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1 Supplementary methods

Tumor mutation datasets

We obtained the mutations identified in primary tumors from three different datasets: 19 whole
exome sequencing (WXS) cohorts of The Cancer Genome Atlas (TCGA) project  (Ellrott  et al.,
2018) (downloaded  on  December  29th,  2016),  14  whole  genome sequencing  cohorts  from
TCGA WGS-505 project  (Fredriksson  et al., 2014) (downloaded on March 31st, 2015), and a
WXS dataset (European Nucleotide Archive ERZ537501) of  chemically-induced C3H mouse
liver tumors  (Connor  et al.,  2018) (downloaded on October 11th,  2018). TCGA WXS cohorts
consist of 8,263 samples (1,382,259 substitutions) from 19 different cancer types, each of them
composed  by  a  minimum  of  200  samples.  Hypermutated  tumors  were  removed  from  the
datasets. To define hypermutated samples for a given cohort, we calculated the distribution of
the number of alterations across samples in the cohort.  Those samples bearing a minimum
number of 1,000 alterations exceeding 1.5 times the interquartile range above the 75 th percentile
were  considered  hypermutated.  TCGA  WGS-505  consist  of  505  samples  (12,423,016
substitutions) from 14 different cancer types. A whole-genome Pancancer cohort was obtained
by merging all cohorts in the TCGA WGS-505 dataset. Original mouse WXS dataset consist of
substitutions  identified  across  78  liver  tumors  of  C3H mice generated spontaneously  or  by
exposure  to  diethylnitrosamine  (DEN).  For  our  analysis,  we  selected  DEN-exposed  tumors
(32,494 substitutions). 

Coordinates of genomic elements

The hg19 genomic coordinates of human protein coding genes (n=20,098) were obtained from
ENCODE (http://www.gencodegenes.org) using GENCODE release v.19 (ftp://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz).  Only  coding
sequences (CDS) of protein coding transcripts (‘gene_type’ and ‘transcript_type’ annotated as
‘protein-coding’)  were  retrieved  as  previously  described  in  Mularoni  et  al.,  2016.  Promoter
regions (n = 20,096) were obtained by mapping the 2500 bp sequences immediately upstream
the transcription start sites (TSS) of protein-coding genes. All nucleotides that corresponded to
protein-coding  sequences,  untranslated  regions  (UTRs)  or  short  intronic  splice  sites  were
removed  (Mularoni  et al.,  2016). C3H mouse genomic coordinates for protein coding genes
(n=19,234)  version  C3H_HeJ_v1.86  were  downloaded  from  Ensembl  release  90
(ftp://ftp.ensembl.org/pub/release-90/gtf/mus_musculus_c3hhej/Mus_musculus_c3hhej.C3H_He
J_v1.86.chr.gtf.gz).  Only  CDS  of  protein  coding  transcripts  (‘feature’  and   ‘gene_biotype’
annotated as ‘CDS’ and ‘protein_coding’, respectively) were retrieved. Overlapping elements of
the same type (CDS or promoters of the same gene) were merged together. Genomic elements
showing incorrect annotations were manually removed from the datasets. 
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Implementation

OncodriveCLUSTL is implemented as a Python 3.5 package. It  depends on external Python
libraries including  bgparsers, bgreference,  bgsignature,  click,  daiquiri,  intervaltree,  matplotlib,
numpy,  pandas,  scipy,  statsmodels and tqdm. OncodriveCLUSTL takes as input: i) a TSV file
containing  mutational  data  from  multiple  samples  of  either  WXS  or  WGS  and  ii)  a  TSV
annotations file containing the genomic positions of the genes or other genomic elements to be
analyzed. OncodriveCLUSTL generates two main output files: i) ‘elements_results.txt’ contains
a  list  of  genomic  elements  ranked  by  the  significance  of  their  clustering  signal;  ii)
‘clusters_results.tsv’  lists  the information of  all  clusters found in  genomic  elements deemed
significant.  For  a  detailed  explanation  on  how  to  run  OncodriveCLUSTL  please  check  the
README document at https://bitbucket.org/bbglab/oncodriveclustl.

Cancer Gene Census list

We obtained the latest version of the COSMIC Cancer Gene Census (CGC) list containing a
total  of  719 genes (https://cancer.sanger.ac.uk/census)  (downloaded on October  15th,  2018)
(Sondka et al., 2018). Among them, 574 and 145 genes were classified in COSMIC Tier 1 and
Tier  2,  respectively.  Tier  1  genes are  those genes with  solid  available  evidence  of  activity
relevant  to  cancer  as  well  as  evidence  of  mutations  in  cancer  that  promote  oncogenic
transformation; Tier 2 genes correspond to those with strong indications of a role in cancer but
with less extensive available evidence. 

List of false positives genes

We generated a list of potential false positive genes (or “fishy” genes) that for reasons other
than their involvement in tumorigenesis tend to be frequently mutated in tumors (Przytycki and
Singh, 2017; Lawrence et al., 2013). The list includes very long genes, olfactory receptors and
non-expressed  genes  for  each  TCGA  cohort.  The  list  of  long  genes  (n=6)  included  TTN,
OBSCN, GPR98, HMCN1, RYR2, and RYR3. Olfactory receptors (n=857) were obtained from
The  Human  Olfactory  Data  Explorer  (Safran  et  al.,  2003) at
https://genome.weizmann.ac.il/horde/  (downloaded on February 14th, 2018). Expression data
was  obtained  from  TCGA  (https://gdc.cancer.gov/about-data/publications/pancanatlas)
(downloaded on April 7th, 2016). Non-expressed genes were defined as genes with RNA-seq
expression estimation smaller or equal to 0 (log2 scale) in 80% or more samples in the cohort.  
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OncodriveCLUSTL methodological details

OncodriveCLUSTL analyzes clustering signals in nucleotide sequences from human and non-
human data. It has been tested using the hg19 and GRCh38 reference human genomes, c3h,
mm10,  cast  and  car  mouse  genomes,  and  f344  rat  genome obtained  via  the  bgreference
package  (https://bitbucket.org/bgframework/bgreference).  In  addition,  OncodriveCLUSTL  can
virtually be run using data from any reference genome provided that it is compiled through the
bgreference package.

Input data parsing. By default, OncodriveCLUSTL only requires two main inputs: i) mutations
file, a TSV file containing substitutions identified across a cancer whole exome (WXS) or whole
genome (WGS) sequencing cohort, assuming all SNVs are mapped to the positive strand; ii)
annotations  file:  a  TSV  file  with  the  genomic  positions  annotations  of  the  genes  or  other
genomic elements (GEs) to be analyzed (details in README). Of note, genomic coordinates for
one element cannot overlap. By default, OncodriveCLUSTL analyzes all GEs provided in the
annotations file.  Alternatively,  OncodriveCLUSTL can limit  the analysis to a number of user-
specified GEs (details in README). To start the analysis, OncodriveCLUSTL first parses the
GEs  coordinates  from  the  annotations  file.  GE  mutations  are  obtained  by  intersecting  its
genomic coordinates with those of substitutions (SNVs). Therefore, only those mutations falling
inside the GE coordinates will be taken into account for clustering signals calculation. 

Nucleotide  context  mutational  probabilities  calculation.  The  significance  of  clustering
signals detected by OncodriveCLUSTL relies on a background model calculated from the input
cohort  k-mer  nucleotide  SNVs.  OncodriveCLUSTL  can  compute  tri-nucleotide  or  penta-
nucleotide mutational profiles in two different modalities (option ‘signature-calculation’): 

1)  Relative mutation frequencies.  By default,  OncodriveCLUSTL calculates the mutational
profile as the relative mutation frequencies of each k-mer nucleotide SNVs with respect to the
total  number  of  SNVs in  the  input  cohort.  Briefly,  a  dictionary  is  constructed  including  all
possible reference k-mers and 3 possible alternates of each of them (192 for tri-nucleotides,
3072  for  penta-nucleotides).  Following  the  methodology  laid  out  in  Mularoni  et  al.  (2016),
mutational probabilities of each reference k-mer to alternate pair are computed as the number of
SNVs observed for the reference-alternate pair out of the total number of SNVs analyzed in the
cohort or cancer type (Mularoni et al., 2016). To this end, OncodriveCLUSTL takes into account
only those input SNVs whose reference k-mer sequence does not contain a sequence gap or
unannotated nucleotides in the reference genome. 

2)  Normalized  mutation  frequencies.  Alternatively  to  relative  mutation  frequencies,
OncodriveCLUSTL  can  normalize  k-mer  nucleotide  SNVs  counts  by  the  k-mer  nucleotide
reference counts in the regions provided by the user. Briefly, mutational probabilities of each
reference  k-mer  to  alternate  pair  are  computed  as  the  number  of  SNVs  observed  for  the
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reference-alternate pair  out of the total  number of reference k-mer nucleotides found in the
regions listed in the annotations file. In this case, only mutations that fall inside the regions will
contribute to the signature calculation. Input SNVs whose reference k-mer sequence contains a
sequence  gap  or  unannotated  nucleotides  in  the  reference  genome  are  skipped.  This
calculation can be of interest when analyzing protein-coding genes from a WXS cohort, where
the annotation file contains all protein-coding genes annotations. Of note, users must ensure
that the annotations file contains enough genomic elements for an accurate mutational profile
calculation. 

By default, OncodriveCLUSTL calculates either of the previously specified mutational profiles
under  the  assumption  that  all  samples  come  from  the  same  group  (e.g.,  cancer  type).
Alternatively,  OncodriveCLUSTL can calculate one specific mutational profile for each group
contained in the mutations file (details in README) and randomize each mutation according to
it. This option can be applied to split mutational profiles by different cancer types in a Pancancer
mutation  file  or  by  delimited  mutational  processes  affecting  a  cancer  cohort.  Of  note,  it  is
important that users warrant that the number of mutations for each group is sufficient for an
accurate mutational profile calculation. 

In addition, OncodriveCLUSTL is prepared to run using a mutational profile provided by the user
(details  in  README).  This  option  can  be  of  interest  to  calculate  more  complex  mutational
profiles or when the number of mutations in the input cohort is not large enough. 

In our analysis,  we pre-calculated mutational profiles for OncodriveCLUSTL as follows: i) for
human coding regions, tri- or penta-nucleotide (Supp. Table 1) SNVs counts in the cohort were
normalized by the corresponding k-mer nucleotide counts in the hg19 protein-coding regions
file.  SNVs  in  cancer  genes  (COSMIC  CGC  list),  falling  outside  coding  regions,  or  whose
reference k-mer sequence contained a sequence gap or unannotated nucleotide were skipped;
ii)  for  human  promoters,  tri-nucleotide  SNVs  counts  for  each  of  the  cancer  types  in  the
Pancancer file were normalized by tri-nucleotide counts in the hg19 whole genome. Therefore, a
mutational profile was obtained for each of the cancer types in the Pancancer file.  SNVs in
cancer genes (COSMIC CGC list) or  whose reference k-mer sequence contained a sequence
gap or unannotated nucleotide were skipped; iii) for mouse coding regions, tri-nucleotide SNVs
counts in  the cohort  were normalized by the tri-nucleotide  counts in  the c3h protein-coding
regions. SNVs falling outside coding regions, or whose reference k-mer sequence contained a
sequence gap or unannotated nucleotides were skipped. 

Clustering analysis. The following analysis was restricted to those GEs in the annotations file
that contained 2 or more SNVs mapping the mutations file. We proceeded in the following steps:

1) Analysis of observed mutations. OncodriveCLUSTL conducts linear clustering analysis of
the  mutations  observed  along  the  GE  sequence  provided  by  the  user.  Two  alternative
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modalities are available:  i)  by concatenating the connected components of  the GE supplied
(e.g., glueing the consecutive ends of the CDS chunks in the exons of a given gene) in which
case we increase the method’s sensitivity towards clusters in expanding the boundaries of the
collapsed regions or ii) analyzing the connected components of the GE separately (by default).
For both modes, the following subsequent steps are carried out:

(1a)  Smoothing.  We used a Tukey kernel to smooth the function  n that maps each
position of the GE to the number of mutations observed at that position. Of note, the
smoothing  is  carried  out  in  the position  coordinates  implied  by  the chosen modality
(concatenated GE components or not). Bearing that in mind, the smoothing function S is
defined for each position p as:

S ( p)=
1
M

∑
i=−L

L

n( p+i)T (
i
L
);

where T is the Tukey function defined as:

T ( x)=(max {1−x2 ,0 })2;

M is the total mass spread by the kernel:

M=∑
i=−L

L

T (
i
L
)~L∫

−1

1

T (x)dx ;

and L is the half window length where the smoothing is applied. The smoothing window
length is 11 bp long by default.

(1b)  Root clusters generation. Upon smoothing, root clusters of the GE are computed
using the function  S,  which is  defined along the GE’s sequence. A cluster is always
defined as 3 positions x-y-z in the linear sequence. For each local maxima m of S in the
linear sequence we will define its root cluster as follows: i) if m is neither the first nor last
position of the GE, then y=m, and x and z are as the closest local minima surrounding a
local maxima y of S; ii) if m is the first positon of the GE, then x=y=m and z is the first
local minima; iii) if m is the last position of the GE, then y=z=m and x is the last local
minima.

(1c) Merging of clusters. In this step, the algorithm recursively identifies clusters that are
closer than a given gap length (clustering window) and merges them in one new unified
cluster. Starting from the 5’-most cluster in the GE defined as x-y-z, the algorithm looks
for 3’ adjacent clusters x’-y’-z’. The clusters merge if the distance between z and y’ is
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smaller than or equal to the clustering window length. Then, a new cluster is obtained by
merging both root clusters. The 5’ and 3’ boundaries of the new cluster are x and z’,
respectively. The maximum of the new cluster corresponds to the maximum with highest
smoothing score amongst the root clusters, y or y’. When y and y’ have equal scores, if
they are contiguous positions y is selected as the new clusters maximum; otherwise, the
clusters are not merged. The search iterates until no further merging is possible. The
clustering window length is 11 bp long by default.

(1d)  Scoring of clusters. A score is assigned to each cluster based on the number of
SNVs it contains and their distribution across the cluster as follows:

Score=N⋅∑
i

f i⋅2
−di/2;

where  N is the total number of SNVs mapping to the GE;  i runs through all  mutated

positions in  the cluster; f i=100⋅(mi /N ) is  the percentage of  mutations observed at

position  i with  respect  to  N; and d i=|i−imax| is  the  distance  from  i to  the  position

reaching the maximum value of the smoothing function in the cluster. Given two clusters
with the same number of mutations, this formula favours the one with the mutations
concentrated in fewer positions. Clusters with fewer mutations than the defined threshold
(2 by default) are scored to 0.

(1e)  Scoring of the GE. The clustering score of a GE corresponds to the sum of the
scores of its clusters.

2) Analysis of simulated mutations. The same number of mutations observed in an GE are
randomly sampled several times with replacement. The probability that a mutation is placed in a
given  position  is  derived  from  the  mutational  profile  of  the  cohort,  which  is  computed  as
explained in the section Nucleotide context mutational probabilities calculation. Independently of
the modality of observed mutations analysis (concatenated GE regions or not), mutations are
randomized in the reference genomic sequence as follows. At the time of distribution of each
mutation, a window of nucleotides (simulation window) centered at the mutated nucleotide is
defined by default. The  simulated mutation is therefore distributed at any position within the
simulation  window,  which  is  31 bp by default  but  can  be extended up to 101 bp.  When a
mutation is observed close to the region’s boundaries, the simulation window centered at the
mutated nucleotide can expand outside the region analyzed (e.g., if a mutation is found in the
last position of an exon and the simulation window is 31 bp long, 15 bp of the window will fall
within the adjoining intron). However, simulated mutations that fall outside the GE are discarded
during the simulated clustering analysis and therefore do not contribute to the simulated clusters
and GE’s scores, which ultimately affects the significance of the observed clustering signals. As
an alternative, if  specified, OncodriveCLUSTL allows to displace the simulation window to fit
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inside the analyzed region in those cases where a subset of bp of the simulated window fall
outside the analyzed region (e.g., if a window extends part of an exon and an intron, it can be
placed to fit inside the exon). Displaced simulation windows maintain the defined window length
but do not respect the central position for the observed mutation. For those cases where the
length of the simulation window is greater than the region analyzed, the simulation window is
trimmed to the region start and end. Of note, in this mode, those simulation windows that do not
expand regions boundaries keep the observed mutation in the central position. In our analysis,
all simulations were done restricting simulation windows to the region studied, since expanding
simulation windows may not account for different yet known or unknown mutational processes
acting on regions of different nature (e.g., exons and introns, Frigola et al., 2017). This strategy
may reduce the number of such clustering artifacts, although the significance of the observed
clustering signals might  be underestimated.  This  can be the case for small  GE regions. As
OncodriveCLUSTL allows both simulation strategies, we encourage users to test which is the
most  suitable according to their  data by analyzing the distribution of  the significance of  the
clustering  signals.  To this  aim,  OncodriveCLUSTL  can  export  quantile-quantile  plots  of  the
generated  results.  Once  all  mutations  are  randomly  distributed  across  their  respective
simulation  windows,  OncodriveCLUSTL infers  the  clustering  (steps  1a-1e)  for  the  randomly
generated mutations using the same analysis mode as in observed mutations (concatenated
GE or not). Each iteration of random distribution of mutations (1,000 in all analyses described)
retrieves simulated clusters and GE’s scores.

P-value computation and multiple test  correction.  OncodriveCLUSTL generates three p-
values per GE. First, an empirical p-value is computed as the fraction of iterations that yield a
simulated GE score greater to or equal than the observed GE score. Second, an analytical p-
value  is  calculated  by  fitting  simulated  GE  scores  to  a  gaussian  kernel  density  estimate
distribution and deriving the upper quantile of the observed GE score. Third, a second analytical
p-value corresponding to the top-scoring cluster  of  the GE is computed following the same
approach,  fitting  the  distribution  of  the  simulated  cluster  scores.  To  reduce  the  burden  of
analytical p-values computations, the algorithm randomly samples a subset of 1,000 simulated
GEs over the total simulated GEs scores if the number of simulations is greater than 1,000;
likewise, 1,000 simulated cluster scores are randomly sampled when the number of simulated
clusters exceeds 1,000. All resulting p-values are subsequently adjusted (q-values) using the
Benjamini-Hochberg  method  at  1%  false-discovery  rate  (FDR).  In  other  words,  GEs  with
q-value < 0.01 are considered potential drivers. All results shown here are based on rankings of
GE scores analytical p-values.
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OncodriveCLUSTL model selection

Window hyperparameters: smoothing, clustering and sampling. OncodriveCLUSTL is an
unsupervised method to identify clustering of mutations along the genomic sequence of GEs.
The method should raise a clustering signal whenever the clustering observed departs from
what it would be expected assuming that the mutations are generated under neutral evolution.
However,  the  method  resorts  to  three  main  hyperparameters  that  strongly  determine  its
performace: the shape of identified clusters depends on the smoothing (i) and clustering (ii)
windows; the simulation of mutations depends on a sampling or simulation window (iii) which
defines the region where mutations are randomly distributed. On the one hand, large smoothing
and  clustering  windows  tend  to  generate  large  clusters  for  either  observed  and  simulated
mutations;  on the other hand, large simulation windows tend to spread simulated mutations
along the sequence,  which decreases the likelihood of  formation of  simulated clusters.  The
interplay  between  smoothing,  clustering  and  sampling  windows  determines  what  kind  of
clustering signals the unsupervised method is bound to identify. Changes to the distribution of
GEs p-values may end up affecting their goodness of fit to the uniform distribution. 

We devised a strategy for model selection based on two criteria: i) goodness of fit of observed
p-values vs. the uniform distribution; ii) enrichment of bona-fide known cancer elements in the
ranking given by the method as an output. For each dataset, we ran OncodriveCLUSTL over all
possible combinations in a predefined grid  of  hyperparameter values and selected the best
configurations according to these criteria. 

Goodness-of-fit. For each configuration, we want to test whether the distribution of observed p-
values is similar to the theoretical distribution of p-values, i.e., the uniform distribution in the
interval [0, 1]. To this end, we computed the Kolmogorov-Smirnov (KS) goodness-of-fit statistic
with respect to the uniform distribution in the interval [0, 1]. The KS statistic is defined in terms
of two cumulative probability  functions: i)  the one arising from the observed data (empirical
cumulative probability, ECP):

ECP(x )=
1
n
∑
i=1

n

1(−α , x](x i) ;

And ii) the one arising from the uniform distribution (theoretical cumulative probability, TCP),
which is linear. In order to proceed: first, we take the subset of observed p-values which are
greater than 0.1; second, we randomly sampled 1,000 of them to avoid sample size biases in
our comparisons; third, we calculated the KS statistic, which essentially measures the size of
the  maximum  gap  (deviance)  between  the  observed  and  theoretical  cumulative  probability
functions.  To distinguish  between p-value deflation and inflation,  we computed whether  the
number of p-values above a threshold α=0.1 was greater (inflation) or lower (deflation) than
expected. Thus we defined a signed version of the KS statistic which is positive for the inflated
and negative for the deflated. We selected all configurations bearing an absolute value of the
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KS statistic up to 10% larger than the minimum KS statistic. This procedure left us with a set of
most suitable configurations.

Enrichment in bona-fide known cancer elements. For each configuration we calculated a
CGC  genes  enrichment  score  for  the  top  ranking  genes  (n=40).  For  each 1≤n≤40, we
computed the proportion of CGC genes (C for short) within the subset of genes with rank n or
lower, hereinafter Sn . Then, we added up all these proportions, albeit giving more weight to

the terms arising from smaller sets. Hence, we computed the following enrichment score:

E=∑
n=1

40
1

log2(n+1)
⋅
|Sn∩C|

|Sn|

The configuration with highest enrichment score (E) was selected. For cohorts where this model
selection  strategy  could  not  provide  accurate  models,  we  explored  addtional  values
combinations  of  the  before  mentioned  hyperparameters  and  manually  curated  the  model
selection on case-by-case basis using the approach described above. We hypothesize that the
differences in  performance could result  from differential  mechanisms shaping the mutational
landscape for each cancer type  (Alexandrov et al., 2013). Therefore, we advice users to carry
out model selection according to their data specificities and constraints. Information of all the
adjusted hyperparameters for all analyzed TCGA cohorts can be found in Supp. Table 1. The
functions  used  to  generate  these  data  are  available  at
https://bitbucket.org/bbglab/oncodriveclustl. For those cohorts where the CGC enrichment could
not  be  applied  (e.g.,  promoter  regions,  mouse  data),  model  selection  was  based  on  the
goodness-of-fit (Supp. Table 1). 

We illustrate the performance of the KS test  with the following example.  We calculated the
empirical cumulative distribution of p-values obtained by different configurations of the TCGA
WXS UCEC cohort, using smothing windows of 11, 15, 21, 25, 31, 35, 41 and 45 bp; clustering
windows of 11, 15, 21, 25 and 31 bp; and simulation windows of 31 and 35 bp. We randomly
sampled  n=100  p-values  and  calculated  the  ECPs  between  0.1  and  1  for  each  of  the
configurations (Supp. Fig. 1). Finally, the best configuration was choosen as the one with higher
CGC enrichment, as explained. 

Background  mutational  probabilities.  To  test  which  of  the  k-mer  context  mutational
probabilities, tri-nucleotides or penta-nucleotides, was able to generate more accurate models,
we ran OncodriveCLUSTL using tri- and penta-nucleotde contexts with the 19 selected TCGA
WXS datasets,  keeping  the  rest  of  parameters  as  default.  We calculated  the  Kolmogorov-
Smirnov (KS)  statistic  to  assess the fitness  of  the  observed  distribution  of  p-values to  the
expected uniform distribution  (Supp.  Fig.  2).  For  these data,  we found no clear  differences
between the KS statistic obtained from tri- or penta-nucleotide based background models. Given
that tri-nucleotide mutational probabilities are less computationally expensive, we set them as
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the default. However, recently Martincorena and colleagues have shown that penta-nucleotide
contexts can explain more accurately the mutational processes in melanomas caused by UV
light  (Martincorena  et al.,  2017). Consequently,  all  analyses shown in the main paper were
carried out using tri-nucleotide mutational  probabilities,  except  for  the melanomas cohort,  to
which the penta-nucleotide mutational probabilities was computed.  We recommend users to
conscientiously select OncodriveCLUSTL tri- or penta-nucleotide probabilities that best fit their
own mutational datasets.  

Quantile-quantile plots. In order to evaluate the models generated by OncodriveCLUSTL, we
generated quantile-quantile  plots  (QQ-plots)  comparing the observed p-value distribution  (y-
axis)  with  the  expected  uniform  p-value  distribution  (x-axis).  We  consider  a  model  to  be
accurate if the observed p-values closely fit the uniform distribution (red dash line) for the most
part of the GEs analyzed, i.e., those GEs not bearing a significant clustering signal (red dots, q
< 0.01). The names of top-ranking genes are shown. The names of gene symbols annotated in
the  CGC  appear  in  bold.  The  code  used  to  generate  QQ-plots  is  available  at
https://bitbucket.org/bbglab/oncodriveclustl  and  can  be  automatically  run  together  with  the
clustering analysis of a cancercohort using the command line (details in README). 

Running examples

Complete guideliness on how to run OncodriveCLUSTL can be found in the README doument
at https://bitbucket.org/bbglab/oncodriveclustl. Briefly, we highlight here different running options
of  the  algorithm  that  can  be  selected  through  the  command  line  using  OncodriveCLUSTL
version 1.1.0 as described in the manuscript: 

Default run

~$ oncodriveclustl -i /INPUT_PATH/mutations_file.tsv -o /OUTPUT_PATH/output_directory -r 
/INPUT_PATH/regions_file.tsv.gz

By default, OncodriveCLUSTL analyzes all genomic elements in ‘regions_file.tsv.gz’. It assumes
that genomic coordinates and mutations are mapped to hg19 human reference genome. The
clustering analysis is performed over all elements with at least 2 SNVs; clusters are defined by a
minimum  number of 2 SNVs. For each element, coordinates are analyzed separately, therefore
no clusters are found expanding two regions. The smoothing and clustering windows are 11bp.
One  tri-nucleotide  mutation  frequencies  are  calculated  for  the  whole  input  cohort  in
‘mutations_file.tsv’.  Simulation  windows  are  31bp;  by  default  windows  are  centered  on  the
observed mutation. Therefore mutations can be simulated a maximum of 15bp away from the
margins of the region under analysis. Given that the default parameters may not be satisfactory
for the cohort under analysis, a warning message is raised to underline that OncodriveCLUSTL

12



is running  in default mode. 

Human coding sequences using default parameters

~$ oncodriveclustl -i /INPUT_PATH/mutations_file.tsv -o /OUTPUT_PATH/output_directory -r 
/INPUT_PATH/regions_file.tsv.gz --concatenate

The  ‘concatenate’  flag  links  together  genomic  regions  of  an  element.  As  a  consequence,
clusters can be found expanding two genomic regions. Of note, this option was developed for
the analysis  of protein coding genes, where different  regions correspond to different coding
sequences in a gene. 

C3H mouse coding sequences using default parameters

~$ oncodriveclustl -i /INPUT_PATH/mutations_file.tsv -o /OUTPUT_PATH/output_directory -r 
/INPUT_PATH/regions_file.tsv.gz --concatenate --genome c3h  

The ‘genome’ command allows to change the reference genome of the data under analysis. 

Human coding sequences using non-default parameters

~$ oncodriveclustl -i /INPUT_PATH/.mutations_file.tsv -o /OUTPUT_PATH/output_directory -r 
/INPUT_PATH/regions_file.tsv.gz --concatenate --smooth-window 35 --cluster-window 15          
--kmer 5 --simulation-window 35 --simulation-mode region_restricted --element-mutations 3      
--cluster-mutations 3 --signature-calculation region_normalized
 
Smoothing, clustering and simulation windows can be set using the ‘smooth-window’, ‘cluster-
window’  and  ‘simulation-window’  commands.  The  k-mer  nucleotide  context  to  calculate  the
mutational  profile  can  be  changed  to  penta-nucleotides  using  ‘kmer’  command.  Simulated
mutations can be forced to fall inside the region under analysis through the ‘simulation-mode’
command. Elements and clusters mutation thresholds are set to 3 SNVs. The mutational profile
is calculated as penta-nucleotide SNVs counts normalized by penta-nucleotide reference counts
in the input regions file ‘regions_file.tsv.gz’. 

Pancancer human coding sequences using default parameters

~$ oncodriveclustl  -i  /INPUT_PATH/mutations_file.tsv -o /OUTPUT_PATH/output_directory  -r
/INPUT_PATH/regions_file.tsv.gz --concatenate --signature-group CANCER_TYPE

A mutational profile will be calculated for each group included in the ‘CANCER_TYPE’ column
provided in the ‘mutations_file.tsv’. 
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Benchmark

The performance of OncodriveCLUSTL in coding regions was first assessed by computing the
enrichment  of  CGC  genes  (Supp.  Methods)  identified  by  the  method  in  the  cohort  under
analysis.  The  enrichment  was  compared  with  two  clustering  methods:  OncodriveCLUST
(Tamborero  et  al.,  2013) and  HotMAPS  (Tokheim  et  al.,  2016).  OncodriveCLUST  method
identifies significant clustering signals in the protein sequence using a background model based
on the distribution of non-synonymous mutations, and can therefore be only applied to protein-
coding genes.  With respect  to OncodriveCLUST,  the main differences of our new algorithm
include:  i)  the  refinement  of  the  background  model  calculation,  now  based  on  the  k-mer
nucleotide  SNVs  frequencies,  which  replaces  the  null  model  of  OncodriveCLUST;  ii)  the
construction of a local background model at the nucleotide level allows to extend the analysis to
non-coding regions of the genome. On the other hand, HotMAPS is a 3D protein-clustering
algorithm that analyzes clusters of missense mutations using a background model based on a
discrete uniform distribution of  mutations in  the protein structure.  The main differences with
OncodriveCLUSTL are: i) as it uses 3D spatial information, HotMAPS can only analyze genes
with  experimentally  solved  protein  structures  or  protein  models,  and therefore  it  cannot  be
applied  to  genes  outside  this  set  nor  non-coding  regions;  ii)  while  HotMAPS  only  takes
missense into  account,  OncodriveCLUSTL clustering  is  built  upon all  substitution  mutations
(missense, nonsense or silent). To compare their performances, we calculated the fold increase
in  the proportion  of  CGC genes among sets  with  increasing  number  of  top  ranking genes
detected by each method. Briefly, for each set of increasing number of top ranking genes, we
calculated the fraction between the proportion of GCG genes within the set and the proportion of
CGC genes within all genes detected by the method. This correction accounts for the fact that
methods differ in the number of genes analyzed, and therefore the proportion of GCG genes
among them, which ultimately modifies the probabilities of detecting CGC genes. Enrichment
plots  show  the  enrichment  of  the  top  40  ranking  genes  identified  by  OncodriveCLUSTL,
OncodriveCLUSTL and HotMAPS. We next calculated the performance of these three methods
in the detection of false positive genes (FP). To this aim, we generated a list of FP genes for
each  cohort  (Supp.  Methods)  and  calculated  the fold  enrichment  in  FP as  explained,  now
correcting  for  the  proportion  in  FP  analyzed  by  each  method.  Finally,  we  generated  FP
enrichment plots for the top 40 ranking genes. 

To show the complementarity between linear (1D) and non-linear (3D) clustering methods we
calculated the number of CGC genes detected by OncodriveCLUSTL and HotMAPS (q < 0.01).
For  each  cohort,  we  computed  the  number  of  unique  CGC  genes  detected  by
OncodriveCLUSTL, HotMAPS, and the number CGC genes detected by both. To study in detail
differences in CGC detection, we ran Variant Effect Predictor (VEP) tool (McLaren et al., 2016)
version 88 (hg19 reference genome) for input TCGA cohorts. For each mutation and alternate,
we  selected  the  highest  consequence  type  estimated  among  all  coding  transcripts.  We
classified CGC genes detected according to their mode of action as described in The Catalog of
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Cancer  Genes  (version  01/05/2017)  at  The  Cancer  Genome  Interpreter
(https://www.cancergenomeinterpreter.org/genes;  downloaded  on  February  18th,  2019)
(Tamborero  et  al.,  2018).  In  addition,  we  classified  CGC  genes  according  to  their  protein
structure status:  solved 3D structure (PDB identifier), protein model or none of them. 

In parallel, we tested the complementarity of 1D linear clustering to other methods based on
different  signals  of  positive  selection,  including  OncodriveFML  (Mularoni  et  al.,  2016)  for
functional  impact  bias  and dNdScv (Martincorena  et  al.,  2017)  for  recurrence.  To this  end,
OncodriveCLUST  version  1.0,  HotMAPS  version  1.1.3,  OncodriveFML  version  2.1.0  and
dNdScv version 0.1.0 were run using default parameters.

Cluster plots

We generated the so called “cluster plots” to illustrate the distribution of mutations, smoothing
curve and clusters along the sequence of a GE. The plot shows GEs sequence 5’-3’ (left to
right) in the strand encoding them. For those GEs fragmented in different regions (e.g., exons in
a gene), the sequence is shown as concatenated (x-axis). The different regions are delimitated
by the different  white-grey  chunks and dashed lines.  The first  grid  of  the plot  contains the
number of  mutations (left  y-axis)  mapped to their  relative position  in  the concatenated GE.
Smoothing curves (blue)  correspond to the smoothed values per  position  following  Tukey’s
kernel density estimate application (right y-axis, labels not shown). GE score and p-value are
highlighted  in  a  box.  The  second  grid  illustrates  observed  clusters.  Significant  clusters  are
highlighted in a red-color scale where darker red corresponds to more significant p-values. Non-
significant  clusters  are  shown  in  grey.  All  functions  needed  to  generate  cluster  plots  are
included  in  OncodriveCLUSTL  code  and  can  be  run  through  the  command line  (details  in
README). 

Expression analysis

Expression  and  copy-number  data  from  TCGA  WGS-505  dataset  were  obtained  from
Fredriksson et al. 2014. As described in the original article, RNA-sequencing (RNA-seq) BAM
format data (hg19 assembly) and copy-number amplitudes (Affymetric SNP6 platform) of CDS
(n=20,167) and lncRNAs (n=11,852) (GENCODE v17;  Harrow et  al.,  2012) were processed
following the methodology introduced by Akrami et al., 2013. Pancancer differential expression
analysis  between  non-mutated  and  cluster-mutated  samples  was  carried  out  for  samples
bearing a diploid  copy number of  the gene under analysis  (log2 absolute amplitude < 0.2).
Differences were assessed using U-Mann Whitney test ( α=0.05 ). 
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Code availability

OncodriveCLUSTL algorithm and a running example are available under  GNU Affero General
Public License at https://bitbucket.org/bbglab/oncodriveclustl.  Results shown in the manuscript
and supplementary  material  were  calculated  using  OncodriveCLUSTL version 1.1.0  Further
versions  will  be  available  through  our  repository. Additionally,  a  limited  version  of
OncodriveCLUSTL can be run through our web at
https://bbglab.irbbarcelona.org/oncodriveclustl. 
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2 Supplementary Figures

Supp. Fig. 1. 

Supp. Fig. 1.  Representation of the empirical cumulative probabilities of p-values for TCGA
WXS UCEC cohort. For each configuration, the empirical cumulative probability of p-values was
calculated and plotted against the theoretical uniform cumulative distribution between 0.1 and 1.
The striped red line shows the expected uniform cumulative distribution. Results for the best
configuration  of  parameters  given  the  top  40  CGC enrichment  are  highlighted  in  red.  The
vertical black line shows the maximum deviance (D) of the best configuration. An alpha of 0.05
was used. 
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Supp. Fig. 2. 

Supp.  Fig.  2.  Effect  of  tri-nucleotide  or  penta-nucleotide  context  mutational  probabilities  on
OncodriveCLUSTL  models.  The  Kolmogorov-Smirnov  statistic  showing  the  fitness  of  the
observed p-values distribution to the expected uniform distribution was calculated for the 19
TCGA cohorts analyzed tri-nucleotide (3-mer, red) and penta-nucleotide (5-mer, blue) context
relative  mutational  frequencies.  Smoothing,  clustering  and  simulation  windows  were  ran  as
default.  
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Supp. Fig. 3. 

Supp. Fig.  3.  Model adjustement by OncodriveCLUSTL. QQ-plots showing the observed p-
values  distribution  versus the expected uniform distribution  for  all  TCGA cohorts  analyzed.
Genes with q < 0.01 are highlighted in red. The number of p-values plotted on each QQ-plot is
shown on top. 
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Supp. Fig. 4. 

Supp.  Fig.  4.  Model  adjustement  by  OncodriveCLUST.  QQ-plots  showing  the observed  p-
values  distribution  versus the expected uniform distribution  for  all  TCGA cohorts  analyzed.
Genes with q < 0.01 are highlighted in red. The number of p-values plotted on each QQ-plot is
shown on top.
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Supp. Fig. 5. 

Supp.  Fig.  5.  Model  adjustement  by  HotMAPS.  QQ-plots  showing  the  observed  p-values
distribution versus the expected uniform distribution for all TCGA cohorts analyzed. Genes with
q < 0.01 are highlighted in red. The number of p-values plotted on each QQ-plot is shown on
top.
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Supp. Fig. 6. 

Supp. Fig. 6. Model adjustement by OncodriveFML. QQ-plots showing the observed p-values
distribution versus the expected uniform distribution for all TCGA cohorts analyzed. Genes with
q < 0.01 are highlighted in red. The number of p-values plotted on each QQ-plot is shown on
top.
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Supp. Fig. 7. 

Supp.  Fig.  7.  Model  adjustement  by  dNdScv.  QQ-plots  showing  the  observed  p-values
distribution versus the expected uniform distribution for all TCGA  cohorts analyzed. Genes with
q < 0.01 are highlighted in red. The number of p-values plotted on each QQ-plot is shown on
top.
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Supp. Fig. 8. 

Supp. Fig. 8.  Enrichment in CGC genes amongst OncodriveCLUSTL, OncodriveCLUST and
HotMAPS top-ranking genes. Enrichment is computed as the fold increase in the proportion of
CGC genes among sets with increasing number of the top 40 ranking genes.
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Supp. Fig. 9. 

Supp.  Fig.  9. Enrichment  in  false  positive  genes  amongst  OncodriveCLUSTL,
OncodriveCLUST  and  HotMAPS  top-ranking  genes.E  nrichment  is  computed  as  the  fold
increase in the proportion of false positive genes (FP) among sets with increasing number of the
top 40 ranking genes detected by each method. 
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Supp. Fig. 10. 

Supp. Fig. 10.  Examples of CGC genes detected by OncodriveCLUSTL and HotMAPS. Two
examples of CGC genes detected only by OncodriveCLUSTL (a), only by HotMAPS (b) or by
both (c). For each example, the upper grid shows the total number of gene mutations labelled
as nonsense (red), misense (orange), silent (blue) or other annotation (grey) mapped to the
coding sequence of the gene. The middle grid shows clusters detected by OncodriveCLUSTL.
Lower grid shows mutated residues mapped to nucleotide sequence detected by HotMAPS.
Significant clusters or residues (p<0.05) are highlighted in red. Gene raw and adjusted p-values
yielded by OncodriveCLUSTL and HotMAPS are shown for each example. OncodriveCLUSTL
can detect clusters of nonsense mutations, which are skipped by the 3D analysis of HotMAPS
(a). Although OncodriveCLUSTL can miss 3D clusters (b), its the linear clustering analysis can
highlight  the same mutated residues as HotMAPS (c).  Check Supp.  Benchmark section for
further methodological details. 
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Supp. Fig. 11. 

Supp. Fig. 11. Comparison of CGC genes detected by OncodriveCLUSTL and HotMAPS. Pie
charts showing the proportion of CGC genes bearing activating, loss-of-function, ambiguous or
no mode of action detected by OncodriveCLUSTL, HotMAPS, and both (a). Availability of PDB
structure,  3D  model  or  no  protein  structure  of  the  CGC  detected  exclusively  by
OncodriveCLUSTL,  HotMAPS,  and  both  (b).  Check  Supp.  Benchmark  section  for  further
methodological details. 
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Supp. Fig. 12. 

Supp. Fig. 12. TERT expression analysis. Samples containing a mutation in the chr5:1295228-
1295253  cluster  (red)  detected  by  OncodriveCLUSTL  have  an  increased  TERT expression
when compared to TERT promoter non-mutated samples (U-Mann Whitney p < 0.001). Only
those samples with non-altered TERT gene copy number alterations were used for this analysis.
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3 Supplementary Tables

Supp. Table 1. OncodriveCLUSTL running parameters for the tested cohorts. Best smoothing,
clustering and simulation windows (bp) OncodriveCLUSTL according to the model  selection
strategy introduced in Supplementary Methods section (tabular file; 634 bytes). 

Supp. Table 2. OncodriveCLUSTL results of genomic elements. Significant genomic elements
(q < 0.01) found in the total 21 cohorts analyzed, including 19 TCGA WXS cohorts,  Pancancer
TCGA WGS-505 cohort and Mouse WXS dataset (tabular file; 15.5 kB). 

Supp.  Table  3.  OncodriveCLUSTL  clusters  results.  Clusters  found  in  significant  genomic
elements for 19 TCGA WXS cohorts (hg19 coordinates), Pancancer TCGA WGS-505 cohort
(hg19 coordinates) and Mouse WXS dataset (C3H_HeJ_v1.86 coordinates) (tabular file; 58.6
kB). 
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