

JUCHMME: A Java Utility for Class Hidden Markov Models and Extensions
for biological sequence analysis

Ioannis A. Tamposis1, Konstantinos D. Tsirigos2, Margarita C. Theodoropoulou1, Panagiota I. Kontou1,
Georgios N. Tsaousis3, Dimitra Sarantopoulou4, Zoi I. Litou5, Pantelis G. Bagos1,*

1Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece,

2Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs Lyngby, Denmark,

3 Genekor Medical SA, Athens,

4 Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia PA, USA

5Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece

*To whom correspondence should be addressed.

Supplementary Material

PART A – Usage scenario

A Hidden Markov Model is a probabilistic model defined by a discrete set of “hidden” states, a discrete set of observed

symbols (e.g. amino acid residues in the case of proteins), and two set of distribution probabilities; the state transition

probability distribution (transitions) and the observed symbol probability distribution (emissions). Let's assume we want to

model a protein sequence analysis problem. To do this, we need to specify the state space, the initial probabilities, and the

transition probabilities.

Let’s consider a specific protein sequence analysis problem, such us the prediction of transmembrane regions of alpha-helical

membrane proteins with the ability to incorporate prior topological information. We first need to design the model and

consider the number of states and which the permissible transitions are. Figure 1 shows a schematic representation of the

model used in HMM-TM, which is the example presented in this scenario.

Figure S1. A schematic representation of the HMM-TM model's architecture

Knowing the number of states of the model, the first step is to define the transition probabilities. They are simply the

probabilities of staying in the same state or moving to a different state given the current state. Here, the user could use a

spreadsheet to create an NxN table where N is the number of states of the model. Each transition probability depends on the

biological problem. The transition matrix is perhaps the most important step because non-zero elements define the allowed

transitions and thus the model architecture. In the example of alpha-helical transmembrane segments predictions, there are

transmembrane states (M and m), extracellular states (O and o), intracellular states (I and i) and the Begin (B) and End (E)

states. All non-zero probabilities one can see in Figure 1, show permissible transitions between different states. Each line

must sum to 1. For each line, the user can define a function to check the sum. Note that each state can have a name with

more than one character; in the particular case for convenience we chose state names that remind us the type of the state,

for instance M01, M02 for the membrane states, and so on.

Figure S2. The transition probabilities table

In the end, the user will copy the column with probabilities and paste at the text editor and save it at the hard disk.

The next step is to define the emission probabilities. The emission probability represents how likely a symbol is to be

emissioned on each state. The size of this set depends on the nature of the observed variable. In the case of proteins, an

observed sequence is composed of a discrete set of 20 symbols, following the alphabetical order of single-letter codes for the

20 amino acids: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. In the example of alpha-helical transmembrane topology

prediction, a Nx20 table represents the emission probabilities and should be initialized. Again, the user can use a spreadsheet.

The user defines a column for each symbol and a line for each state. Each line must sum to 1. For each line, user can define a

function to check the sum. The user can use some plausible values for initializing the emissions or use uniform probabilities

and let JUCHMME find the appropriate starting values, using the respective option.

Figure S3. The emission probabilities table

In the end, the user copies the column with probabilities, pastes them at Notepad or any other plain text editor and saves

them on the file system.

Now that we have the initial transition and emission probabilities set up, we can create a Markov diagram using an appropriate

software package.

The next step is to set up the model file using a plain text editor. The user creates the file according to the final state names,

observed symbols and label names. Specifically, the user can name the model, define the symbol alphabet (Figure S3, see

ESYM), the label alphabet (Figure S3, see PSYM), as well as, the specific states of the model (Figure S3, see STATE) and their

corresponding labels (Figure S3, see PSYM). OSYM is a special “intermediate” condition between states and labels that defines

the tied states, which are the states that share the same emission probabilities (in order to reduce the model parameters).

Note that in the current configuration a state can correspond only to one label, but states with different labels can be tied

together. The user may also define prior probabilities for each symbol or label if he/she wishes to (Figure S3, see PRIOR). The

model configuration file is quite self-explanatory as one can see in Figure 3.

Figure S4. The model configuration file

The next and final step is to set up the configuration file using a plain text editor like Notepad. If the user defines only a few

parameters and not all of them, the system will run using the default values as described in the manual. The user should be

careful in this stage since all states defined in this file should correspond to the ones used in the transition and emission

tables.

Training

While setting up the training parameters, the user may choose between the available training methods by using the respective

configuration settings as shown below.

ML Configuration Settings

TRAINING OPTIONS
RUN_CML=false
RUN_GRADIENT=false
HNN=false
ALLOW_BEGIN=true
ALLOW_END=true
RUN_ViterbiTraining=false
threshold=0.02
maxIter=200

CML Configuration Settings

TRAINING OPTIONS
RUN_CML=true (!important to enable Conditional Maximum Likelihood Learning)
RUN_GRADIENT=true
HNN=false
ALLOW_BEGIN=true
ALLOW_END=true
RUN_ViterbiTraining=false
threshold=0.02

maxIter=200

HNN Configuration Settings

TRAINING OPTIONS
RUN_CML= true (!important to enable Conditional Maximum Likelihood Learning)
RUN_GRADIENT=true
HNN= true (!important to enable HNN extension)

#HNN OPTIONS
windowLeft=3
windowRigth=3
nhidden=3
ADD_GRAD=0.0
DECAY=0.001
#1: Sigmoid, 2: Sigmoid Modified, 3: Tanh
hiddenLayerFunction=2

The user may test different configurations before concluding to the most efficient one.

Decoding

Using the available algorithms, we can identify the most likely sequence of hidden states or the most probable labeling given

the sequence of observations. Again, the user can choose which decoding algorithm will be used by editing the respective

section of the configuration file as shown below.

Configuration Settings

DECODING OPTIONS
VITERBI=true
NBEST=false
DYNAMIC=false
POSVIT=false
PLP=true

Since JUCHMME was originally developed to train and test transmembrane prediction models, some commonly used

measures of accuracy are calculated and offered to the users. Specifically, the number of correctly predicted residues (Q), the

segment overlap (SOV) measure and the number of correctly predicted topologies are calculated by JUCHMME and may be

used to evaluate the new models.

VITERBI:

Q2:0.845 Qa:0.737 Qna:0.916 Pa:0.855 Pna:0.839 Qfas:0.827
Ca:0.673 SM:0.885 TP:596 FP:37 FN:122 Correct Top:10 Correct Ori:10 Avg SOV:0.787

PLP:

Q2:0.852 Qa:0.772 Qna:0.906 Pa:0.846 Pna:0.856 Qfas:0.839
Ca:0.690 SM:0.904 TP:627 FP:47 FN:91 Correct Top:14 Correct Ori:14 Avg SOV:0.807

To further highlight how simple it is to build a new model using JUCHMME, let’s consider a follow-up scenario. In an attempt

to further improve the reliability of alpha-helical transmembrane topology prediction, we chose to incorporate the post-

translational modifications, phosphorylation and glycosylation, which are known to be compartment-specific and therefore

the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. With

this in mind the model of HMM-TM was re-designed to include phosphorylation and glycosylation specific states as part of

the intracellular and the extracellular sub-models respectively (Figure S5).

Figure S5. A schematic representation of the HMMpTM model's architecture

To build the new model, we modified the architecture of the existing HMM-TM model. As one can see in Figure S6, using

JUCHMME it is easy to modify the architecture of existing models by editing the model configuration file. The OSYM, PSYM,

STATE, OSTATE, PSTATE fields are changed accordingly. Also, both the transition and emission probabilities tables need to be

modified using a spreadsheet based on the new model.

Figure S6.The HMMpTM model configuration file

PART B – Comparison of Speed

The following table and figures present the testing of traditional HMM Dishonest Casino model, CpG Island model [1], PRED-

TMBB model [2] and PRED-TAT model [3]. The programs were compiled and run in Ubuntu Linux on an Intel Xeon E5-2660

10-core 2.00 GHz server with 32 GB RAM. Time was evaluated using the Unix time function and all values reported as the

average of 5 runs. We used a varying number of input sequences (500, 1000, 3000, 5000 with 500 symbols per sequence) and

we evaluated both Viterbi and Posterior decoding algorithms.

Table S1. Evaluation of JUCHMME and StochHMM in terms of speed using different models and varying number of input

sequences

Model Algorithm
Number of
Sequences

JUCHMME
(serial mode)

JUCHMME
(Parallel mode) StochHMM

Casino
2 states

Viterbi

500 2.150 1.941 0.181

1000 3.536 3.373 0.277

3000 10.303 10.148 3.918

5000 15.864 15.749 5.328

Posterior

500 2.499 1.951 0.255

1000 4.417 3.223 0.493

3000 11.799 10.073 3.169

5000 17.882 16.072 5.527

CpG
8 states

Viterbi

500 3.905 2.073 0.239

1000 7.003 3.526 0.365

3000 18.546 10.365 3.798

5000 29.584 16.891 6.357

Posterior

500 5.508 2.464 0.506

1000 10.992 3.782 0.854

3000 29.165 10.456 5.294

5000 47.550 16.126 8.134

PREDTMBB
62 states

Viterbi

500 10.675 2.990 30.236

1000 20.171 5.256 61.383

3000 61.666 14.155 174.204

5000 95.548 21.080 295.080

Posterior

500 13.254 3.238 50.437

1000 25.920 5.900 100.950

3000 75.943 17.261 299.394

5000 120.879 29.387 511.065

PREDTAT
142 states

Viterbi
500 50.197 7.695 121.757

1000 96.830 13.343 243.175

3000 285.813 37.386 723.434

5000 463.032 60.217 1198.107

Posterior

500 67.891 8.838 214.173

1000 131.387 16.439 427.095

3000 370.474 45.670 1293.602

5000 643.665 79.328 2199.807

Figure S7. Run time comparison of JUCHMME and StochHMM using Viterbi Decoding

Figure S8. Run time comparison of JUCHMME and StochHMM using Posterior Decoding

PART C – Comparison of Features

Table S2. Comparison of features available in different HMM packages. All packages provide functionalities for standard

HMMs trained with Baum-Welch algorithm and decoded with Posterior/Viterbi algorithms, so these are not listed.

Features JU
C

H
M

M
E

P
H

M
M

 [
4

]

M
A

M
O

T
[5

]

St
o

ch
H

M
M

 [
6

]

H
M

M
o

C
 [

7
]

H
M

M
C

o
n

ve
rt

e
r

[8
]

M
o

d
h

m
m

 [
9

]

Ja
h

m
m

 [
1

0
]

Ja
C

H
M

M
 [

1
1

]

U
M

D
H

M
M

 [
12

]

Types of models

 Class HMM for Labeled Sequences (CHMM) [13]    
 Hidden Neural Networks (HNN) [14] 

 Higher order emissions or transitions (HOHMM, PHMM, HMMSDO) [15, 16]
[17]

  

 pair-HMMs [18]  

 Generalized HMMs (GHMM) [19]  

 Inhomogeneous chains 

 Continuous emissions 

 Silent states  

 Multiple emissions, Joint emissions, Lexical transitions 

Training Algorithms

 Conditional Maximum Likelihood (CML) training [20]  

 Gradient-descent training (including RPROP) [21] 

 Viterbi Training [22]  

 Semi-supervised learning (SSL) [23] 

 Linear-memory Baum-Welch training [24] 

 Linear-memory Viterbi training [25] 

Decoding Algorithms

 Optimal Accuracy Posterior Decoding [26] 

 N-best decoding [27]   

 Posterior-Viterbi decoding [28]   

 Constrained decoding [29] 

 Stochastic decoding 

 Linear-memory posterior sampling 

 Hirschberg decoding algorithm [30] 

Utilities

 Parameter tying (emission sharing)  

 Random Sequences Generator     

 Multithreaded parallelization 

 Can handle MSAs or profiles 

 Modular architecture for model design 

 Other Utilities (jackknife test, k–fold cross-validation, early stopping) 

 Documentation     

"" indicates support for the particular feature within the application.

References

1. Durbin, R., Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 1998: Cambridge University
Press.

2. Bagos, P.G., et al., A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer
membrane proteins. BMC Bioinformatics, 2004. 5: p. 29.

3. Bagos, P.G., et al., Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics,
2010. 26(22): p. 2811-7.

4. Fariselli, P. PHMM. 2007; Available from: http://www.biocomp.unibo.it/piero/PHMM/.

5. Schütz, F. and M. Delorenzi, MAMOT: hidden Markov modeling tool. Bioinformatics, 2008. 24(11): p. 1399-1400.

6. Lott, P.C. and I. Korf, StochHMM: a flexible hidden Markov model tool and C++ library. Bioinformatics, 2014. 30(11): p.
1625-1626.

7. Lunter, G., HMMoC—a compiler for hidden Markov models. Bioinformatics, 2007. 23(18): p. 2485-2487.

8. Lam, T.Y. and I.M. Meyer, HMMCONVERTER 1.0: a toolbox for hidden Markov models. Nucleic acids research, 2009.
37(21): p. e139-e139.

9. Viklund, H. and A. Elofsson. modhmm: Development of a modular HMM package for biological sequence analysis. 2003
[cited 2019 4 Feb]; Available from: http://modhmm.sourceforge.net/.

10. Francois, J.-M., Jahmm-An implementation of HMM in Java. URL http://code. google. com/p/jahmm, 2006.

11. Ultes, S., et al. Jachmm: a java-based conditioned hidden markov model library. in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. 2013. IEEE.

12. Kanungo, T., UMDHMMQ Hidden Markov Model Toolkit., in Extended Finite State Models of Language, K. A., Editor.
1999, Cambridge University Press.

13. Krogh, A. Hidden Markov models for labeled sequences. in Pattern Recognition, 1994. Vol. 2-Conference B: Computer
Vision & Image Processing., Proceedings of the 12th IAPR International. Conference on. 1994. IEEE.

14. Krogh, A. and S.K. Riis, Hidden neural networks. Neural Computation, 1999. 11(2): p. 541-563.

15. Tamposis, I.A., et al., Extending Hidden Markov Models to Allow Conditioning on Previous Observations. Journal of
Bioinformatics and Computational Biology, 2018.

16. Li, Y., Hidden Markov models with states depending on observations. Pattern Recogn. Lett., 2005. 26(7): p. 977-984.

17. Forchhammer, S. and J. Rissanen, Partially hidden Markov models. IEEE Transactions on Information Theory, 1996.
42(4): p. 1253-1256.

18. Arribas-Gil, A., G. Elisabeth, and M. Catherine, Parameter Estimation in Pair-Hidden Markov Models. Scandinavian
Journal of Statistics, 2006. 33(4): p. 651-671.

19. Majoros, W.H., et al., Efficient decoding algorithms for generalized hidden Markov model gene finders. BMC
Bioinformatics, 2005. 6: p. 16.

20. Krogh, A., Two methods for improving performance of an HMM and their application for gene finding. Proc Int Conf
Intell Syst Mol Biol, 1997. 5: p. 179-86.

21. Baldi, P. and Y. Chauvin, Smooth on-line learning algorithms for hidden Markov models. Neural Computation, 1994.
6(2): p. 307-318.

22. Juang, B.-H. and L.R. Rabiner, The segmental K-means algorithm for estimating parameters of hidden Markov models.
IEEE Transactions on acoustics, speech, and signal Processing, 1990. 38(9): p. 1639-1641.

23. Tamposis, I.A., et al., Semi-supervised learning of Hidden Markov Models for biological sequence analysis.
Bioinformatics, 2018: p. bty910-bty910.

24. Miklós, I. and I.M. Meyer, A linear memory algorithm for Baum-Welch training. BMC bioinformatics, 2005. 6(1): p. 231.

http://www.biocomp.unibo.it/piero/PHMM/
http://modhmm.sourceforge.net/
http://code/

25. Lam, T.Y. and I.M. Meyer, Efficient parameter training for hidden Markov models using posterior sampling training and
Viterbi training. arXiv preprint arXiv:0909.0737, 2009.

26. Käll, L., A. Krogh, and E.L. Sonnhammer, An HMM posterior decoder for sequence feature prediction that includes
homology information. Bioinformatics, 2005. 21(suppl_1): p. i251-i257.

27. Krogh, A., Two methods for improving performance of an HMM and their application for gene finding. Center for
Biological Sequence Analysis. Phone, 1997. 45: p. 4525.

28. Fariselli, P., P.L. Martelli, and R. Casadio, A new decoding algorithm for hidden Markov models improves the prediction
of the topology of all-beta membrane proteins. BMC bioinformatics, 2005. 6(4): p. S12.

29. Bagos, P.G., T.D. Liakopoulos, and S.J. Hamodrakas, Algorithms for incorporating prior topological information in
HMMs: application to transmembrane proteins. BMC bioinformatics, 2006. 7(1): p. 189.

30. Hirschberg, D.S., A linear space algorithm for computing maximal common subsequences. Communications of the ACM,
1975. 18(6): p. 341-343.

