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PART A – Usage scenario 

A Hidden Markov Model is a probabilistic model defined by a discrete set of “hidden” states, a discrete set of observed 

symbols (e.g. amino acid residues in the case of proteins), and two set of distribution probabilities; the state transition 

probability distribution (transitions) and the observed symbol probability distribution (emissions). Let's assume we want to 

model a protein sequence analysis problem. To do this, we need to specify the state space, the initial probabilities, and the 

transition probabilities. 

Let’s consider a specific protein sequence analysis problem, such us the prediction of transmembrane regions of alpha-helical 

membrane proteins with the ability to incorporate prior topological information. We first need to design the model and 

consider the number of states and which the permissible transitions are. Figure 1 shows a schematic representation of the 

model used in HMM-TM, which is the example presented in this scenario. 

 

Figure S1. A schematic representation of the HMM-TM model's architecture 

 

 

Knowing the number of states of the model, the first step is to define the transition probabilities. They are simply the 

probabilities of staying in the same state or moving to a different state given the current state. Here, the user could use a 

spreadsheet to create an NxN table where N is the number of states of the model. Each transition probability depends on the 

biological problem. The transition matrix is perhaps the most important step because non-zero elements define the allowed 

transitions and thus the model architecture. In the example of alpha-helical transmembrane segments predictions, there are 

transmembrane states (M and m), extracellular states (O and o), intracellular states (I and i) and the Begin (B) and End (E) 

states. All non-zero probabilities one can see in Figure 1, show permissible transitions between different states. Each line 

must sum to 1. For each line, the user can define a function to check the sum. Note that each state can have a name with 

more than one character; in the particular case for convenience we chose state names that remind us the type of the state, 

for instance M01, M02 for the membrane states, and so on.  

 



 
Figure S2. The transition probabilities table 

In the end, the user will copy the column with probabilities and paste at the text editor and save it at the hard disk. 

 

The next step is to define the emission probabilities. The emission probability represents how likely a symbol is to be 

emissioned on each state. The size of this set depends on the nature of the observed variable. In the case of proteins, an 

observed sequence is composed of a discrete set of 20 symbols, following the alphabetical order of single-letter codes for the 

20 amino acids: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. In the example of alpha-helical transmembrane topology 

prediction, a Nx20 table represents the emission probabilities and should be initialized. Again, the user can use a spreadsheet. 

The user defines a column for each symbol and a line for each state. Each line must sum to 1. For each line, user can define a 

function to check the sum. The user can use some plausible values for initializing the emissions or use uniform probabilities 

and let JUCHMME find the appropriate starting values, using the respective option. 



 
Figure S3. The emission probabilities table 

In the end, the user copies the column with probabilities, pastes them at Notepad or any other plain text editor and saves 

them on the file system. 

 

Now that we have the initial transition and emission probabilities set up, we can create a Markov diagram using an appropriate 

software package. 

 

The next step is to set up the model file using a plain text editor. The user creates the file according to the final state names, 

observed symbols and label names. Specifically, the user can name the model, define the symbol alphabet (Figure S3, see 

ESYM), the label alphabet (Figure S3, see PSYM), as well as, the specific states of the model (Figure S3, see STATE) and their 

corresponding labels (Figure S3, see PSYM). OSYM is a special “intermediate” condition between states and labels that defines 

the tied states, which are the states that share the same emission probabilities (in order to reduce the model parameters). 

Note that in the current configuration a state can correspond only to one label, but states with different labels can be tied 

together. The user may also define prior probabilities for each symbol or label if he/she wishes to (Figure S3, see PRIOR). The 

model configuration file is quite self-explanatory as one can see in Figure 3. 



 
Figure S4. The model configuration file 

 

The next and final step is to set up the configuration file using a plain text editor like Notepad. If the user defines only a few 

parameters and not all of them, the system will run using the default values as described in the manual. The user should be 

careful in this stage since all states defined in this file should correspond to the ones used in the transition and emission 

tables. 

 

Training  

While setting up the training parameters, the user may choose between the available training methods by using the respective 

configuration settings as shown below.  

 

ML Configuration Settings 

# TRAINING OPTIONS 
RUN_CML=false 
RUN_GRADIENT=false 
HNN=false 
ALLOW_BEGIN=true 
ALLOW_END=true 
RUN_ViterbiTraining=false 
threshold=0.02 
maxIter=200 

 

 

CML Configuration Settings 

# TRAINING OPTIONS 
RUN_CML=true  (!important to enable Conditional Maximum Likelihood Learning) 
RUN_GRADIENT=true 
HNN=false 
ALLOW_BEGIN=true 
ALLOW_END=true 
RUN_ViterbiTraining=false 
threshold=0.02 



maxIter=200 

 

 

HNN Configuration Settings 

# TRAINING OPTIONS 
RUN_CML= true  (!important to enable Conditional Maximum Likelihood Learning) 
RUN_GRADIENT=true 
HNN= true  (!important to enable HNN extension) 
 
#HNN OPTIONS 
windowLeft=3 
windowRigth=3 
nhidden=3 
ADD_GRAD=0.0 
DECAY=0.001 
#1: Sigmoid, 2: Sigmoid Modified, 3: Tanh 
hiddenLayerFunction=2 

 

 

The user may test different configurations before concluding to the most efficient one.  

 

Decoding 

Using the available algorithms, we can identify the most likely sequence of hidden states or the most probable labeling given 

the sequence of observations. Again, the user can choose which decoding algorithm will be used by editing the respective 

section of the configuration file as shown below.  

 

Configuration Settings 

# DECODING OPTIONS 
VITERBI=true 
NBEST=false 
DYNAMIC=false 
POSVIT=false 
PLP=true 

 

Since JUCHMME was originally developed to train and test transmembrane prediction models, some commonly used 

measures of accuracy are calculated and offered to the users. Specifically, the number of correctly predicted residues (Q), the 

segment overlap (SOV) measure and the number of correctly predicted topologies are calculated by JUCHMME and may be 

used to evaluate the new models.  

 
VITERBI: 
 
Q2:0.845 Qa:0.737 Qna:0.916 Pa:0.855 Pna:0.839 Qfas:0.827 
Ca:0.673 SM:0.885 TP:596 FP:37 FN:122 Correct Top:10 Correct Ori:10 Avg SOV:0.787 
 
PLP: 
 
Q2:0.852 Qa:0.772 Qna:0.906 Pa:0.846 Pna:0.856 Qfas:0.839 
Ca:0.690 SM:0.904 TP:627 FP:47 FN:91 Correct Top:14 Correct Ori:14 Avg SOV:0.807 

 
 

To further highlight how simple it is to build a new model using JUCHMME, let’s consider a follow-up scenario. In an attempt 

to further improve the reliability of alpha-helical transmembrane topology prediction, we chose to incorporate the post-

translational modifications, phosphorylation and glycosylation, which are known to be compartment-specific and therefore 

the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. With 



this in mind the model of HMM-TM was re-designed to include phosphorylation and glycosylation specific states as part of 

the intracellular and the extracellular sub-models respectively (Figure S5). 

Figure S5. A schematic representation of the HMMpTM model's architecture  

To build the new model, we modified the architecture of the existing HMM-TM model. As one can see in Figure S6, using 

JUCHMME it is easy to modify the architecture of existing models by editing the model configuration file. The OSYM, PSYM, 

STATE, OSTATE, PSTATE fields are changed accordingly. Also, both the transition and emission probabilities tables need to be 

modified using a spreadsheet based on the new model.  

 

 

Figure S6.The HMMpTM model configuration file 

  



PART B – Comparison of Speed 

The following table and figures present the testing of traditional HMM Dishonest Casino model, CpG Island model [1], PRED-

TMBB model [2] and PRED-TAT model [3]. The programs were compiled and run in Ubuntu Linux on an Intel Xeon E5-2660 

10-core 2.00 GHz server with 32 GB RAM. Time was evaluated using the Unix time function and all values reported as the 

average of 5 runs. We used a varying number of input sequences (500, 1000, 3000, 5000 with 500 symbols per sequence) and 

we evaluated both Viterbi and Posterior decoding algorithms. 

Table S1. Evaluation of JUCHMME and StochHMM in terms of speed using different models and varying number of input 

sequences 

Model Algorithm 
Number of 
Sequences 

JUCHMME 
(serial mode) 

JUCHMME  
(Parallel mode) StochHMM 

Casino 
2 states 

Viterbi 

500 2.150 1.941 0.181 

1000 3.536 3.373 0.277 

3000 10.303 10.148 3.918 

5000 15.864 15.749 5.328 

Posterior 

500 2.499 1.951 0.255 

1000 4.417 3.223 0.493 

3000 11.799 10.073 3.169 

5000 17.882 16.072 5.527 

CpG 
8 states 

Viterbi 

500 3.905 2.073 0.239 

1000 7.003 3.526 0.365 

3000 18.546 10.365 3.798 

5000 29.584 16.891 6.357 

Posterior 

500 5.508 2.464 0.506 

1000 10.992 3.782 0.854 

3000 29.165 10.456 5.294 

5000 47.550 16.126 8.134 

PREDTMBB 
62 states 

Viterbi 

500 10.675 2.990 30.236 

1000 20.171 5.256 61.383 

3000 61.666 14.155 174.204 

5000 95.548 21.080 295.080 

Posterior 

500 13.254 3.238 50.437 

1000 25.920 5.900 100.950 

3000 75.943 17.261 299.394 

5000 120.879 29.387 511.065 

PREDTAT 
142 states 

Viterbi 
500 50.197 7.695 121.757 

1000 96.830 13.343 243.175 



3000 285.813 37.386 723.434 

5000 463.032 60.217 1198.107 

Posterior 

500 67.891 8.838 214.173 

1000 131.387 16.439 427.095 

3000 370.474 45.670 1293.602 

5000 643.665 79.328 2199.807 

 

 

 
Figure S7. Run time comparison of JUCHMME and StochHMM using Viterbi Decoding 

 



  

Figure S8. Run time comparison of JUCHMME and StochHMM using Posterior Decoding 

 
  



 

PART C – Comparison of Features 

Table S2.  Comparison of features available in different HMM packages. All packages provide functionalities for standard 

HMMs trained with Baum-Welch algorithm and decoded with Posterior/Viterbi algorithms, so these are not listed. 
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Types of models           

 Class HMM for Labeled Sequences (CHMM) [13]            
 Hidden Neural Networks (HNN) [14]           

 Higher order emissions or transitions (HOHMM, PHMM, HMMSDO) [15, 16] 
[17] 

          

 pair-HMMs [18]           

 Generalized HMMs (GHMM) [19]           

 Inhomogeneous chains           

 Continuous emissions           

 Silent states           

 Multiple emissions, Joint emissions, Lexical transitions           

Training Algorithms           

 Conditional Maximum Likelihood (CML) training [20]           

 Gradient-descent training (including RPROP) [21]           

 Viterbi Training [22]           

 Semi-supervised learning (SSL) [23]           

 Linear-memory Baum-Welch training [24]           

 Linear-memory Viterbi training [25]           

Decoding Algorithms           

 Optimal Accuracy Posterior Decoding [26]           

 N-best decoding [27]           

 Posterior-Viterbi decoding [28]           

 Constrained decoding [29]           

 Stochastic decoding           

 Linear-memory posterior sampling            

 Hirschberg decoding algorithm [30]           

Utilities           

 Parameter tying (emission sharing)           

 Random Sequences Generator           

 Multithreaded parallelization           

 Can handle MSAs or profiles           

 Modular architecture for model design           

 Other Utilities (jackknife test, k–fold cross-validation, early stopping)           

   Documentation           

"" indicates support for the particular feature within the application. 
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