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Supplementary Note 

Extended description of Chicdiff methodology 

Input data. Chicdiff takes as input the output files produced by the Chicago pipeline 
containing interaction-level estimates of the expected read count. Since Chicago 
uses several filtering steps, such as removing data for sparse baits, Chicdiff 
additionally expects a table of unfiltered read counts per fragment pair  
(.chinput files that are also used as input to the Chicago package). Finally, Chicdiff 
requires a list of interactions of interest, such as, for example, those with Chicago 
scores above a predefined cutoff (typically 5) in at least one replicate. 

Definition of the region universe. The first step is to define the features at the other 
end (OE) of each interaction of interest (the “region universe”) to be used in the 
analysis. For most OEs, the regions are produced by extending the OE by a 
predefined number of fragments (by default, 5) in each direction. Overlapping regions 
generated from adjacent interactions of interest are allowed. Fragment extension is 
terminated if it hits the fragment adjacent to the bait fragment or the end of the 
chromosome. 

Generation of the scaling matrix. Sample-level normalisation factors sk are 
generated by DESeq2 as follows: 

sk= median Xik/Xi
R,  

where Xik are read counts for a given interaction i and sample k, and Xi
R

 are those for 

the same interaction in the virtual “reference sample”: 
 Xi

R = (∏k Xik)
1/m, where m is 

the total number of samples across all conditions.  
Additionally, Chicdiff computes interaction-level normalisation factors uik. 

These are based on the estimates for the expected counts generated by the 
Brownian motion (Bik) and technical noise (Tik) for the corresponding bait-region 
interaction by the Chicago analysis of individual replicates: 

uik
raw = 1/(Bik+Tik), 

 uik = uik
raw / (∏k uikraw)1/m. 

 



 

For each interaction i and sample k, Chicdiff then seeks a mixture of 
sample-level and interaction-level normalisation factors (sk and uik):  
 

 Sik
raw = skθ + uik(1-θ),  

       Sik = Sik
raw

  / (∏k Sik
raw)1/m. 

The mixing parameter θ is chosen such as to minimise the overall spread of 
normalised read counts at each interaction across all replicates and conditions. In 
practice, we minimise the sum of deviances of intercept-only DESeq2 regression 
models fitted at each interaction to the normalised read counts Xik

norm = Xik/Sik(θ). For 
speed, we iterate over a discrete range of θ, rather than minimising θ formally; 
minimising median deviance instead of the sum of deviances led to highly similar 
results (data not shown). For interactions, for which B and T are not available in at 
least one replicate and condition, because data for them were filtered out by Chicago 
(i ∈ Ifilt), sample-level scaling factors sk  are used instead (in other words, we override 
θ to 1 for all i∈ Ifilt).  

This approach can be seen as similar in spirit (although not identical) to a 
shrinkage of interaction-level scaling factor estimates towards a “global” estimator, or 
simply as combining two estimators of the same parameter in the spirit of model or 
forecast averaging (Lavancier and Rochet, 2016).  

Differential testing. Matrices of interaction-level counts and scaling factors are 
submitted to DESeq2 (Love et al., 2014) for the moderated dispersion estimation 
procedure, followed by negative binomial regression using experimental condition as 
the explanatory variable. Wald test p-values from this regression are submitted to the 
weighted multiple testing procedure as described below. 

Weighted multiple testing procedure. Since the statistical power of the analysis 
(and likely also the true positive rate) strongly depends on distance, we weight 
p-values obtained in differential testing using the log-transformed interaction distance 
as the covariate, using an approach implemented in the R package IHW (Ignatiadis 
et al., 2016).  

IHW expects the p-values to be uniform under the null; however in practice, 
this is often not the case for the interactions selected for Chicdiff testing due to 
selection bias. Therefore, we estimate weights on a ‘weights training control set’ of 
interactions that are randomly sampled from the full Capture Hi-C dataset in a 
manner that ensures a sufficient representation of interactions across the whole 
range of distances, in terms of the number of spanned restriction fragments (based 
on the normal distribution with a mean of zero and a standard deviation equal to one 
third of the maximum distance observed for interactions in the test set). An example 
weight profile learned on the control set is shown in Figure S10. Interactions from the 
weights training set are pooled into regions, normalised and assigned p-values in the 
same way as those in the test set. The only exception is that the scaling factor mixing 
parameter θ is not re-estimated, and instead the value of θ optimised on the test set 
is used in normalisation.  
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P-values for interactions in the test set are adjusted based on the 
distance-dependent weights learned this way, followed by Benjamini-Hochberg (BH) 
multiple testing correction. 

Prioritisation of fragment-level interactions. It may be desirable to obtain 
information at the level of individual fragments, as opposed to pooled regions 
detected as differential. To this end, Chicdiff first combines the p-values for all 
regions corresponding to a given fragment-level interaction. By default, it takes the 
minimum BH-adjusted weighted p-value over all regions, but incorporates the option 
to combine p-values formally using the Harmonic Mean P-value approach for 
dependent tests (Wilson, 2019), which is slightly more conservative (Figure S11).  To 
prioritise the potential ‘driver’ interactions within each region, we provide the 
functionality to filter them by the differences in mean asinh-transformed Chicago 
interaction scores between conditions. Asinh transformation is performed to 
emphasise differences within the low range of scores (such as those between scores 
of 0 and 6, given the typically used Chicago score cutoff of score>=5), as such 
differences are more interpretable compared with those in the high range (such as 
those between scores of 20 and 25). 

Visualisation of the results. Chicdiff provides a plotting function to visualise the 
detected differentially interacting regions. Interaction-level mean read counts for a 
given bait are plotted for the two conditions as mirror images.  Differentially 
interacting regions are depicted in the space between the two profiles, colour-coded 
by adjusted weighted p-value. This plotting function was used to generate Figure 1. 

Chicdiff implementation and resource requirements 
Chicdiff is implemented as an R package using Bioconductor R packages 

Chicago, DESeq2 and IHW as key dependencies, requiring R version >=3.4.3. 
Resource requirements differ depending on the number of replicates and the read 
coverage of the samples. The high-coverage example dataset in this paper (3 
replicates of monocytes and 4 replicates of naive CD4 T cells, with each replicate 
sequenced across 3 lanes on an Illumina HiSeq2500 machine) uses ~40 Gb RAM 
and takes ~2 hrs to complete on a standard Linux compute node. For training 
purposes, we provide a subset of the data from the use case (chr19 only; two 
replicates for each condition) in the data package ChicdiffData, which uses ~0.6 Gb 
RAM and takes ~5 min to process with Chicdiff on a standard laptop machine.  

Data and code for the use example 
The datasets for the use example and the code used to run Chicdiff and 

generate figures have been deposited to https://osf.io/y9nb5/. 
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Figure S1. Schematic of the Chicdiff analysis approach. See main text and 
Supplementary Note for details. 
 
  

 



 

 
Figure S2. Heatmap of a subset of differential and non-differential interactions. 
Heatmap presenting a random subset of 1000 promoter interactions mapping within 
the detected differentially interacting regions (min [adjusted weighted p-value across 
a set of regions containing the fragment of interest] < 1e-3) between Monocytes and 
naive CD4+ T cells, as well as 3000 interactions not detected as differential  
(min [adjusted weighted p-value across a set of regions containing the fragment of 
interest] > 0.5). Asinh-transformed Chicago scores are colour-coded on a scale from 
white to dark blue. Strips to the left of the heatmap demarcate interactions mapping 
within differentially interacting regions, with a higher Chicago score observed in 
monocytes (dark green) and naive CD4+ T cells (purple), respectively.  
 
 
  

 



 

 

 
 
Figure S3. Enrichment of Chicdiff-detected differential interactions for 
differential enhancers. A ROC curve showing the enrichment of Chicdiff-detected 
differential interactions between CD4 T cells and monocytes (|△ mean 
asinh-transformed Chicago scores between conditions|>1) for differential versus 
invariant enhancers in these cell types. As “true positives”, we considered 
interactions detected by Chicdiff at a given level of significance that contained an 
enhancer showing differential activity in the same direction (e.g. an enhancer active 
in monocytes and not in CD4 T cells mapping to a non-baited fragment involved in a 
monocyte-specific interaction). As “false-positives” in this analysis, we considered 
interactions detected as differential but associated with invariant enhancers. 
BLUEPRINT enhancer annotations at significant interactions were taken from 
Javierre et al., 2016. 
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Figure S4. Differential promoter interactions associate with differential gene 
expression of the respective genes. Boxplots showing changes in the expression 
levels (on the log scale, geLFC) for genes associated with significant vs 
non-significant differential interactions between promoters and pooled regions 
detected with Chicdiff (adjusted weighted p-values below 1e-5 and above 0.05, 
respectively), and having a log2 fold change in normalised interaction read counts 
(iLFC) of at least 1 in either direction. The distributions of geLFCs of genes 
associated with significant differential interactions were shifted in the same direction 
as the respective iLFCs (Wilcoxon test p-value=1e-113; for genes with more than one 
associated differential interaction, one interaction was chosen for testing to avoid 
inflating the significance due to correlated observations). In contrast, the distributions 
of geLFCs for genes associated with non-significantly different interactions showed 
only a very minor shift that was in the opposite direction with respect to the 
respective iLFCs. Outliers were omitted for clarity. MMSEQ-estimated relative gene 
expression levels for monocytes and naive CD4+ T cells were from the BLUEPRINT 
project as released in Javierre et al., 2016.   
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Figure S5. Increase in sensitivity owing to pooling adjacent fragments into test 
regions. Fraction of interactions with |△ mean asinh-transformed Chicago scores 
between conditions|>1 that were detected as differential over a range of 
log10-transformed adjusted weighted p-value thresholds (orange: pooling five 
adjacent fragments each way into test regions; purple: no pooling). To minimise the 
effect of ‘passenger’ interactions within the pooled regions, we considered only 
‘solitary’ interactions, whereby only a single interaction had the above difference in 
Chicago scores, and at most one was detected as differential without fragment 
pooling at a given log p-value threshold.  
  

 



 

 
 
Figure S6. Comparison of interactions detected using Chicdiff versus standard 
DESeq normalisation. The means of |△ mean asinh Chicago scores between 
conditions| across interactions that exceed a given log10 p-value cutoff with Chicdiff 
normalisation only (brown; Chicdiff-estimated scaling factor mixing parameter 
θ=0.75), DESeq normalisation only (purple; equivalent to θ=1) or both approaches. 
These results suggest that while the strongest differential signals are generally 
detected irrespective of the normalisation approach, those detected with Chicdiff 
normalisation alone are likely to be stronger than those detected with DESeq alone. 
The figure is based on unweighted, unadjusted p-values to avoid confounding by 
multiple testing treatment (using weighted, adjusted p-values produces a highly 
similar result; not shown).  
  

 



 

 
 
 

 
 
Figure S7. Differences in the expression of genes associated with differential 
interactions detected with Chicdiff and standard DESeq normalisation. Boxplots 
showing changes in the expression levels (on the log scale, geLFC) for genes 
associated with significant differential interactions between promoters and pooled 
regions detected with Chicdiff normalisation, DESeq normalisation or both 
approaches, respectively, (adjusted weighted p-value cutoff 1e-3), and having a log2 

fold change in normalised interaction read counts (iLFC) of at least 1 in either 
direction. The distributions of geLFCs for genes associated with significant differential 
interactions detected with either Chicdiff normalisation alone or both normalisation 
approaches, the geLFC distributions for the associated genes were shifted in the 
same direction as iLFCs (Wilcoxon test p-values of 5e-16 and 2e-74, respectively; for 
genes with more than a single associated differential interaction, one interaction was 
chosen for testing to avoid inflating the significance due to correlated observations). 
In contrast, the distributions of geLFCs for genes associated with differential 
interactions detected with DESeq normalisation alone were generally similar 
irrespective of the direction of the respective iLFCs (Wilcoxon test p-value=0.92). 
Outliers were omitted for clarity. MMSEQ-estimated relative gene expression levels 
for monocytes and naive CD4+ T cells were from the BLUEPRINT project as released 
in Javierre et al., 2016. 
 
 
 

 
 

  

 

https://paperpile.com/c/EwmYJg/ABHT
https://paperpile.com/c/EwmYJg/ABHT
https://paperpile.com/c/EwmYJg/ABHT


 

 

 
 

Figure S8. P-value weighting prioritises differential interactions associated 
with a higher mean read count. The mean base mean levels of interactions 
detected over a range of thresholds on either unweighted (orange) or weighted 
(brown) log10 p-values. Interactions with log10-p-values below –10 are not shown, as 
differences between the mean counts for weighted and unweighted p-values in this 
range are nearly indistinguishable, as can be extrapolated from the observed trend. 
 
  

 



 

 
 
Figure S9 Differential promoter interactions detected with p-value weighting 
associate with genes showing larger differences in expression. Boxplots 
showing changes in the expression levels (on the log scale, geLFC) for genes 
associated with significant differential interactions between promoters and pooled 
regions detected with or without p-value weighting, or with both approaches (adjusted 
p-value<1e-3), and having a log2 fold change in normalised interaction read counts 
(iLFC) of at least 1 in either direction. The distributions of geLFCs for genes 
associated with significant differential interactions were shifted in the same direction 
as the respective iLFCs. This shift was markedly stronger when interactions were 
detected using weighted p-values (or both approaches) compared with those 
detected without weighting. Outliers were omitted for clarity. MMSEQ-estimated 
relative gene expression levels for monocytes and naive CD4+ T cells were from the 
BLUEPRINT project as released in Javierre et al., 2016.  
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Figure S10. P-value weights identified by IHW using interaction distance as a 
covariate. The p-value weights (Y axis) learned by the IHW algorithm for each 
stratum of log-interaction distance over five cross-validation folds. The main plot has 
been generated by the IHW package invoked by Chicdiff. The inset shows the 
average interaction distance (log10-bps) for each stratum. 
  

 



 

 
 
 

 
 
Figure S11. Comparison of two strategies for inferring fragment-level p-values. 
A scatterplot of fragment-level p-values for interactions on chr19 combined from the 
pooled region-level weighted, adjusted p-values using either the minimum p-value (X 
axis) or the harmonic mean approach (Wilson, 2019) (hmp, Y axis). The y=x line is 
shown in red.  
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Table S1. Summary statistics for the use example 
 

Samples Naive CD4 T cells (4 replicates) vs monocytes (3 replicates)  

Interactions tested 831,052  
(Chicago score > 5 in at least one replicate and cell type) 

Fragment pooling 5 each way None 5 each way None 

Normalisation Chicdiff  
(optimised θ=0.75) 

Standard DESeq2 
(equivalent to θ=1) 

No. differential regions 
(unweighted padj<0.05)  

262,398 81,064 230,294 74,164 

No. differential regions 
(weighted padj<0.05)  

208,187 71,257 184,583 69,476 

No. prioritised  
differential fragments  

(min weighted padj<0.05;  
|△ mean asinh- 

Chicago score|>1)  

122,274 56,536 106,523 58,049 
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