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1 Learning parameters in LDA to model mutation signatures

During modeling of mutation signatures for LDA, the goal is to express observed mutation m well by
inferring mutation signatures, in other words, the pair of latent variables and parameters {z,φ}. It is
desirable that these posterior problems are analytically solved, although we cannot solve the posterior
distribution p(z,θ,φ | m,α,β) in practice. Consequently, under the assumption that factorization is
possible, we aimed to construct an approximate distribution:

q(z,θ,φ) :=

S
∏

s=1

ns
∏

i=1

q(zs,i)

S
∏

s=1

q(θs)

K
∏

k=1

q(φk) (1)

KL divergence between an approximate distribution and true distribution is considered quality of
approximate posterior distribution, but it includes the posterior distribution p(z,θ,φ | m,α,β) explicitly
so that we cannot solve it. Thus, using the property for log-marginal likelihood about z:

KL[q(z,θ,φ) || p(z,θ,φ | m,α,β)]

= log p(m | α,β)− F [q(z,θ,φ)] (2)

then, we can formulate an optimization problem for an approximate posterior distribution as follows.

q∗(z,θ,φ) := arg max
q(z,θ,φ)∈Q

F [q(z,θ,φ)] (3)

In the above formula, Q means the parameter set that can be factorized, and F [q(z,θ,φ)] is called
“variational lower bound: VLB” which means the lower bound of log-marginal likelihood log p(m | α,β).
KL divergence takes a non-negative value, and log-marginal likelihood is independent of the approximate
posterior distribution, so that maximization of VLB is equal to minimization of KL divergence.
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According to Bayes’ theorem, VLB is computed as follows:

F [q(z,θ,φ)]

=

∫

∑

z

q(z,θ,φ) log
p(m, z,θ,φ | α,β)

q(z,θ,φ)
dθdφ

=

∫ S
∑

s=1

ns
∑

i=1

q(zs,i)q(θs)q(φk) log p(ms,i | zs,i,φ)p(zs,i | θs)dθdφ

−

S
∑

s=1

ns
∑

i=1

K
∑

k=1

q(zs,i = k) log q(zs,i = k)

−

S
∑

s=1

KL[q(θs) || p(θs | α)]−

K
∑

k=1

KL[q(φk) || p(φk | β)] (4)

where q(·) means participation of the functional argument. The approximate posterior distribution can
be factorized, then we have to extract only items that are related to q(z), q(θ) and q(φ) by means of
equation (4) and implement the update parameter for maximization of VLB according to the variational
method. Then we get the update formula:

q(zs,i = k)

∝
exp

[

Ψ(ξφk,ms,i
)
]

exp
[

Ψ(
∑V

v′=1 ξ
φ
k,v′)

]

exp
[

Ψ(ξθs,k)
]

exp
[

Ψ(
∑K

k′=1 ξ
θ
s,k′)

] (5)

q(θs | ξ
θ
s) =

Γ(
∑K

k=1 ξ
θ
s,k)

∏K

k=1 Γ(ξ
θ
s,k)

K
∏

k=1

θ
ξθs,k−1

s,k (6)

q(φk | ξφk ) =
Γ(

∑V

v=1 ξ
φ
k,v)

∏V

v=1 Γ(ξ
φ
k,v)

V
∏

v=1

θ
ξ
φ

k,v
−1

k,v (7)

where Ψ(·) means the Digamma function and Γ(·) means the Gamma function, respectively. Then, ξθ

and ξφ are parameters when q(θ) and q(φ) are regarded as a Dirichlet distribution, they are calculated
as follows.

ξθs,k = Eq(zs)[ns,k] + αk

=

ns
∑

i=1

q(zs,i = k) + αk (8)

ξ
φ
k,v = Eq(z)[nk,v] + βv

=

S
∑

s=1

ns
∑

i=1

q(zs,i = k)δ(ms,i = v) + βv (9)

2 Learning hyperparameters

In the above discussion, all priors are treated as already known, but actually it is desirable that hyperpa-
rameters can be learned by observation. In the same way as other parameters, it is natural to use VLB
as the evaluation function for hyperparameter learning. Hence, we chose “fixed point iteration” for our
method.

In fixed-point iteration, we search for fixed point x which fulfills x = f(x) against function f(x) from
initial value x0 by iterations. In practice, we should choose a lower bound for VLB and find the fixed
point that maximizes it. The details are omitted, as we bring out items with regard to α, we obtain the
lower bound of VLB:

F [q(z,θ,φ)] ≥

S
∑

s=1

[

−bs

K
∑

k=1

αk +

K
∑

k=1

as,k logαk

]

+ (const.) (10)
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• as,k = (Ψ(E[ns,k] + α̂k)−Ψ(α̂k)) α̂k

• bs = Ψ
(

ns +
∑K

k=1 α̂k

)

−Ψ
(

∑K

k=1 α̂k

)

where α̂ means α before an update. Then, here is the update of α to maximize the lower bound of VLB.

αk =

∑S

s=1[Ψ(E[ns,k + α̂k])−Ψ(α̂k)]α̂k

∑S

s=1

[

Ψ(ns +
∑K

k=1 α̂k)−Ψ(
∑K

k=1 α̂k)
] (11)

Likewise, β is updated as

βv =

∑K

k=1[Ψ(E[nk,v + β̂v])−Ψ(β̂v)]β̂v

∑K

k=1

[

Ψ(
∑V

v=1 E[nk,v] + β̂v)−Ψ(
∑V

v=1 β̂v)
] (12)

where β̂ means β before an update as well as α̂. In summary, the algorithm that we used is shown as
Algorithm 1.

Algorithm 1 Variational Bayes for LDA

1: Initialize randomly, q(z), α and β (q(·) means responsibility of a functional argument)
2: while do
3: Update q(zs,i) (1 ≤ s ≤ S, 1 ≤ i ≤ ns) ⊳ Eqs (5), (8) and (9)
4: Update q(θs) (1 ≤ s ≤ S) ⊳ Eqs (6) and (8)
5: Update q(φk) (1 ≤ k ≤ K) ⊳ Eqs (7) and (9)
6: Update αk, βv (1 ≤ k ≤ K, 1 ≤ v ≤ V ) ⊳ Eqs (11) and (12)
7: end while
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3 Supplementary results

Note that higher resolution figures shown in this supplementary results are available at http://www.f.
waseda.jp/mhamada/MS/index.html.

3.1 Results on simulated data

Figure S1: All the predicted signatures and the corresponding COSMIC Known Signatures
for simulated data with an appropriate condition (S = 1000, ns = 2000, αk = 0.1). The 1st, 3rd,
and 5th rows indicate the mutation distributions of predicted mutation signatures by VB-LDA, whereas
the 2nd, 4th, and 6th rows show the corresponding distributions of the known COSMIC signatures. Red,
green, blue, cyan, magenta, and yellow bars show a set of [C>A], [C>G], [C>T], [T>A], [T>C], and
[T>G] substitutions (in M1), respectively.
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Figure S2: Mutational distribution of the samples whole/targeted sequenced. The upper graph
shows the distribution of whole sequenced samples, and lower one shows that of targeted sequenced
samples, respectively. In each graph, the horizontal axis shows the type of mutation, and the vertical
axis shows the burden of that mutation. The cosine distance between whole/targeted sequenced samples
was 0.1024.

3.2 A comparison of estimated mutation signatures with known COSMIC

signatures
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Table S1: The number of COSMIC Known Signatures that are similar to a predicted signature with dictionary M1.

Known Breast Endometrium Large intestine Liver Lung Oesophagus Prostate Skin Soft tissue Stomach Upper aerodigestive tract Urinary tract Total
1 0/0/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 3/3/3 9/9/10
2 1/1/1 1/1/1 1/1/1 3/3/3
3 0/1/1 0/1/1
4 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 5/5/5
5 0/1/1 1/1/1 1/1/3 2/3/5
6 1/1/1 1/1/1 0/1/1 1/1/1 0/1/2 3/5/6
7 1/1/1 1/1/1 0/1/1 1/1/1 3/4/4
8
9
10 1/1/1 2/2/2 2/2/2 5/5/5
11 1/1/1 1/1/1 2/2/2
12 0/1/1 0/1/1 2/2/2 2/4/4
13 1/1/1 1/1/1 1/1/1 1/1/1 0/1/1 1/1/1 1/1/1 6/7/7
14 1/2/2 0/1/1 1/3/3
15 1/1/1 0/1/1 1/1/1 1/1/1 1/1/1 1/1/1 5/6/6
16
17 1/1/1 1/1/1 1/1/1 3/3/3
18
19 1/1/1 1/1/1 2/2/2
20 0/1/1 0/1/1
21 1/1/1 1/1/1 2/2/2
22 0/1/1 1/1/1 1/2/2
23 1/1/1 1/1/1
24 1/1/1 1/1/1 2/2/2
25 0/0/1 0/0/1
26 1/1/1 1/1/1 0/1/1 2/3/3
27
28
29 1/1/1 1/1/1 2/2/2
30 1/1/1 0/0/1 1/1/2

Each cell [i, j] represents the number of predicted signatures whose cosine distance toward COSMIC Known Signature i is the smallest among all COSMIC Known Signatures in cancer type j.
The number x/y/z means the number of predicted signatures whose cosine distances to Known Signatures are less than 0.2/0.25/0.3, respectively. Empty cells mean 0/0/0.
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Table S2: The number of COSMIC Known Signatures that are similar to predicted signatures with the M2 dictionary.

Known Breast Endometrium Large intestine Liver Lung Esophagus Prostate Skin Soft tissue Stomach Upper aerodigestive tract Urinary tract Total
1 0/1/1 0/1/1
2 0/0/1 1/1/1 0/1/1 1/2/3
3 0/0/1 0/0/1
4 0/0/2 1/1/2 0/0/1 1/1/1 2/2/6
5 1/1/1 1/1/1 1/3/3 1/1/1 1/3/3 0/1/1 1/1/2 6/11/12
6 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 7/7/7
7 0/1/1 1/2/3 0/1/1 0/0/1 1/4/6
8
9 0/1/1 0/1/1
10 0/1/1 1/1/1 1/2/2
11
12 1/1/1 0/1/1 1/2/2
13
14 0/0/1 0/0/1
15 1/1/1 1/1/1 2/2/2 1/1/1 1/1/1 6/6/6
16
17
18
19 1/1/1 1/1/1 1/1/1 3/3/3
20 0/0/1 0/0/1
21 1/1/1 1/1/1 2/2/2
22 1/1/1 1/1/1
23
24 1/1/1 1/1/1
25 0/0/1 0/0/1
26
27
28
29
30 1/1/1 0/0/1 0/1/1 0/1/1 1/1/1 2/4/5

The interpretation is the same as in Supplementary Table S1. How to associate predicted signatures with M2 (which have the information about surrounding bases of a mutated base for 2
bases ahead) to COSMIC Known Signatures is described in Section 2.4.
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Table S3: The number of COSMIC Known Signatures that are similar to predicted signatures with the M3 dictionary.

Known Breast Endometrium Large intestine Liver Lung Oesophagus Prostate Skin Soft tissue Stomach Upper aerodigestive tract Urinary tract Total
1 1/1/1 1/1/1 1/1/1 1/2/2 1/1/1 1/1/1 0/0/1 1/1/1 1/1/1 3/3/3 11/12/13
2 1/1/1 1/1/1 1/1/2 1/1/2 4/4/6
3 0/1/1 1/1/1 1/1/1 2/3/3
4 1/1/1 1/1/1 2/2/2
5 1/1/1 1/3/4 1/1/1 3/5/6
6 1/1/1 1/1/2 0/0/1 0/0/1 1/1/1 1/2/2 2/2/2 2/2/2 8/9/12
7 1/1/1 0/1/1 1/1/1 2/3/3
8
9
10 1/1/1 3/3/3 1/1/2 1/1/1 6/6/7
11 1/1/1 1/1/1
12 1/1/1 1/1/1 2/2/2
13 1/1/1 1/1/1 1/1/1 1/1/1 0/0/1 1/1/1 1/1/1 6/6/7
14 1/1/1 0/0/1 1/1/2
15 1/2/2 1/1/2 1/1/1 1/1/1 2/2/2 1/1/1 7/8/9
16 0/1/1 0/1/1
17 1/1/1 1/1/1 1/1/1 3/3/3
18 1/1/1 1/1/1
19 1/1/1 1/1/1
20 1/1/1 1/1/1
21 1/1/1 1/1/1 2/2/2
22 1/1/1 1/1/1 2/2/2
23 2/2/2 2/2/2
24 1/1/1 1/1/1 2/2/2
25 0/0/1 0/0/1
26 1/1/1 1/1/1
27
28 1/1/1 1/1/1
29 1/1/1 1/1/1
30 0/1/1 1/1/1 1/1/1 2/3/3

The interpretation is the same as in Supplementary Table S1. How to associate the predicted signatures with M3 (which have not only substitutions but also indels as mutation
types) to COSMIC Known Signatures is described in Section 2.4.
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Table S4: The number of COSMIC Known Signatures that are similar to predicted signatures with the M4 dictionary.

Known Breast Endometrium Large intestine Liver Lung Esophagus Prostate Skin Soft tissue Stomach Upper aerodigestive tract Urinary tract Total
1 0/1/1 0/1/1
2 0/0/1 0/1/1 0/1/1 0/2/3
3 0/0/1 0/0/1
4 1/1/3 0/0/1 1/1/1 2/2/5
5 0/1/1 0/1/1 1/4/4 0/2/2 0/1/1 1/1/2 0/0/1 2/10/12
6 1/2/2 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/2 3/3/3 10/11/12
7 0/1/1 0/2/3 0/1/1 0/0/1 0/4/6
8
9
10 0/1/1 0/1/1 0/2/2
11
12 1/1/1 1/1/1 1/1/1 3/3/3
13 0/0/1 0/0/1
14
15 1/1/1 1/1/1 2/2/2 0/1/1 0/1/1 1/1/1 5/7/7
16
17
18
19 1/1/1 1/1/1 1/1/1 0/1/1 0/0/1 1/1/1 4/5/6
20
21 1/1/1 1/1/1 2/2/2
22 1/1/1 1/1/1
23
24 1/1/1 1/1/1
25 0/1/1 0/1/1
26
27
28
29
30 0/1/1 0/1/1 0/1/1 1/1/1 1/4/4

The interpretation is the same as in Supplementary Tables S1, S2, and S3. How to associate the predicted signatures with M4 to COSMIC Known Signatures is described in Section 2.4.

9



Figure S3: (A) Signature activity in breast cancer with the M1 dictionary. The horizontal axis shows
samples, and the vertical axis shows the activity of signatures in sample s (= θs), where the colors in each
bar indicate mutation signatures. (B) Transition of variational lower bound by the number of signatures.
(C) Predicted mutation signature 1. (D) The COSMIC known signatures 2 and 3.

10



3.3 Novel mutation signatures found in this study

Figure S4: Clustering results for predicted mutation signatures and COSMIC known signatures with the
M1 dictionary.

11



Figure S5: Clustering results for the predicted mutation signatures with the M2 dictionary.
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Figure S6: Clustering results for the predicted mutation signatures with the M3 dictionary.
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Figure S7: Clustering results for the predicted mutation signatures with the M4 dictionary.
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Figure S8: Signature activities of seven clusters. Each subfigure shows the signature activities of
interesting clusters discussed in the main text. One scatter point corresponds to one sample, and the
vertical axis represents relative contribution of the signature (i.e. signature activity).
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Figure S9: M2 Cluster-1 & M4 Cluster-12. These signatures are found in the stomach and esophagus.
Four bar graphs that are coded into 6 colors show the proportion of only a substitution mutation in M2

and M4. Mutation contexts of substitutions in M2 and M4 are transformed to those of M1, and the
horizontal axis means the type of substitution in M1. Besides, in the results with M4 (arranged on
the right-hand side), the Indel (insertions and deletions) panel under the substitution panel shows its
proportion by each mutation context, so that the horizontal axis means mutation types of MI discussed
in the main text. (A) These signatures have peaks at C[T>C]X and C[T>G]X in common as the
arrows indicate. (B) Moreover, they have some indels with M4. (C) In addition, they have peaks at
XC[T>G]XT when they are analyzed with a mutation context in detail.
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Figure S10: M4 Cluster-11. (A) These signatures are found in many organs such as breasts, the
endometrium, large intestine, and stomach, then they have peaks at T[C>A]X and T[C>T]X in common
as the arrows indicate. (B)In the figure showing the context in detail, the horizontal axis means a
mutation context of C>A and C>T substitutions in M4. Readers can see that any signature has large
peaks at TT[C>A]XT and TT[C>T]XG particularly.

Figure S11: Signature Activity in large intestine using M4. The figure on the left shows the
signature activity, the view is similar to Suppl. Fig. S3A. The two figures on the right show the notable
signatures contained in M4 Cluster-11 (Suppl. Fig. S10). The activities of these two signatures are
clearly different from each sample, suggesting the existence of a mutational process with multiple kinds
of mutational distributions like AID/APOBEC family (i.e. Known Signature 2 and 13).
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Figure S12: M2 Cluster-7. (A) These signatures are found in many organs such as the stomach,
large intestine, and endometrium; they have peaks at G[C>T]X in common as the arrows indicate. In
addition, only the predicted signature in the endometrium has peaks at A[C>T]X. (B) When we see the
mutation context in detail as is the case for Supplementary Fig. S10, signatures from the stomach and
large intestine have large peaks at GG[C>T]XG and TG[C>G]XG particularly.

Figure S13: M2 Cluster-9. (A) These signatures are found in the upper aerodigestive tract, lungs, and
skin; any extracted signature has peaks at C[C>T]X and T[C>T]X as the arrows show. In particular, this
tendency is strong when the 3 ′ adjacent base of the mutation is thymine. (B) To see mutation context
in detail as in Supplementary Fig. S10, there are peaks at XT[C>T]XC. (C) The COSMIC Known
Signature most similar to these predicted signatures is Signature-7, which is associated with ultraviolet
light as its mutational process (e.g., cosine distance between Predicted Signature 2 from lungs with M2

and COSMIC Known Signature 7 is 0.2076).
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Figure S14: M4 Cluster-8, where mutational distributions of three predicted signatures are shown.

Figure S15: Two predicted mutation signatures (Predicted Signature 6 in lung with M1 and Predicted
Signature 1 in endometrium with M2). The closest cosine distances to known signatures are more than
0.2. (A) Signature activities of the signatures, where both the median and mean values are larger than
0.05. (B) Mutational distribution of Predicted Signature 6 in lung with M1, where peaks at C[C>A]A
and T[C>A]G are observed. (C) Mutational distribution of Predicted Signature 1 in endometrium with
M2. This signature forms a cluster with Predicted Signature 5 in large intestine with M2 whose median
and mean activities are 0.0413 and 0.0561, respectively. (D) The detailed mutational context for C to A
mutation of Predicted Signature 1 in endometrium (C), where the peak of XX[C>A]XT appears. Higher
resolution figures are available at the online material.
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Figure S16: (A) Signature activity in soft tissue using M2 mutation dictionary. (See the caption in Fig.
S3A.) In most samples, one of predicted signature 1, 2 and 3 is dominant, which is associated with the
type of site subtype information (Fibrous tissue and uncertain origin, striated muscle and blood vessel) in
the sample. (B) Marginalized mutational distribution (onto the M1 dictionary) of predicted signatures
1,2,3 and 4 in soft tissue with the M2 dictionary. Although the mutational distributions of predicted
signature 1,3 and 4 look similar, the distributions are different before marginalization (see Supplementary
HTML materials); This difference might reflect the features of each site subtype.
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4 Comparison with other method

First of all, because EMu performs model selection using BIC as described in Section 1, VB-LDA is ex-
pected to be able to estimate the correct number of signatures more accurately in simulation experiments.
Therefore, we applied EMu to the simulated dataset (used in Section 3.1) in which VB-LDA estimated the
correct number of signatures. In the subsequent experiment, to avoid the local minimum, we allocated the
initial value of the parameter 50 times for all the methods and employed the parameter whose BIC value
was the best. In the simulation, we prepared two datasets, which are introduced in Section 3.1: “Data1”
with the number of mutations in each sample ns = 400 and “Data2” with ns = 2000. Furthermore, for
both datasets, the number of samples S was 1000, and hyperparameter α was 0.1. We confirmed that
VB-LDA estimated the correct number of signatures (Table 1). Conducting computational experiments
under these conditions, we revealed that the predicted number of signatures deviated from the correct
number (K = 10) when EMu was used (Supplementary Table S5). Nonetheless, as mentioned in the
original paper on EMu, setting an appropriate “mutational opportunity” greatly improves the ability to
estimate the number of signatures; therefore, when we use simulation data that do not allow EMu to
use the mutational opportunity, we cannot claim that VB-LDA is superior to EMu. In addition, the
probabilistic model assumed by EMu and that assumed by LDA are different. Therefore, we compared
VB-LDA with another model selection by BIC using probabilistic latent semantic analysis (PLSA), which
is similar to LDA. PLSA is a model that Dirichlet distribution of a prior is excluded from LDA and es-
timates the parameters by the EM algorithm and derives BIC (Supplementary Fig. S17). As a result,
PLSA estimated K(the predicted number of mutation signatures) = 6 in Data1 where the number of
mutations is small (ns = 400) but estimated K as 10 (the correct number) in Data2 where ns = 2000.
In addition, all the signatures predicted by PLSA in Data2 were associated one to one with the correct
signature set. Accordingly, we believe that it is possible to extract signatures with high precision even
for samples with a small number of mutations by model selection using an appropriate prior distribution
and variational approximation (used in VB-LDA).

Table S5: A comparison of VB-LDA, EMu, and PLSA on simulated data

Method Number of signatures (Data1) Number of signatures (Data2)
VB-LDA 10 10

EMu (uniform) 27 29
PLSA 6 10

Data1 and Data2 are artificial datasets for simulation and were created by means of the generation process of LDA and COSMIC

Known Signatures as in Subsection 3.1. In both datasets, the correct number of signatures is 10, the number of samples is 1000,

and hyperparameter α is 0.1. In addition, the numbers of mutations for each sample were 400 and 2000 for Data1 and Data2,

respectively. VB-LDA was able to estimate the correct number of signatures for both datasets (as also seen in Table 1).

Regarding EMu, although correction of a mutational opportunity was not performed, it estimated the signature numbers that

deviated from the correct one. In model selection by BIC using PLSA, which is a model similar to LDA, the correct number of

signatures was estimated only in Data2.

Figure S17: The graphical model of PLSA. PLSA is a model where the Dirichlet distribution of the
prior is excluded from LDA.

Next, we performed computational experiments with real data. Here, we used M1 (the number of
mutational types is 96) as a mutation dictionary and prepared the breast and lung datasets introduced
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in VB-LDA analyses (Subsection 3.2.1). We chose EMu as the comparison method, and tested three
mutational opportunities: The first one is a uniform distribution (used in the simulation experiment), and
the second and third ones were taken from the “human-exome” and “human-genome” files (provided by
the authors, which are optimized for each sequencing strategy). According to the original EMu software,
a mutation opportunity is created from copy number variations of each sample. Because it is difficult
to obtain copy number variation information from COSMIC data, we used such mutation opportunities.
For verification of the ability to detect signatures, we focused on how many of each method can extract
the signatures that are similar to COSMIC Known Signature, which are confirmed in each primary lesion
(whether or not the signatures are similar was determined by whether the cosine distance between them
was less than 0.2). The results of estimation of the signature number are listed in Supplementary Table
S6A. In the model selection using a mutation opportunity in EMu [see columns “EMu (human-exome)”
and “EMu (human-genome)” in the table], small numbers of signatures close to the result of VB-LDA
were estimated, but “EMu(uniform)”—where correction was not performed—tended to choose a large
number of signatures. A list of predicted signatures similar to COSMIC Known Signatures is described in
Supplementary Tables S6B and S6C. EMu could predicted the signatures that are not seen in the result of
VB-LDA, and there were also signatures that could be predicted only by VB-LDA. Furthermore, despite
not being reported in COSMIC, a signature identified by both EMu and VB-LDA exists (it is Predicted
Signature 6 in the breast dataset with M1, and the cosine distance with the corresponding signature
predicted by EMu is ∼0.002). These findings are likely to be due to the difference in the method for
creating a dataset.

In summary, from the viewpoint of model selection, we confirmed via the simulation that VB-LDA is
superior to EMu (if a mutation opportunity is not considered) and to PLSA. Nonetheless, because EMu
does not set the mutation opportunity necessary to demonstrate its performance, it is difficult to argue
which model is better. In addition, it was difficult to verify the interpretability of the predicted signatures
other than by comparison with COSMIC Known Signatures because we do not know the “correct” set of
mutation signatures.

Table S6: A comparison of VB-LDA and EMu on real data

(A) The predicted number of signatures
Data VB-LDA EMu (human-exome) EMu (human-genome) EMu (uniform)

breast (M1) 7 5 5 9
lung (M1) 6 4 4 22

(B) Predicted signatures that are similar to COSMIC Known Signatures seen in the breast dataset

COSMIC Known Signature 1 2 3 5 6 8 10 13 17 18 20 26 30
VB-LDA ◦ ◦ ◦ ◦

EMu (human-exome) ◦ ◦
EMu (human-genome) ◦ ◦

EMu (uniform) ◦ ◦ ◦ ◦ ◦

(C) Predicted signatures that are similar to COSMIC Known Signatures seen in the lung dataset

COSMIC Known Signature 1 2 3 4 5 6 13 15 17
VB-LDA ◦ ◦ ◦ ◦

EMu (human-exome) ◦ ◦
EMu (human-genome) ◦

EMu (uniform) ◦ ◦ ◦

As verification on a real dataset, we used samples of breast and lung tissues in M1. For EMu, opportunity types are shown in

parentheses near each method name; “human-exome” and “human-genome” were prepared in advance and are optimized for each

sequencing strategy; “uniform” yields a result when EMu is employed without the correction by opportunity. (A) shows the

signature number predicted by each method for each dataset. (B) and (C) present the predicted signatures that are similar to

COSMIC Known signatures seen in each primary lesion. The number in the top row represents the list of COSMIC Known

Signatures that are considered found in each primary lesion, and the circles in each cell indicate that the predicted signatures that

are similar to the corresponding known signatures were extracted (as also confirmed in Supplementary Figs. S18 and S19).
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(A) With human-exome as mutation opportunity.

(B) With human-genome as mutation opportunity.

Figure S18: Signatures predicted by EMu in the breast dataset.
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(A) With human-exome as mutation opportunity.

(B) With human-genome as mutation opportunity.

Figure S19: Signatures predicted by EMu in the lung dataset.
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5 A new Bayesian hierarchical model for extraction of signa-

tures

We are devising a new model that can extract signatures without separating samples for each primary
lesion (Figure S20).

Figure S20: The new Bayesian hierarchical model. This model is based on LDA, but the Dirichlet
distribution of a prior is hierarchized. L and Sl represent the number of primary lesions and the number of
samples for corresponding primary lesion, respectively. The value of αl differs between primary lesions,
so that the model can capture the bias of the activity for mutational process by each primary lesion.
In addition, by analyzing all samples at once, researchers can avoid the following problem: mutational
distributions of signatures derived from the same mutational process are slightly different among all
primary lesions, as seen in other studies.
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