and data throughput						

## 13 Execution time breakdown of Read Mapping combined with Shouji

We provide the total runtime breakdown of mrFAST (v. 2.6.1) (Alkan et al., 2009) and BWA-MEM (Li, 2013) with Shouji as a pre-alignment filter. We break down the execution time of read mapping with Shouji into 1) read-reference pair generation time, 2) Shouji filtering time, 3) Shouji pre-processing time, 4) Shouji transfer time, and 5) dynamic programming alignment time. The sum of these five runtime values provides the total execution time of read mapping with Shouji as a pre-alignment filter ( $8^{\text {th }}$ column of Table 15 entitled total execution time). We provide the total execution time breakdown of mrFAST (v. 2.6.1 that includes FastHASH (Xin et al., 2013)) (Alkan et al., 2009) and BWA-MEM (Li, 2013) with Shouji compared to the baseline (i.e., the last column of Table 15 represents the runtime of mrFAST and BWA-MEM without Shouji) in Table 15. We map all reads from ERR240727_1 ( 100 bp ) to GRCh37 with an edit distance threshold of $2 \%$ and $5 \%$. Based on Table 15, we make the following key observation: the dynamic programming alignment time drops by a factor of $4-24$ (the $7^{\text {th }}$ column of Table 15 compared with the $10^{\text {th }}$ column of Table 15) after integrating Shouji with read mapping as a pre-alignment step.

We conclude that the ability of Shouji to accelerate read mapping scales very well over a wide range of edit distance threshold values.

Table 15: Total execution time breakdown (in seconds) of mrFAST and BWA-MEM with and without Shouji, for an edit distance threshold of $\mathbf{2 \%}$ and $5 \%$. The green shaded columns represent the processing time spent by each step of the original read mapper (without Shouji). The orange and blue shaded columns represent the processing time spent by each step of the accelerated read mapper (with the addition of Shouji as a pre-alignment step). The orange shaded columns represent the processing time spent by Shouji on the FPGA board and the host CPU.

	$\boldsymbol{E}$	Read mapping time with Shouji						Read mapping time without Shouji (baseline)		
		Read-ref pair generation time	Shouji (FPGA) filtering time	Shouji (CPU)		Alignment time	Total execution time	Read-ref pair generation time	Alignment time	Total execution time
				preprocessing	$\begin{aligned} & \text { Transfer } \\ & \text { time } \end{aligned}$					
$\frac{5}{5}$	2	175.02	0.0616	3.2239	0.2919	16.6929	195.2902	175.02	67.08	242.1
	5	198.02	1.3176	53.9911	6.2457	242.8571	502.4315	198.02	2333.99	2532.01
$\frac{\sum_{i}^{2}}{i}$	2	622.1	0.0010	0.0516	0.0050	4.8219	626.9794	622.1	46.02	668.12
	2*	623.03	0.0124	0.6477	0.0622	2.0729	625.8252	623.03	47.08	670.11
	5	649.02	0.0010	0.0521	0.0050	4.7089	653.7870	649.02	46.12	695.14
	5*	650.01	0.0129	0.6740	0.0647	1.9190	652.6806	650.01	46.08	696.09

## 14 Edlib, Parasail, SHD, mrFAST, and BWA-MEM Configurations

In Table 16, we list the software packages that we cover in our performance evaluation, including their version numbers and function calls used.

Table 16: Read aligners and pre-alignment filters used in our performance evaluations.

## Edlib: November 52017

Banded Levenshtein Distance:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));
edlibFreeAlignResult(resultEdlib);
if (resultEdlib.editDistance! $=-1$ )

$$
\text { Accepted }=1 ;
$$

else $\quad$ Accepted $=0$;
Banded Levenshtein Distance with backtracking:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));
char* $\overline{\text { cigar }}=$ edlibAlignmentToCigar(resultEdlib.alignment, resultEdlib.alignmentLength, EDLIB_CIGAR_STANDARD);
free(cigar);
edlibFreeAlignResult(resultEdlib);

## Parasail: January 72018

function = parasail_lookup_function("nw_banded");
result $=$ function(RefSeq, ReadLength, $\quad$ ReadSeq, ReadLength,10, 1, ErrorThreshold,\&parasail_blosum62);
if(parasail result is trace (result) $==1$ ) $\{$
parasail_traceback_generic(RefSeq, ReadLength, ReadSeq, ReadLength, "Query:", "Target:", \&parasail_blosum62, result, '|', ':', '.', 50, 14, 0);
if (result->score !=0) \{
cigar2=parasail_result_get_cigar(result, RefSeq, ReadLength, ReadSeq, ReadLength, \&parasail_blosum62);
parasail_cigar_free(cigar2);
\}
\}

SHD: November 7 2017, compiled using g++-4.9
for ( $\mathrm{k}=1 ; \mathrm{k}<=1+$ (ReadLength/128); $\mathrm{k}++$ )
totalEdits $=$ totalEdits $+($ bit_vec_filter_sse1(read_t, ref_t, length, ErrorThreshold $)$ )

## mrFAST: November 292017

./mrfast-2.6.1.0/mrfast --search human_g1k_v37.fasta --seq ../ERR240727_1_100bp.fastq -e 2
The human reference genome can be downloaded from:
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/human g1k v37.fasta.gz
Extracting read-reference pairs:
1- Add the following to line 1786 of https://github.com/BilkentCompGen/mrfast/blob/master/MrFAST.c
2- Extract reference segment:
for ( $\mathrm{n}=0 ; \mathrm{n}<100 ; \mathrm{n}++$ ) printf("\%d", _msf_refGen[n + genLoc + _msf_refGenOffset - $1-$ leftSeqLength]);
3- Extract read sequence:
printf("\t\%s\n", _tmpSeq);

## BWA-MEM: November 252018

./bwa mem -w 3 ../human_g1k_v37.fasta ../.././Desktop/Filters_29_11_2016/ERR240727_1_100bp.fastq
Report all secondary alignments:
./bwa mem -a -w 3 ../human_g1k_v37.fasta ../.././Desktop/Filters_29_11_2016/ERR240727_1_100bp.fastq
Extracting read-reference pairs:
1- Add the following code between line 166 and line 167 of https://github.com/lh3/bwa/blob/master/bwa.c
2- Extract reference segment:
for ( $\mathrm{i}=0$; $\mathrm{i}<$ rlen; ++i) putchar("ACGTN"[(int)rseq[i]]); putchar('\t');
3- Extract read sequence:
for ( $\mathrm{i}=0$; i < 1_query; ++i) putchar("ACGTN"[(int)query[i]]); putchar('\n');

## REFERENCES

Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman, J. O., Baker, C., Malig, M. and Mutlu, O. (2009) Personalized copy number and segmental duplication maps using next-generation sequencing, Nature genetics, 41, 1061-1067.
Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O. and Alkan, C. (2017) GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping, Bioinformatics, 33, 3355-3363.
Alser, M., Mutlu, O. and Alkan, C. (July 2017) Magnet: Understanding and improving the accuracy of genome pre-alignment filtering, Transactions on Internet Research 13.
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv preprint arXiv:1303.3997.
McNamara, M. (2001) IEEE Standard Verilog Hardware Description Language. The Institute of Electrical and Electronics Engineers, Inc. IEEE Std, 1364-2001.
Šošić, M. and Šikić, M. (2017) Edlib: a C/C++ library for fast, exact sequence alignment using edit distance, Bioinformatics, 33, $1394-1395$.
Xilinx (November 17, 2014) 7 Series FPGAs Configurable Logic Block User Guide. Xilinx.
Xin, H., Greth, J., Emmons, J., Pekhimenko, G., Kingsford, C., Alkan, C. and Mutlu, O. (2015) Shifted Hamming Distance: A Fast and Accurate SIMDFriendly Filter to Accelerate Alignment Verification in Read Mapping, Bioinformatics, 31, 1553-1560.
Xin, H., Lee, D., Hormozdiari, F., Yedkar, S., Mutlu, O. and Alkan, C. (2013) Accelerating read mapping with FastHASH, BMC genomics, 14, S13.

