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::::::::::::::::
Experimental

::::::
data

::::
set

:::
All

:::::
code

::::
used

:::
in

::::
the

::::::::
analysis

::
of

:::::
gene

:::::::::::
expression,

::::
and

:::
all

:::
in

:::::
silico

::::
data

::
is
:::::::::
available

:::
on

::::::::
GitHub

:
(
:::::::::::::::::::::::::::::::::
https://github.com/bagherilab/diffexpy

::
).

::::
The

::
in

:::::
vitro

::::
data

::::
used

::
in

::::
this

:::::
study

::::
was

:::::::::
previously

:::::::::
published

:::
and

::
is
::::::::
available

:::
in

:::
the

:::::
Gene

:::
Of

::::::::::
Expression

:::::::
(GEO)

:::::::::
repository,

:::::
with

:::::::::
accession

:::::::
number

:::::::::
GSE69822

::::
[1].

Gene expression data representation
The measurement of expression for gene i , with R replicates is defined by the R-length vector:

~gi = [g1i , g
2
i . . . , g

R
i ]
> (1)

When gene expression is measured under different conditions for differential expression analysis,
the measurement of expression for gene i, given condition c, with R replicates is expanded to the
following R-length vector:

~gi|c = [g1i , g
2
i . . . , g

R
i ]
> (2)

A gene expression experiment that measures N genes is represented as an R×N matrix:

Ec = [~g1|c, . . . , ~gN |c]

=

 g11 . . . g1N
...

. . .
...

gR1 . . . gRN

 (3)

Time-series gene expression data representation
Time-series gene expression data is represented by vertically concatenating gene expression matrices
for T time points into a (T ∗R)×N matrix as follows:

Tc = [E1
c , . . . ,E

T
c ]
>

=



g1,11 . . . g1,1N
...

. . .
...

gR,1
1 . . . gR,1

N
...

. . .
...

gR,T
1 . . . gR,T

N


(4)

Here, each gene is sampled consistently. While the sampled time points do not need to be even
::::::
evenly

::::::
spaced, each gene must be measured at the same time points.
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Differential expression analysis
Computational tools and data normalization

The core differential expression analysis was conducted
::::
using

:
the rpy2 Python package to interface

with the R packages edgeR and limma [2, 3]. Genes with low counts were removed usingDGElist from
edgeR. Counts were then prepared for differential expression analysis using voom [4]. limma expects
log2 transformed data, and data that does not conform to this expectation may yield unexpected
results. DiffExPy is tailored to analyze time-series data, but the interface with R also allows

:::::::
enables

users to conduct differential expression analysis with static data.

Definition of DiffExPy contrasts

DiffExPy makes contrasts along two dimensions, between conditions and between time points (SI
Fig. S1). DiffExPy defines the following classes of contrasts:

1. Pairwise (PW) - calculate LFC at each time point between conditions:

~li,PW = [log2
~g 1

i|exp

~g 1
i|ctrl

, . . . , log2
~g T

i|exp

~g T
i|ctrl

] (5)

2. Timeseries (TS) - calculate LFC between each time point and the previous time point for
one condition, c:

~li,TS = [log2
~g 2

i|c

~g 1
i|c
, . . . , log2

~g T
i|c

~g T−1
i|c

] (6)

3. Autoregressive (AR) - calculate LFC between each time point and the time point before
the treatment is applied for one condition, c:

~li,AR = [log2
~g 2

i|c

~g 1
i|c
, . . . , log2

~g T
i|c

~g 1
i|c

] (7)

Here we assume the treatment is applied at time t=1. The first contrast is equivalent to that
of the TS.

4. Combinations - The TS and AR contrasts can also be combined with the PW contrasts to
assess if the LFC is significantly different between both the time points and the conditions.

• PW-TS - calculate the LFC between conditions and the previous time point:

~li,PW-TS = [(log2
~g 2

i|exp

~g 2
i|ctrl

− log2
~g 1

i|exp

~g 1
i|ctrl

), . . . , (log2
~g T

i|exp

~g T
i|ctrl

− log2
~g T−1

i|exp

~g T−1
i|ctrl

)] (8)

• PW-AR - calculate the LFC between conditions and the time point before the treatment
is applied:

~li,PW-AR = [(log2
~g 2

i|exp

~g 2
i|ctrl

− log2
~g 1

i|exp

~g 1
i|ctrl

), . . . , (log2
~g T

i|exp

~g T
i|ctrl

− log2
~g 1

i|exp

~g 1
i|ctrl

)] (9)

Because the comparison is to the previous time point, for all comparisons except PW, there are T -1
contrasts. The combination contrasts, PW-TS and PW-AR, provide the most information about
when a differential response to a treatment occurs between conditions. However, fewer significant
differences are identified because the pooled variances decrease statistical power.
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Gene classification
DiffExPy classifies each gene as a differentially expressed gene (DEG), dynamically differentially
expressed gene (dDEG), or a differentially responding gene (DRG). Genes are considered DEGs if
they pass an F -test described in the limma documentation [3]. We enforce that all genes classified
as dDEGs and DRGs must also be DEGs. A gene is considered a dDEG if all of its contrasts do not
have the same LFC sign, i.e. |{d ∀ d ∈ ~dx}| > 1. This filter removes genes that are differentially
expressed due to the genetic change , but

:::
but

::::
that are not affected by the stimulus. The classification

of a DRG is more stringent. A gene is classified as a DRG if the adjusted p-value of the F -test was
significant for one of ~dPW-TS or ~dPW-AR.

There are many ways to assign genes to a cluster depending on the number of time points,
treatments, and conditions over which gene expression is measured. Different methods of clustering
test different hypotheses, and we leave flexibility for the user to decide what

:::::::
method

:
is appropriate

for their specific application.

Discrete response cluster scores

DiffExPy empirically ranks genes within a discrete cluster (Fig. S11). The cluster score for gene i is
computed by calculating the fraction of the sum of the LFC values for each contrast that matches
the discrete LFC sign values as follows:

CSi =

∑
l∈~lx

f(l, p, d)∑
l∈~lx

|l|
, (10)

where ~lx is the vector of LFC values for contrast class x, p is the p-value corresponding to each l, and
d is the corresponding discrete value of the assigned cluster. The function f weights the calculated
LFC by the apparent p value as follows:

f(l, p, d) =

{
|l(1− p)| − |l − l(1− p)| sgn(l) = d

|l − l(1− p)| − |l(l − p)| sgn(l) 6= d
(11)

Essentially, if a contrast is assigned a nonzero discrete value and the LFC value of the contrast is
highly significant (low p-value), most of the LFC value is retained.

CS values are bounded between -1 and 1. Empirically, the cluster score sorts genes by how well
they match the discrete path defined by the discrete cluster. It performs poorly for some edge cases,
such as when all values in ~d are 0, but these were previously filtered out by the gene classification
step.

Model library creation
We generated a library of minimal dynamical systems that was used to simulate time-series expres-
sion data that mimics experimental conditions.

Model connectivity

Each model is a directed network with three nodes. Node y represents the output that is matched
to measured gene expression. Node G represents the gene that it is perturbed, as with a knockout
or knockin. Node x is an abstract node that serves two purposes. It summarizes the interactions
between G and y with the rest of the genome, allowing for more complex regulatory motifs. Node
x is also the target of the externally applied treatment (Fig. S10A). Edges between nodes either
activate or inhibit

:::
the

::::::
target

:::::
node

:
(Fig. S10B)the target node.

To limit the regulatory combinations, we prohibited self edges, which yielded 704 unique, weakly-
connected networks. We added an input node u to each model to create a controlled forcing function,
which represents the external treatment, on node x. The input u was linearly combined with
regulation of x by the other nodes.
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Model parameterization

We used GeneNetWeaver (GNW) to generate minimal differential equation models for each of the
networks and carry out stochastic simulations. GNW models include a protein and mRNA compo-
nent. Full details are available in the original paper [5]. SBML

:::::::
Systems

:::::::
Biology

::::::::
Markup

:::::::::
Language

:::::::
(SBML)

:::::
style

:
models were generated for each network structure with parameters assigned random

values by GNW.
Model parameters were not optimized to improve the fit. It is unclear what objective function—

such as minimizing error to LFC ,
::
or

:
matching expression distributions at each time—would be

optimal to fit the parameters. While the parameter space is technically infinite, we relied on GNW
to select biologically relevant parameters.

Multiple regulator logic

If a node has two coincident edges, the regulatory logic can be either AND or OR between them
(Fig. S10D). However, GNW randomly assigns logic to the regulation of the target mRNA. For each
of the 704 network structures, we generated SBML models for each combination of logic, resulting
in a library of 2,172 network structure and logic combinations. This library represents a highly
constrained structural search space. If the search space were increased to allow self edges, and all
combinations of regulatory logic with two or three coincident edges were explored, there would be
102,356 unique models. If the search space included four node networks, an no self edges, there
would be 4,870,752 unique networks. We did not simulate these large libraries.

Gene perturbation

For each base model, which we consider the WT model, we created corresponding KO and KI models
(Fig. S10C). The modified models have the same parameters as the WT model with minor changes
to the mRNA synthesis parameters for node G. In the KO model, the maximum transcription of
G was set very low (1e-7), because a value of zero causes integration errors. In the KI model, all
upstream regulation of G was removed, and the transcription rate was set to a constant value equal
to its maximum rate in the WT model, representing constitutive expression.

Time-series simulations
Stochastic time-series simulations were carried out for each SBML file using GNW. The SDE

:::::
Each

:::::::::
stochastic

:::::::::
differential

::::::::
equation

:::::::
system was sampled every minute for 1000 minutes. The stimulus was

applied to node u at the start and removed halfway through the time series. DiffExPy then sampled
the time series at intervals that matched the experimental data. Three independent, stochastic runs
of each model were created to represent biological replicates. Microarray-like measurement noise
was added to the data, and values were normalized between 0 and 1 [5].

Gene Ontology and transcription factor enrichment
An ontology is contructed as a directed acyclic graph (DAG), where the root node has the smallest
term depth [6]. In general, more specific GO terms are further down the tree and therefore have
higher term depths. Enriched GO terms were called for each class of genes—DEG, dDEG, and
DRG—using the same GO DAG, which preserves the depth of the term relationships. We then
calculated the term overlap between each combination of exclusive groups. For example the GO
terms in the group DEG ∩ dDEG are associated with DEGs and dDEGs, but not associated with
the DRGs. We calculated p-values to compare the distributions of term depths between groupings
using a discrete KS test [7].

To calculate enrichment for associated TFs, gene lists were encoded as TFs using a dictionary of
genes associated with each TF. We used a TF association dictionary derived from ENCODE data
[8]. TF enrichment was calculated using Fisher’s Exact test [9], implemented in scipy, comparing the
TFs associated with a gene list to the TFs associated with a background gene list. We used different
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lists of genes as the background depending on the hypothesis being tested. To identify enriched TFs
in the set of DRGs, we used the set of all genes as the background. To identify the specific timing
of TF enrichment of SUZ12 and FOXA1 we used the set of DRGs as the background.

:::
The

::::::::
number

::
of

:::::::
distinct

::::::::
discrete

:::::::::
responses

::::::::
increases

::::::::::::
exponentially

:::::
with

:::
the

::::::::
number

::
of

:::::::::
measured

::::
time

::::::
points.

::::
For

:::::
most

:::::::
current

::::::::::::
experiments,

:::::
there

:::
are

::::
few

:::::
time

::::::
points

::::
and

:::
this

::::
will

::::
not

:::
be

::
an

::::::
issue.

::::::::
However,

::
if

:::::
more

::::
time

::::::
points

:::::
were

::::::::
available,

:::::::
specific

::::::::::
qualitative

:::::::::
behaviors

:::::
could

::::
still

:::
be

:::::::::::
interogated.

:::
For

::::::::
example,

::::
one

::::::
could

:::
ask

:::::::
"which

::::::::::::
transcription

:::::::
factors

:::
are

::::::::::
associated

:::::
with

:::
the

:::
set

:::
of

:::::
genes

:::::
that

:
is
::::::::
initially

:::
not

::::::::::::
differentially

:::::::::
expressed

::::::
before

:::::::::
treatment

::::
but

:::::::
becomes

::::::::::::
differentially

:::::::::
expressed

:::::
after

::
X

:::::::::
minutes?".

:::::
The

:::::::
discrete

::::::::
clusters

:::::
could

::::::
easily

:::
be

::::
used

:::
to

::::::
group

:::::
genes

:::::
with

::::
this

::::::::
behavior

:::::::::
together.

:::::
Genes

::
A
::::
and

:::
B

::::
may

:::::
have

:::::::
discrete

:::::::::
responses

:
[
::
0,

::
0,
:::
0,

::
1,

:::
1,

::
1]

:::
and

:
[
:
0,

:::
0,

::
0,

:::
0,

::
1,

::
1] ,

::::
but

::::::
would

:::
be

:::::::
grouped

::::::::
together

:::
for

::::::::::
enrichment

::::::::
analysis.

:

Computational development
DiffExPy was developed in Python 3.5.2 using the following major packages: NumPy and SciPy
[10], pandas [11], and rpy2. Gene Ontology (GO) enrichment was calculated using the python
library goatools [12]. The discrete KS test was conducted using the dgof package [7]. Figures
were generated using seaborn and matplotlib [13]. The code for DiffExPy can be found on GitHub
(https://github.com/justinfinkle

:::::::::
bagherilab/diffexpy).
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Fig. S1. Comparison of strategies to identify and cluster DEGs, dDEGs, and DRGs. (A) Overview of
statistical contrasts. Normalized gene expression values

:
, measured for each gene at several time pointswas

:
,
::::
were

:
used to calculate the log fold change (LFC) between the experimental (dashed) and control (solid)

condition. The lines show the mean expression or LFC, and the shaded area is the error (e.g. 95% confidence
interval). Pairwise comparisons independently assess if LFC values are nonzero. Timeseries (TS) comparisons
assess if the LFC changed significantly from the previous time point (lt 6= lt−1). Autoregressive (AR)
comparisons check if the LFC is different than the initial LFC due to the experimental condition (lt 6= l0).
The discrete responses corresponding to the type of contrast are displayed on the plots. (B) The LFC for
example genes measured over time. (C) Sets of DEGs identified

::
by

:
comparing data only at individual time

points. DRGs are only identifiable as those whose differential expression at t0 is statistically different from tn,
which misses many genes. (D) Set of DEGs clustered into groups with similar mean LFC trajectories. DEGs
are calculated using an F -test on all pairwise comparisons. Genes can subsequently be clustered by mean
LFC using many available clustering methods, such as k-means. (E) Set of DRGs calculated by DiffExPy
which includes genes with transient regulation (blue and magenta) that is not captured with only endpoint
measurements. Genes that are consistently differentially expressed but show no differential response (e.g.
purple) are not considered DRGs. DRGs can be clustered in many ways to find genes that have statistically
different expression at later time points (i), have the same response trajectory (ii), or respond similarly at
a specific time (iii and iv).
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Fig. S2. Correlation between the mean LFC between the PI3K KI and
WT conditions for each gene and the ∆MSE of its trained ensemble
model from the null model. Spearman’s ρ=0.636, p=5.4e-26
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Fig. S3. Higher ranked models are more likely to be more predictive
than the null model. AUPR curve plot of different methods for sorting
gene predictions. Sorting by mean LFC between the training conditions
places more accurate predictions at the top of the list. The threshold for
selecting more accurate predictions (purple, dashed line) was calculated
using the elbow rule of the sorted mean LFC values in the training
condition.
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Fig. S4. Correlation between the mean LFC between the PI3K
::
KI

:::
and

::::
WT

:::::::::
conditions

:::
and

::::
the

:::::
mean

::::
LFC

:::::::
between

::::
the

:::::
PI3Kinh and WT

conditions for each geneand the ∆MSE of its trained ensemble model
from the null model. Spearman’s ρ=0.418

::::
0.684, p=1.4e-10

::::::
2.7e-31
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Fig. S5. Correlation between the mean LFC between the PI3KKI and
WT conditions and the mean LFC between the PI3Kinh and WT con-
ditions for each gene

:::
and

:::
the

::::::
∆MSE

::
of

:::
its

::::::
trained

::::::::
ensemble

:::::
model

::::
from

:::
the

:::
null

::::::
model. Spearman’s ρ=0.684

::::
0.418, p=2.7e-31

::::::
1.4e-10
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Fig. S6. Distributions of predicted LFC values between KI and WT
conditions at each time by the simulation library. On average, the
library predicts near zero LFC values at each time. However, there is
large variation within the library, so the set of models DiffExPy matches
to each gene outperform a randomly selected model.
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Fig. S7. The 217 trained gene models were ranked by the mean absolute
LFC of each time point between the PI3K inh and WT conditions. The
purple, dashed line shows the cutoff for the top set of genes using the
elbow rule.
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Fig. S8. Summary of gene classifications comparing PI3K KI (H1047R) to WT.
(A) Heatmap of row normalized LFC for all DEGs. Genes that were classified
as dDEG or DRG are also labeled. (B) Overlap of genes that were classified as
DEG, dDEG, DRG, or some combination. By definition, all dDEGs and DRGs
must also be DEGs. (C) Comparison of distributions of GO term depths uniquely
associated with intersections of gene sets. p-values were calculated using a discrete
KS test. * p< 0.05, ** p< 0.01, *** p< 0.001.
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Fig. S9. Summary of gene classifications comparing PI3K inh (A66 treatment)
to WT. Few genes were significantly impacted by the PI3K inh, which limits how
many GO terms can be found. (A) Heatmap of row normalized LFC for all DEGs.
Genes that were classified as dDEG or DRG are also labeled. (B) Overlap of genes
that were classified as DEG, dDEG, DRG, or some combination. By definition,
all dDEGs and DRGs must also be DEGs. (C) Comparison of distributions of
GO term depths uniquely associated with intersections of gene sets.
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Fig. S10. In silico simulation library model constraints. (A) All unique
combinations of three-node networks without self-edges were generated.
Node y is the output node whose simulated expression is matched to
discrete trajectories of genes in the experimental data. Node G is the
experimentally perturbed node. Node x represents interactions with
the rest of the genome. A forcing function, u, is applied to node x to
simulate the application of a treatment. (B) Edges between nodes can
be activating or inhibiting. (C) Simulations were conducted where node
G is knocked out (no expression in the simulation) or knocked in (con-
stituitively expressed in the simulation). (D) If there are two upstream
regulators of a node, combinations of the regulators interacting with
AND or OR logic were created.
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