VarMap Supplementary Information

Method

Upload file

Users can upload a file of genomic coordinates to be analyzed by VarMap via the "Upload" button. The file should be a tab-separated file in either 4- or 5-column format (the latter corresponding to .vcf format):

4-column format

Chromosome	Coords	Reference base	Variant base
1	1014042	G	А

5-column (.vcf) format

Chromosome	Coords	Identifier	Reference base	Variant base
1	1014042	rs143888043	G	А

Chromosome: The chromosome number (1-22, X, Y, or MT).

Coords: DNA coordinates of the base – must be numeric.

Identifier: An optional identifier (e.g. RS number), which is ignored by the processing, but appears in the output for reference.

Reference base: The DNA base (A, C, G, or T) at the given coordinate position. If a sequence of bases is entered (e.g. corresponding to a deletion), VarMap will return the VEP results, but will not attempt to map onto a protein sequence or 3D structure.

Variant base: The DNA variant of interest (A, C, G, or T). Again, if a sequence of bases is entered (e.g. corresponding to an insertion), VarMap will return the VEP results, but will not attempt to map onto a protein sequence or 3D structure.

The uploaded file can contain additional tab-separated columns, but these will be ignored by VarMap. A heading line in the input file is optional and will also be ignored. As the upload of very large files can take a long time – and possibly result in the server timing out – it is recommended that the file be stripped of surplus data columns prior to upload. The maximum number of coordinates recommended is 50,000.

Selection and checking of build

Users can specify which genome build their DNA coordinates are taken from – either GRCh37 or GRCh38 – by clicking the appropriate radio button on the input form. If there are enough coordinates in the file (i.e. at least 20), VarMap will check the build automatically. It does this by taking a random set of 20 coordinates from the input file and checking the original base against that returned by the Ensemble REST API(Cunningham et al., 2019) for builds GRCh37 and GRCh38. The build giving the best agreement is then used for the entire set of coordinates in the file. Any coordinates then found not to match this build are flagged with a warning.

VEP

The first step in the process is to call VEP(McLaren et al., 2016). If the input contains fewer than 20 entries, the VEP API is called for each coordinate in turn, and progress is reported on screen. For larger data sets, the user is asked for their e-mail address so that the processing can be performed in batch mode on our processor farm using an in-house installation of VEP. A link to the results is then e-mailed to the user when all processing is complete.

VEP output

For each input coordinate, VEP returns the corresponding list of transcripts, identified by an ENST code, together with additional data (see table below). VarMap identifies the protein isoform corresponding to each ENST transcript using a list of transcript-isoform pairs (where the translated transcript sequence is identical to an isoform sequence) provided by

UniProt(UniProt, 2019). Given the isoform, the following data can be obtained: UniProt isoform accession number, amino acid position, amino acid change, gene symbol, PolyPhen(Adzhubei et al., 2013) score, SIFT (Vaser et al., 2016)score, CADD score(Rentzsch et al., 2019) and VEP consequence. Additionally, the RefSeq(O'Leary et al., 2016) accession for each transcript, where available, is retrieved via the Ensemble BioMart (Kinsella et al., 2011) download.

UniProtKB/SWISS-PROT canonical isoform

Of particular interest are isoforms that correspond to the canonical sequences in UniProtKB/SWISS-PROT(Boutet et al., 2007), as these will have the curated annotations. Other transcripts may map to alternative isoforms, or may not map to any isoform at all (i.e. the DNA variant is not in a known coding region of the genome). Only those mapping to the UniProtKB/SWISS-PROT canonical sequences are further annotated with 3D protein structural information (if available). The canonical is found by comparing a UniProt transcript-isoform pair list with SWISS-PROT.

VEP consequences

There is a wide range of possible consequences of any given variant, as defined by VEP. Those of interest here are missense, synonymous, stop gain, or stop loss variants. Others are likely to fall in an untranslated region such as a 5'UTR or intron, and no further mapping can take place for these. For missense and synonymous variants, the corresponding amino acid returned by VEP is checked against the amino acid at the given protein position in the SWISS-PROT sequence. A mismatch suggests a problem with the identification of the canonical isoform, so a warning is returned in the output.

VarMap output

The complete list of fields returned by VarMap for each valid variant is given in Table S1. The sources of additional data are:

- *RefSeq identifier* is retrieved from the HGNC database(Braschi et al., 2019) using the ENSG gene identifier returned by VEP. This is the Select RefSeq for the gene to which the variant maps, and may represent a transcript which is not associated with the UniProt canonical isoform.
- *Residue conservation* is computed using the ScoreCons algorithm(Valdar, 2002) from the pairwise alignments obtained from a BLAST(Pearson, 2014)search of the canonical protein sequence against the UniProt Knowledgebase.
- *Natural variants* are obtained from the gnomAD database(Lek et al., 2016) processed by VarMap to map DNA coordinates to protein residue positions.
- *Diseases* associated with variants at the given residue position come from UniProt and ClinVar(Landrum et al., 2018).
- *PFAM domain data* come from the PFAM(El-Gebali et al., 2019) ftp server.
- CATH domain data come from the CATH (Dawson et al., 2017) ftp server.
- The closest PDB structure is found by a FASTA(Pearson, 2014) search of the canonical protein sequence against the protein sequences in PDBe(ww, 2019). The closest match, by *E*-value, to the region of the protein covering the residue position of interest is taken. Other sufficiently close hits (i.e. sequence identity at least 30%) are retained for the structural information they can provide. For example, the closest PDB structure might comprise just the protein, whereas the structures of other, related proteins may have information about any intermolecular interactions the residue of interest might be involved in e.g. interaction with ligand, DNA, metal, or other protein.
- Secondary structure information comes from PDBsum(Laskowski et al., 2018) and includes the secondary structure assignment (strand, helix or coil), whether the residue is a catalytic residue (as defined in M-CSA(Ribeiro et al., 2018), and whether it is part of a disulphide bond. Other information supplied by PDBsum includes any interactions the residue is involved in (i.e. with ligand, DNA, metal, or other protein).

The flow diagram below (figure S1) illustrates the VarMap pipeline and the sources of data it makes use of.

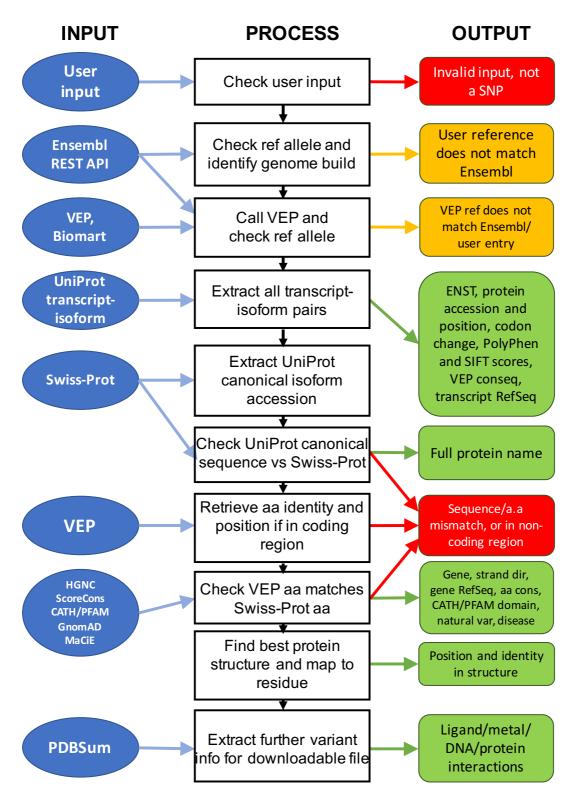


Figure S1. Schema for mapping from variant genomic coordinates to protein sequence. The blue left-most boxes show inputs from the user or databases. The middle column shows processes performed by the tool. The rightmost column shows the tool outputs with red indicating a critical error which prevents mapping, orange represents a tolerated error where mapping can still occur and green indicates successful annotation or mapping output.

CHROMOSOME	User entry	Must be 1-22 or X, Y, Mt (case insensitive)	If the chromosome is invalid the line is not run
COORDS	User entry	Must only contain numeric characters	If the coordinate is invalid the line is not run
USER_BASE	User entry	Must be a single base: A, G, C, or T. Sequences of bases will not be annotated	If the user base does not match Ensembl REST API a warning is returned but the line is still run
USER_VARIANT	User entry	Must be a single base: A, G, C, or T. Sequences of bases will not be annotated	Cannot be the same as the reference base as VEP returns nothing
ENSEMBL_BASE	Ensembl API	Retrieved from the relevant genome build (GRCh37 or GRCh38)	Compared with the user-entered base, and flagged if different
VEP_CODING_BASE	VEP	The reference base at this position in VEP	Compared with the user-entered base and Ensembl base, and flagged if different
GENE	Ensembl API	The standard Ensembl gene identifier	
GENE_ACC	VEP	Ensembl ENSG gene identifier for the transcript corresponding to the canonical isoform	
REFSEQ_GENE_ACC	HGNC	RefSeq accession for the gene	This RefSeq may not be for the transcript corresponding to the canonical isoform
TRANSCRIPT	VEP	All ENST transcript identifiers which map to the UniProt canonical isoform	Separated by ";"
REFSEQ_TRANSCRIPT	Ensembl BioMart	RefSeq for each transcript which corresponds to the canonical isoform if available	
HGVS_C	VEP	HGVS coding sequence name	
HGVS_P	VEP	HGVS protein sequence name	

STRAND_DIR	VEP	The strand direction for the gene (positive or negative)	For negative strand genes, the VEP_CODING_BASE will be the complement of the USER_BASE
CODON_CHANGE	VEP	Original codon and variant codon, with changed base shown in capitals (e.g. aGc/aAc)	
VEP_AA	VEP	Reference amino acid containing the variant base	
UNIPROT_AA	UniProt	Amino acid at the variant position in the canonical amino acid sequence	Amino acid identity checked against VEP AA. Error returned on mismatch
AA_CHANGE	VEP	The amino acid change caused by the variant	Synonymous substitutions (ie no amino acid change) denoted by a "*"
POLYPHEN_SCORE	VEP	The probability that the amino acid substitution is damaging	
SIFT_SCORE	VEP	Prediction whether the amino acid change affects protein function	
CADD_PHRED	VEP/CADD	scaled variant rank relative to all possible substitutions	
CADD_RAW	VEP/CADD	The higher the score the more the variant is predicted to be deleterious	
CADD_MARK	VEP/CADD	A flag for internal use	
UNIPROT_ACCESSION	UniProt	UniProt accession code of the protein from the canonical isoform	
PROTEIN_NAME	UniProt	Full standard protein name	
SEQ_NO	VEP	The amino acid position in the UniProt canonical isoform sequence	All UniProt annotations are based on the numbering of the canonical isoform
CHANGE_TYPE	VEP	VEP consequence of the variant	
ALL_TRANSCRIPTS	VEP	A list of all transcript-isoform pairs separated by "/". Each gives: ENST, RefSeq, UniProt accession, amino acid position, amino acid change	If the data is unavailable, or not relevant, then a "-" is inserted

		(as X/Y), gene symbol, PolyPhen score, SIFT score, VEP consequence	
NOTE	VEP/ UniProt /Ensembl	Errors and warnings, such as mismatched reference alleles, which do not stop the mapping	
GNOMAD_ALLELE_FREQUENCY	VEP	Allele frequency of the variant from gnomAD.	
NEGATIVE		A flag (TRUE/FALSE) indicating whether the strand direction is negative	
USER_ID	(User)	Displays the user ID as provided in the third column of the input.	If no user ID is entered, an ID is generated according to the position in the input
SYNONYMOUS		A flag (TRUE/FALSE) indicating whether the amino acid change is a synonymous one	
HAVE_PDB		A flag (TRUE/FALSE) indicating whether the variant has been mapped onto a 3D protein structure in the PDB	The closest PDB structure, in terms of sequence identity and E-value, is selected for the region of sequence containing the variant
PDB_UNIPROT_MATCH		A flag (TRUE/FALSE) indicating whether the PDB structure is of the correct protein (as given by the UniProt accession)	A FALSE flag indicates that the closest 3D structure is from a different protein. The match stats are given below
CLOSEST_PDB_CODE	PDB	PDB code of the closest 3D structure in the PDB	
PDB_CHAIN	PDB	Corresponding PDB chain identifier	
PDB_PROTEIN_NAME	PDB	Protein name of the closest PDB structure	
PDB_EXPT_TYPE	PDB	Experimental method by which the structure was solved	X-RAY, NMR, etc.
PDB_RESOLUTION	PDB	X-ray resolution, in Ångstroms	
PDB_RFACT	PDB	R-factor from X-ray structure refinement	
PDB_UNIPROT_ACC	PDB	UniProt sequence corresponding to the 3D structure	

PDB_IDENTITY	FASTA	Sequence identity between the UniProt sequence (UNIPROT_ACCESSION) and the PDB sequence in (CLOSEST_PDB_CODE)	
PDB_SW_SCORE	FASTA	Smith-Waterman for the above match	
PDB_E_VALUE	FASTA	E-vale for the above match (cut-off is 0.001)	
RES_NAME	PDB	3-character residue name in PDB structure	
RES_NUM	PDB	Residue number in PDB structure	
SST	PDBsum	Secondary structure assignment (H=helix, E=strand, -=coil)	
CAT_RES	PDBsum	A flag (TRUE/FALSE) indicating whether the residue is a catalytic residue, as defined in MACiE	
DISULPHIDE	PDBsum	A flag (TRUE/FALSE) indicating whether the residue is disulphide-bonded cysteine	
NTO_DNA	PDBsum	Number of related 3D structures in which residue contacts DNA	
NTO_LIGAND	PDBsum	Number of related 3D structures in which residue contacts a bound ligand	
NTO_METAL	PDBsum	Number of related 3D structures in which residue contacts a bound metal ion	
NTO_PROTEIN	PDBsum	Number of related 3D structures in which residue is involved in a protein-protein interaction	
NPDB_RES	PDBsum	Number of related 3D structures that this residue can be mapped to	
LIGANDS	PDBsum	List of ligands in related 3D structures that the residue interacts with	
METALS	PDBsum	List of metal ions in related 3D structures that the residue interacts with	
PFAM_DOMAIN	PFAM	Pfam domain in which the residue is located	Identified by Pfam id

PFAM_NAME	PFAM	Name of the Pfam domain	
CATH_DOMAIN	САТН	CATH domain in which the residue is located	Identified by CATH id
CATH_NAME	САТН	Name of the CATH domain	
RES_CONSERVATION	ScoreCons	Residue conservation score (0.0-1.0)	Obtained from a BLAST search of the sequence against UniProt, a subsequent multiple sequence alignment and ScoreCons calculation
NCONS_SEQS	ScoreCons	Number of sequences used for calculating RES CONSERVATION	
DISEASES	UniProt/ClinVar	List of diseases associated with the given variant	Identified by UniProt disease id
DISEASE_VARIANTS	UniProt/ClinVar	Numbers of associations for given variant	Separated by semi-colons, the counts are for: diseases; disease notes; mutagenesis experiments; DDD; ClinVar data
NVARIANTS	UniProt/ClinVar	Total number of variants in DISEASE VARIANTS	
NAT_VARIANTS	VEP (gnomAD)	List of natural variants at this residue position	

Table S1. A description of each of the columns in the downloadable tab separated output file including the data source and additional information including error handling.

Method for Figure 1

Figure 1B - The ENSG gene identifier was extracted from the VarMap downloadable output. This was used to query the HGNC database for the RefSeq Select transcript identifier. The ENST identifiers corresponding to the transcripts which translate directly to the UniProt canonical isoform sequence were extracted from the VarMap output file. Ensembl Biomart was then queried using each ENST to retrieve all RefSeq identifiers associated with each. The transcript level Refseq identifiers were then cross referenced with the gene level RefSeq Select identifiers. If one of the transcript RefSeq identifiers matched the Select RefSeq then the variant was scored as a match – meaning that the Select RefSeq transcript translates directly to the Uniprot canonical isoform sequence. If no transcript RefSeq identifiers matched the Select RefSeq transcript does not directly translate to the Uniprot canonical isoform. Variants were only considered for scoring if they could be mapped to the canonical isoform and if both transcript and gene level (select) RefSeq identifiers were present.

<u>Figure 1D -</u> The VarMap output columns USER_BASE and USER_VARIANT were used to count those variants were both the reference and variant allele were a single nucleotide. <u>Figure 1E -</u> The VarMap output column CHANGE_TYPE was used to count the types of variant consequence and those that could not be mapped using the tool.

<u>Figure 1F -</u> The VarMap output column PDB_UNIPROT_MATCH was used to establish whether a variant could be mapped to the exact human protein structure corresponding to the gene or whether it could be mapped to a closely related homologous structure.

<u>Figure 1G -</u> The VarMap output columns NTO_DNA, NTO_LIGAND, NTO_METAL and NTO_PROTEIN were used to count how many variant amino acids have intermolecular contacts. If more than one contact is seen for a variant then both interactions are counted. If no interactions are seen then it is counted as 'no intermolecular interactions'.

Adzhubei, I. et al. (2013) Predicting functional effect of human missense mutations using PolyPhen-2. *Curr Protoc Hum Genet*, Chapter 7:Unit7 20.

Boutet, E. et al. (2007) UniProtKB/Swiss-Prot. Methods Mol Biol, 406:89-112.

Braschi, B. et al. (2019) Genenames.org: the HGNC and VGNC resources in 2019. *Nucleic Acids Res*, 47(D1):D786-D792.

Cunningham, F. et al. (2019) Ensembl 2019. Nucleic Acids Res, 47(D1):D745-D751.

Dawson, N.L. et al. (2017) CATH: an expanded resource to predict protein function through structure and sequence. *Nucleic Acids Res*, 45(D1):D289-D295.

El-Gebali, S. et al. (2019) The Pfam protein families database in 2019. *Nucleic Acids Res*, 47(D1):D427-D432. Kinsella, R.J. et al. (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. *Database (Oxford)*, 2011:bar030.

Landrum, M.J. et al. (2018) ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res*, 46(D1):D1062-D1067.

Laskowski, R.A. et al. (2018) PDBsum: Structural summaries of PDB entries. *Protein Sci*, 27(1):129-134. Lek, M. et al. (2016) Analysis of protein-coding genetic variation in 60,706 humans. *Nature*, 536(7616):285-291.

McLaren, W. et al. (2016) The Ensembl Variant Effect Predictor. Genome Biol, 17(1):122.

O'Leary, N.A. et al. (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res*, 44(D1):D733-745.

Pearson, W.R. (2014) BLAST and FASTA similarity searching for multiple sequence alignment. *Methods Mol Biol*, 1079:75-101.

Rentzsch, P. et al. (2019) CADD: predicting the deleteriousness of variants throughout the human genome. *Nucleic Acids Res*, 47(D1):D886-D894.

Ribeiro, A.J.M. et al. (2018) Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. *Nucleic Acids Res*, 46(D1):D618-D623.

UniProt, C. (2019) UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res*, 47(D1):D506-D515. Valdar, W.S. (2002) Scoring residue conservation. *Proteins*, 48(2):227-241.

Vaser, R. et al. (2016) SIFT missense predictions for genomes. Nat Protoc, 11(1):1-9.

ww, P.D.B.c. (2019) Protein Data Bank: the single global archive for 3D macromolecular structure data. *Nucleic Acids Res*, 47(D1):D520-D528.