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The main body of the article demonstrates how to execute the new software in our Clonality R Package. In the 
following we provide summaries of the rationale and technical detail of the two new methods that have been 
added to the package. Both methods concern the evaluation of clonal relatedness from anatomically distinct 
tumors in individual patients, where the tumors have been sequenced to identify somatic mutations. Methods 
are suitable for any amount of genotyping, e.g. from tumors in which only a single hotspot or gene is 
genotyped, to sequencing of a panel of selected genes, to exome or whole genome sequencing. The first 
method is a statistical significance test that is designed to be applied to an individual case, testing the null 
hypothesis that the tumors arose independently. Full details of this method can be found in Ostrovnaya et al 
(2015). The second method permits a combined analysis of a set of patients, each with two tumors that could 
be independent or clonal. This method uses empirical Bayes methods to share information and provides 
diagnostic probabilities of clonal relatedness for each case. Details of this method are available in Mauguen et 
al (2018).  
 
The statistical test referenced in Section 2.3 of the main paper is constructed as follows. Each tumor will have 
a set of somatic mutations identified. These mutations can be classified as either shared (present in both 
tumors, and thus potentially “clonal” mutations that occurred in the originating clonal cell) or private (present in 
only one of the tumors). Although in this section we are considering only a test for a single case we 
nonetheless distinguish individual cases by the subscript j as we will be discussing global analyses of multiple 
cases in the next section. Let jA denote the set of observed mutations in the jth case that are shared and let jB
denote the set of private mutations. Let j j jG A B .= ∪  Our data can thus be considered as j j jY (A ,B ).= Let ip
represent the marginal probability (assumed known) of a mutation at the ith locus. Note that our strategy for 
estimating these probabilities is described in Section 2.2 of the main text. Our methods rely on a case-specific 
parameter, the clonality signal j.ξ  This represents, in the context of the evolution of the tumors, the relative 
duration of the period in which the original clonal cell accumulated mutations, prior to the period where the two 
tumors evolved separately and accrued additional independent mutations. Thus jξ  essentially represents the 
probability that an observed mutation occurred during the clonal phase as opposed to the independent phase 
of tumor development. For independent tumors j 0.ξ =  It follows that for a case with a given clonality signal the 
probabilities of observing shared and private mutations at each locus are given by: 
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The likelihood (conditioned on the observed mutations) for an individual case is thus given by: 
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Consequently, a conditional likelihood ratio test statistic can be expressed as: 
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To obtain a reference distribution we generate the distribution of S under the assumption that matches occur 
randomly via independent sampling and that at least one mutation is observed at each locus in the set jG .  
 
Using simulations, we were able to show in Ostrovnaya et al (2015) that the test is valid and that its properties 
are very similar to the corresponding unconditional likelihood ratio test, demonstrating that the observed 
mutations contain essentially all of the available information relevant for testing the hypothesis, i.e. we can 
ignore loci at which no mutations occur on either tumor. We note that the use of the conditional test makes this 
a very flexible procedure, since the method allows a test of the hypothesis if only one locus is observed but can 



also handle exome or even whole genome data, since the numbers of observed mutations in these settings will 
generally be relatively modest.  
We acknowledge that there have been methods proposed by others for the purpose of clonality testing of 
mutational data. In very early work that is frequently cited, Teixera et al. (2004) proposed an index of clonal 
relatedness (ICR) to gauge the evidence for clonality. This index is defined as 
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proposed using this as evidence of clonality if ICR>0.95. It can be shown that this is actually a likelihood ratio 
statistic (conditioned on jA ) of the hypothesis that the tumors are independent ( j 0ξ = ) versus the restricted 
clonal alternative that the tumors are identical ( j 1ξ = ). However, in our extensive experience analyzing data 
from breast and lung cancers this alternative is not credible generally since most clonal tumor pairs have 
numerous private mutations. In other words this test does not take account of the evidence for independence 
in any non-matches that are observed. The information in the non-matching mutations is clearly important for 
assigning diagnostic probabilities (see the following section). A more recent proposal is from Bao et al (2015) 
who advocate using a simple binomial distribution to represent the observed matches among the loci with an 
observed mutation in either tumor. That is, their test statistic is 

j
ji G

X I(i A ),
∈

= ∈∑ and this is assumed to be 

generated from a binomial distribution with 
j

ji G
N I(i G )

∈
= ∈∑ trials with a pre-defined null value. This approach 

fails to account for the fact that the probability of a match at loci i depends on ip  although this kind of strategy 
has been used by others (Harms et al 2017). To clarify the loss of power from this assumption we have 
conducted simulations to examine the properties of this test in comparison to our proposed test using the 
framework of a study we published concerning the clonal relatedness of lobular carcinomas in situ (LCIS) with 

invasive breast cancers where the data were generated 
from exome sequencing (Begg et al. 2016). That is, we 
generated mutations based on marginal probabilities of 
the mutations in the breast study such that the average 
number of mutations per case was 34. The Bao et al. 
test critical value was calibrated to be similar to that of 
our proposed clonality test. The results are in the top 

panel of the Table. In the lower panel we present results based on the features of a study of bilateral breast 
cancer that employed panel sequencing of the major breast cancer genes, resulting in a mean number of 
mutations per case of 10 (Begg et al 2018). In both settings the Bao et al. (2015) test is shown to be relatively 
inefficient, especially when ξ  is relatively small and there are few (typically one) matches. The likelihood ratio 
approach makes much more efficient use of the matches by taking account of the marginal probabilities, while 
the Bao et al. approach does not distinguish matches at common loci from those at rare loci. 
 
The great advantage of our likelihood ratio test is that it can be applied in clinical settings without the need of a 
reference dataset, i.e. all that is needed are the marginal mutation probabilities. However, it only provides a 
partial solution to the problem at hand, in that it provides evidence against the null hypothesis of independence 
but does not speak convincingly to the evidence in favor of independence. This is because the p-value is 
always 1 if there are no matches when in fact if relatively few genes are sequenced we may simply not be 
observing clonal matches that exist elsewhere in the genome. Intuition suggests that tumor pairs with many 
non-matching mutations are more likely to be independent than those with few non-matching mutations. This 
issue led us to pursue a random effects modeling approach that makes more efficient use of all of the available 
data and permits the estimation of diagnostic probabilities for each case (outlined in Section 2.4 of the main 
paper). We frame the problem in the context of the study of bilateral breast cancer cited above that we recently 
conducted in which we obtained tissue samples from both breasts of women who had experienced bilateral 
breast cancer and where both surgeries were performed at our center (Begg et al 2018). These tissues were 
subjected to sequencing using a special panel of 254 genes known to be important in breast cancer. A total of 
49 cases (i.e. tumor pairs) made it through the sequencing pipeline and were analyzed. We are interested 
primarily in two issues: (1) What proportion of cases are clonal? (2) For each case, what are the diagnostic 
probabilities of clonal relatedness (i.e. one tumor is a metastasis of the other one) versus independence (both 
tumors are primary cancers that developed independently)? We define π  to be the proportion of clonal cases 
in the population, i.e. the proportion of cases for which j 0.ξ >  We also denote by jC the event {case j is clonal} 

Table: Comparison of Clonality Tests 
Mean # 

Mutations Test 
Size Power 

0ξ =  0.1ξ =  0.25ξ =  

34 Ostrovnaya 4.0% 86% 99% 
Bao 4.1% 75% 98% 

10 Ostrovnaya 3.4% 32% 66% 
Bao 3.3% 19% 53% 



and by jC  its complement. We consider the clonality signal jξ  to be a random effect with probability density 

jg( ),ξ  where j 0ξ =  with probability 1− π  and, with probability π , j jlog(1 )φ = − − ξ follows a lognormal 

distribution with parameters µ  and 2.σ  The corresponding density of the clonality signal is thus zero-inflated 
but has a flexible structure for modeling the positive random effects in the range j0 1.< ξ <  Our goal is to 
maximize the likelihood: 
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where n is the number of cases. To perform this estimation we first recognize that   
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where g( )• is a generic density function. Note that the likelihood contribution of case j to (2) is a component of 
the second term in (3). The EM algorithm permits us to maximize (iteratively) the expectation of the logarithm 
of the likelihood averaged over the latent variables conditioned on the data. That is, the expected likelihood is 
given by  
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where ,π µ  andσ are the current estimates of the parameters. After choosing starting values for these 
parameters the expectation and maximization steps proceed iteratively until convergence. To calculate E  we 
recognize that ( )j j jP Y , ,C | , ,ξ π µ σ    is obtained easily from the defined terms on the right-hand side of (3), 

represented by (1) and the normal parametric model used for the distribution of j.ξ  Further, j j jg( ,C | Y , , , )ξ π µ σ  

can be obtained from Bayes Theorem, i.e. 
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Simulations to evaluate bias in the estimates of the model parameters based on this method demonstrate that 
to estimate the parameters with low bias the dataset needs to be sufficiently large and data rich, i.e. there 
needs to be sufficient numbers of both clonal and independent cases. 
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