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1 Algorithmic details

Below we give more details of the algorithms used in GTShark. We focus on the compression
stages as the decompression is almost symmetric.

1.1 Input VCF files

Each input VCF file must have the homogeneous ploidy (1 or 2). Therefore, files not satisfying
this feature must be split before compression to a few files by external tools.

1.2 Preprocessing of VCF files

The input VCF files can have multiallele variants, i.e., the variants for which more than one
alternate value is possible. Such files are handled by our compressor. When the files are loaded
the multiallele variants are split into as many variants (for the same position in a genome)
as the number of alternate alleles. Therefore, the valid genotypes for each allele are: 0 (the
referential value), 1 (the alternate value), 2 (some other alternate value), and 3 (the genotype
is unknown). Such approach significantly simplifies handling multiallele variants and was used
previously also in [4, 1].

For diploid genomes we internally split the genotypes into two haploid genomes so in the
rest of the algorithm we can work in exactly the same way independently on the initial ploidy.

1.3 Positional Burrows—Wheeler Transform for non-binary alphabets

The original PBWT algorithm proposed in [3] was designed for binary alphabets. Recently, it
was straightforwardly generalized to non-binary alphabets [2]. In GTShark we use this recent
variant (gPBWT) as it directly supports the 4-value alphabet we are working on.

1.4 Special treatment of extremely rare or extremely frequent genotypes

We start processing of each variant from determination of a histogram of values, a necessary
step in the gPBWT algorithm. Then, we determine the dominant (the most frequent) value.
If the total number of non-dominant values are very small (we use the threshold 10 for the
1000GP3 data and 20 for the HRC data) we do not permute.

1.5 Contextual modelling in the collection compression

After gPBWT the genotype values usually form a sequence of long runs. Formally, the variant
genotypes can be represented as a sequence of tuples (v, £), where v is a genotype value (from
0 to 3) and ¢ is the run length. The complete sequence is:

(v1, 1), (v2, L), ..., (v, Lg).

We store this sequence with a use of an entropy coder. In the present implementation a range
coder is employed here.

For tuple (v;,¢;) we firstly encode the value v; taking as a context 4 recently processed
values, i.e., (vj—1,vi—2, vi—3,vi—4) (for completeness we define v; = 4 for j < 0).

The encoding of the run length ¢; is as follows. Initially we determine the range r; of length
to which ¢; belongs. The possible ranges are:

e 0 for ¢; = 0 (it will be explained below when the run length can be 0),
o 1fort; =1,

o 2 for 2 </Y; <4,



3ford <V¢; <8,

4 for 8 < ¢; < 16,

5 for 16 < 4; < 32,

6 for 32 < ¢; < 64,

7 for 64 < £; < 128,

8 for 128 < ¢; < 256,
e 9 for 256 < ¢; < 512,
e 10 for 512 < 4;.

The range r; is encoded using (v, v;—1,v;—2,v;—3) as a context.

Ranges 0 or 1 uniquely specify the current run length. For range values from 2 to 9 we
encode the value ¢; — 2"~1. The context here is (vi, ;). For range 10 we treat the length ¢; as
24-bit integer and split it into bytes (from the most significant one): be, b1, by. Then, we encode:
by with context (r;); by with context (r;,b2); by with context (r;, ba, by).

The exceptional run length 0 is used instead of ¢, i.e., the last tuple in a sequence. We can
use such a trick as we know the number of samples in the collection and in decompression we
can directly calculate £;. Moreover length 0 serves as a flag denoting the end of the variant.

The way the lengths are encoded limits (in the current implementation) the number of
samples in an input VCF file to 22 ~ 16.7 x 10%, which seems to be a sufficiently large value.
Nevertheless, the support for larger collections is straightforward as it suffice to treat ¢; as, e.g.,
32-bit integer and store 4 bytes of length.

1.6 Compression of external single-sample VCF files

By default, the compression of external single-sample VCF files requires that the sets of variants
in both the collection and the external sample are exactly the same. Below, we describe how
the genotypes of the successive variants in the external sample are predicted and how these
predictions are used in the encoding.

Similarly as for collection of samples, the ploidy in the external sample must be homogeneous
(and the same as for the collection). If the sample is diploid it is (internally) split into two
haploid ones (but this is not visible to the user).

It is also possible to turn on a mode (setting the -ev parameter) to compress an external
single-sample VCEF file with extra variants or missing variants. Details are give in Section 1.6.3.

1.6.1 Virtual placement of external sample in a collection

Let the collection contain n samples. The initial permutation of them is (0,1,...,n —1). We
assume that at the beginning our external sample is at the position n. Then we proceed as
follows.

For each variant we decode the series of runs:

(v1,01), (v2, L), ..., (U, Lg)

and calculate histogram H of occurrences of values. Then we calculate cumulative histogram

H* defined as -



procedure EXT-SAMPLE-VARIANT-PLACEMENT (v, R, H*, p)

Input: v — current genotype value
R — sequence of runs (v1, 1), (v2,€2), ..., (Vk, L)
H* — cumulative histogram of symbols according to R
p — position of the external sample after processing previous variant
Output: N, — neighbour (predecessor) run
Ny — neighbour (successor) run
p* — position of the external sample after processing the variant

1 N, (0,0); N;<«(0,0)
2 j<+< 0  {current position in vector}
3 ¢+ 0 {counter for current genotype value}
4 if p =0 then
5 Ny <'U1,1€1>
6 else
7 for i <+ 1 to k do
8 if p=j+/{; then
9 Np «— <’Uz', £z>
10 if i+1 <k then N+ <Ui+1;‘€i+1>
11 if v=wv;, then c<~c+¥;
12 break
13 else if p < j + ¢; then
14 Ny, « (vi,p— )
15 Ny (v, &i = (p = J))
16 ifv=v;,thenc+c+p—3j
17 break
18 Je i+l
19 if v =v; then c<+ c+/¥;
20 if permuting-variant then p* < H*[v] + ¢
21 else p* < p {do not permute for extremely rare of frequent variants}
22 return N,, N, p*

Figure 1: Pseudocode of the algorithm finding the location of external sample in a compressed
collection of genotypes

We also have a virtual position p of the external sample in the permutation for the previous
variant, which means that the external sample should be located between samples p — 1 and p.
Then, we proceed as shown in Figure 1.

Roughly speaking we make gPBWT for the variant and the external-sample genotype but
as we do not need the complete permutation we just look for the position of the external-sample
genotype. We also return the runs before (N,) and after (NVg).

1.6.2 Context modelling for external-sample genotypes

For encoding of the external-sample genotypes we make use of the runs before and after the
virtual position of the genotypes. For example, if the external genotype is located between two
runs of Os it is likely that the external genotype is also 0 and taking such predictions should
help in compact representation of the actual genotype value.

More formally, let us denote Ny, = (vp, ) and Ny = (vg, £s). We encode the value of external
genotype in a context composed of 6 values. The first two are v, and vs. The next two are

calculated from run lengths: [%J and [WJ. The last two are: [WJ and

LWJ, where lcsp, and lesg are the lengths of the common suffixes between the external

sample and neighbor samples from the collection.GTShark



The calculation of the common suffixes between the external sample and the neighbor from
the database requires explanation. Let us assume that before processing of the current variant
the length of the common suffix between the external sample and neighbor sample at position
pis x. If v = vs then after processing the current variant x will change to  + 1. (For technical
reasons, in the implementation, this value is upper bounded by 2048.) In the opposite case, we
have to calculate lcsg without decompressing large part of the database. Fortunately, this can
be achieved in a similar way as extracting single sample from the compressed collection, which
is also implemented in GTShark in the similar manner like in PBWT [3], BGT [4].

1.6.3 Handling extra (non-present in a database) variants

When the variants in a sample file does not match exactly the variants in the database, the user
should turn the -ev flag. In this mode, the sample and database variants are processed pair by
pair. Let us assume that the “coordinates” (chromosome and position) of the current sample
variant and current database variants are (chrsample; POSgample) a0d (chrqn, posqy,). There are
three alternative situations here:

1. If the coordinates match, the equality flag is stored and the variant is compressed by
standard means (as described above). Then, the algorithms goes to the next pair of
variants.

2. If the database variant coordinates are smaller than the sample variant coordinates, i.e.,
chran < chrsample O (chran, = chra, Aposq;, < possample), the sample absence flag is stored
and the algorithm takes the next variant from the database.

3. Otherwise, the sample extra flag is stored and the sample variant data are added to nine
buffers (each field to separate buffer). Then, the algorithm takes the next variant from
the sample.

The buffers containing extra variant data are finally compressed using the LZMA algorithm (the
positions are firstly delta-coded). The flags are compressed using range coder taking 6 previous
flags as a context.

1.7 Compression of genotype descriptions

GTShark allows also to compress the variant descriptions, i.e., the nine mandatory fields. To
this end we gather the field values (from the complete database) separately into 9 sequences. The
position values are delta-encoded. Then each sequence is compressed by the LZMA algorithm.



2 Examined programs
The following programs were used in the experimental part.
e BGT v. 1.0-r283-dirty, https://github.com/1h3/bgt

e GTC v. 1.1, https://github.com/refresh-bio/GTC

e PBWT, https://github.com/richarddurbin/pbwt

TGC, https://github.com/refresh-bio/TGC

GTShark (the proposed algorithm), https://github.com/refresh-bio/GTShark



3 Datasets

This section presents datasets used in the experimental part.
Each sample in the VCF files from these datasets is described only by a genotype data,
encoded as allele values (GT field in a VCF file).

The 1000 Genomes Project — Phase 3 (1000GP3)

The 1000 Genome Project data sets were downloaded from:
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/

It contains 2,504 samples.

The VCF files for all autosomes and chromosome X contain diploid genotype data for all
2,504 samples, while the VCF file for chromosome Y contains haploid genotype data for 1,233
male samples.

The Haplotype Resource Consortium (HRC)

The HRC data sets were downloaded from the European Genom-phenom Archive (Study
EGAS00001001710, Dataset EGAD00001002729).

It contains 27,165 samples.

The VCF files for all autosomes and two pseudo-autosomal regions of chromosome X/Y
(called X_PAR1 and X_PAR2) contain diploid genotype data for: a) all 27,165 samples in case
of chromosomes 2-22, b) 22,691 samples in case of chromosome 1, ¢) 26,199 samples in case of
chromosome X/Y.

The VCF file for non pseudo-autosomal region of chromosome X/Y contain mixed (hap-
loid and diploid) genotype data for 22,691 samples. We split this VCF file into two sepa-
rate VCF files: X _nonPAR_FEMALE containing diploid genotype data for 14,460 female and
X_nonPAR_MALE containing haploid genotype data for 11,739 males.



4 Evaluation

This section provides details of the experiments performed. All command line parameters used
in experiments are given. Exact list of samples used in some experiments (sample compression,
sample extraction) is provided in the spreadsheet with the results (see Section 6.1).

4.1 Compression and decompression of a full dataset—compressors compar-
ison

In this experiment both datasets, 1000GP3 and HRC, were compressed and decompressed using
TGC, BGT, GTC, PBWT and proposed GTShark. Each VCF file was processed separately.
The output of decompression was, when possible, redirected to null device.

The exact command line parameters of all programs are given below (input VCF is input . vcf
and archive name is archive).

TGC
e Compression:

./VCF2VDBV input.vct
1ls -1 *x.bv > bv_files_list
./tgc c archive bv_files_list

e Decompression:
./tgc d archive

Note: The VCF2VDBYV tool (part of TGC) was modified in order to parse all VCF variants
and their description (original tool copes only with variants from phase 1 of 1000GP). It does
produce correct Bit Vectors (BV) for all genotypes (which can be compressed with tgc), but the
Variant Database it produces is limited and does not allow to recreate the initial VCF. Hence,
the decompression here was only to BV (stored on disk).

BGT
e Compression:
./bgt import -S -o archive input.vcf.gz
e Decompression:
./bgt view -b -u archive > /dev/null
GTC
e Compression:
./gtc compress -t 1 -o archive input.vcf.gz
e Decompression:
./gtc view -b -c 0 archive > /dev/null

Note: parameter “~p 1”7 was added for compression of VCF files containing haploid genotype
data.



PBWT

e Compression:
./pbut -readVcfGT input.vcf.gz -writeAll archive
e Decompression:

./pbwt -readAll archive -writeBcf - > /dev/null

GTShark

e Compression:
./gtshark compress-db -nl 10 input.vcf.gz archive
e Decompression:
./gtshark decompress-db -b -c 0 archive - > /dev/null

Note: Parameter nl was set to 10 for the 1000GP3 dataset and to 20 for the HRC dataset.

4.2 Extraction of a single sample

In this experiment GTShark, BGT, GTC and PBWT were used to extract 100 random single
samples from the previously compressed HRC and 1000GP3 datasets (archives were created in
the first experiment). The list of samples used in the experiment is in the “Sample extraction”
sheet of the supplementary spreadsheet.

We skipped evaluation of TGC, as is it is not possible to extract a complete VCF file using
TGC in case of the HRC and 1000GP3 datasets (it is only possible to extract bit vectors with
genotypes).

The exact command line parameters are given below (compressed dataset is archive, sample
id is ID, ID_file is a file with ID). The output was redirected to null device.

BGT

e Sample extraction:
./bgt view -b -u -s,ID archive - > /dev/null

GTC

e Sample extraction:
./gtc view -b -c 0 -s ID archive > /dev/null

PBWT

e Sample extraction:

./pbwt -readAll archive -selectSamples ID_file -writeBcf - > /dev/null



GTShark

e Sample extraction:

./gtshark extract-sample -b -c O archive ID - > /dev/null

4.3 Compression and decompression of a single sample using previously com-
pressed dataset as a reference

In this experiment, GTShark was used to compress VCF files describing single samples in
reference to a previously compressed dataset.

The reference dataset was made of HRC dataset with 100 random samples (50 males and
50 females) excluded from it (all of these 100 samples occurred in each of the VCF files of the
original HRC dataset). The excluded 100 samples were extracted from original HRC dataset to
produce 100 separate VCF files. The list of samples used in the experiment is in the “Sample
compression” sheet of the supplementary spreadsheet.

The exact command line parameters are given below (VCF input dataset is input.vcf,
compressed dataset is archive, input sample VCF is sample.vcf and archive of sample is
sample-arch). The output was redirected to null device.

e Compression:

./gtshark compress-db -nl 20 input.vcf.gz archive
e Sample compression:

./gtshark compress-sample archive sample.vcf sample-arch
e Sample decompression:

./gtshark decompress-sample archive sample-arch - > /dev/null

4.4 Using population as a knowledge base

In this experiment, GTShark was used to compress VCF files describing single samples in refer-
ence to a previously compressed datasets being collections of samples from a single population
or mix of populations.

The input data for this experiment (all input VCF files) was extracted from Chromosome 11
of the 1000GP3 dataset. It contains samples from 26 population, but populations ASW and
MXL were excluded from test due to small number of related samples. The chosen populations
are from 5 superpopulations: African (ACB, ESN, GWD, LWK, MSL, YRI), American (CLM,
PEL, PUR), East Asian (CDX, CHB, CHS, JPT, KHV), European (CEU, FIN, GBR, IBS, TSI),
South Asian (BEB, GIH, ITU, PJL, STU). Initially, 2040 samples from these 24 populations
(85 samples from each population) were chosen for the test; a VCF file for each sample was
extracted from the original data. Next, 48 reference datasets (VCF files) were created:

e 24 datasets with single populations, 85 samples from a single population in each,

e 24 larger datasets with mixed populations, 85 samples from each of 23 populations (all
but one), that is 1955 samples, in each dataset.

The reference datasets were compressed and each of the 2040 samples was compressed in
reference to each of the 48 archives.

The exact command line parameters are given below (VCF input dataset is input.vcf, com-
pressed dataset is archive, input sample VCF is sample.vct, archive of sample is sample-arch
and decompressed VCF is out-sample.vct).

10



e Compression:
./gtshark compress-db -nl 0 input.vcf.gz archive
e Sample compression:

./gtshark compress-sample archive sample.vcf sample-arch

11



5 Environment

The computer used in tests was of the following configuration:
e 2 AMD Opteron 6348 CPUs, 12 cores per CPU, each clocked at 2.8 GHz,
e 128 GiB RAM.

For compilation we used G++ v. 6.3.0. The machine was running Debian GNU/Linux 9.5.
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6 Additional results

Complete results are in the supplementary spreadsheet “GTSharkEvaluation”. This section
provides summary of the results and points to the related full data in the spreadsheet.

Note that compressed sizes and archive sizes (in the main manuscript and in this document)
refer to sizes of compressed genotypes only. Sizes of other components of archives (compressed
description of variants and samples) can be found in the supplementary spreadsheet.

6.1 Compression and decompression of a full dataset—compressors compar-
ison

A summary comparison of compressors of VCF files for HRC collection is in Table 1 in the
main manuscript. A similar comparison for 1000GP3 data is shown here in Table 1. Detailed
results for both datasets, distinct for each of the input VCF file, are in the “HRC dataset
compression” and “1000GP3 dataset compression” sheets of the supplementary spread-
sheet. These spreadsheets contain some characteristics of the input VCF files (size, gzipped
size, number of variants, number of samples) and, for each of the evaluated programs, complete
sizes of compressed structures (genotypes and description of variants and samples), as well as
times and memory usage of compression and decompression stages. The results are provided
for all evaluated tools: TGC, PBWT, BGT, GTC, GTShark. In case of GTShark, the results
are for different values of nl parameter.

Table 2 shows the sizes of compressed collections (genotypes only) varying in number of
samples. The collections contain variants from HRC chromosome 11 and reduced number of
samples.

Comments on the results:

e due to limitations of TGC (see Section 4.1), the TGC compression and decompression
times refer to compressing and decompressing BV (Bit Vectors) only, time and memory
usage of transforming VCF files to BV are in the supplementary spreadsheet,

e PBWT, BGT and GTC do not store all information about variants: the description of
variant sites kept in BCF file (in BGT and GTC) is cut to CHROM, POS, REF and ALT
fields, similar data are kept in PBWT (within the archive); GTShark does store complete
variant info,

e BGT results for HRC dataset are incomplete: VCF file of chromosome X_nonPAR_MALE
could not be compressed, as BGT does not support haploid genotypes,

e BGT results for 1000GP3 dataset are incomplete: VCF file of chromosome Y could not
be compressed, as BGT does not support haploid genotypes,

e PBWT results for 1000GP3 are incomplete, as program failed to compress VCF file for
chromosome X.

6.2 Extraction of a single sample

A summary comparison of times of extraction of a single sample from compressed HRC and
1000GP3 collections with PBWT, BGT, GTC and GTShark is in Table 3.

Detailed results for both datasets, distinct for each of the input VCF file (chromosome), are
in the “Sample extraction” sheet of the supplementary spreadsheet. The list of samples used
in the experiment is also included.
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Table 1: Comparison of compressors of VCF files for 1000GP3 collection (84.8 M variants, 2,504
samples, 854 GB of VCF, 17.4 GB of gzipped VCF).

C-size [MB] C-time [s] C-RAM [GB] D-time [s]

TGC* 852 42,339 11.5 449

PBWT* 1,460 25,186 1.0 5,229

BGT* 3,307 29,012 0.004 5,443

GTC 1,247 25,586 1.2 735

GTShark 649 28,421 4.1 4,655
Column description: ‘C-size’ — compressed size, ‘C-time’ — compression time, ‘D-time’ —
decompression time, ‘C-RAM’ — amount of RAM in the compression stage. Bold font is used for the

best results (TGC times are not taken into account, as they refer only to the compression and
decompression of BV). * See comments on the results in Section 6.1.

Table 2: Sizes of compressed genotypes [MB] for sampled chromosome 11 from HRC collection.
Comparison of compressors of VCF files.

Number of samples TGC PBWT* BGT* GTC GTShark

1000 7.3 15.1 43.0 13.1 6.4
2000 12.5 24.3 55.8 22.0 10.4
3000 17.1 31.5 70.4 29.8 13.9
4000 21.5 38.0 82.0 37.0 17.1
5000 25.8 44.6 93.0 44.3 20.1
7000 33.9 56.8 114.4 56.8 25.9
10000 45.8 74.3 145.4 75.8 34.1
15000 65.3 102.9 196.3 104.3 47.3

20000 84.2 130.5 246.1  133.9 60.0
27165 110.5 169.1 318.0 172.0 7.4

Bold font is used for the best results. * See comments on the results in Section 6.1.

6.3 Compression and decompression of a single sample using previously com-
pressed dataset as a reference

The size of the compressed dataset (HRC dataset with 100 samples excluded, that is 27,065
samples) is 1,673,651,820 B, 61,838.23 B per sample on average.

The compression of a single sample using previously compressed dataset as a reference (HRC
dataset with 100 samples excluded) takes 715.56 seconds on average. The decompression takes
765.05 seconds on average. The size of the compressed sample is 65,527.48 B on average.

Detailed results, distinct for each of the input VCF file (chromosome), are in the “Sam-
ple compression” sheet of the supplementary spreadsheet. The list of samples used in the
experiment is also included.

6.4 Using population as a knowledge base

The main results are in Figure 1 in the main manuscript. A more detailed results are in the
“Population as a knowledge base” sheet of the supplementary spreadsheet, which includes
four tables:

14



Table 3: Comparison of times (in seconds) of extraction of a single sample from HRC and
1000GP3 datasets compressed using PBWT, BGT, GTC and GTShark

Dataset HRC 1000GP
PBWT* 11,141.7 1,735.2
BGT* 95.3 107.9
GTC 124.0 105.4
GTShark 691.8 787.6

Bold font is used for the best results. * See comments on the results in Section 6.1

e Table 1, which is a matrix of sizes of a samples compressed using a reference made of 85
samples from a single population (average over 85 samples); this is the matrix included in
Figure 1 in the main manuscript,

e Table 2, which is a matrix of sizes of a samples compressed using a reference made of 1955
samples from 23 populations (average over 85 samples); the diagonal of this matrix is the
additional column in Figure 1 in the main manuscript,

e Table 3, which presents sizes of the references used,

e Table 4, which presents per sample sizes of the references used.
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