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1. METABRIC breast cancer cohort 1

1.1 Context

Fletcher et al. (2013) reconstructed regulons for 809 transcription factors (TFs) using microarray
transcriptomic data from the METABRIC breast cancer cohort (Curtis et al., 2012). Castro et al. (2016)
found that 36 of these TF regulons were associated with genetic risk of breast cancer. The risk TFs were in
two distinct clusters. The “cluster 1” risk TFs were associated with estrogen receptor-positive (ER+) breast
cancer risk and comprise TFs such as ESR1, FOXA1, and GATA3, whereas the “cluster 2” risk TFs were
associated with estrogen receptor-negative (ER-), basal-like breast cancer. Our goals here are (1) to
explore associations between the regulons reconstructed by Fletcher et al. (2013) and (2) to
identify dual regulons.

1.2 Package installation and data sets

The RTNduals package is available from the R/Bioconductor repository, together with other required packages.
Installing and then loading the Fletcher2013b data package will make available all data required for this case
study.
#-- Set the Bioconductor repository
#-- Please make sure to use bioc version >= 3.8 (R >= 3.5)
source("https://bioconductor.org/biocLite.R")
biocVersion()

#-- Install RTNduals and other required packages
#-- RTN(>=2.6.3); RTNduals(>=1.6.2); Fletcher2013b(>=1.16.0)
biocLite(c("RTNduals","Fletcher2013b"))
install.packages("pheatmap")

#-- Call packages
library(RTNduals)
library(Fletcher2013b)

#-- Load 'rtni1st' data object, which includes regulons and expression profiles
data("rtni1st")

#-- A list of transcription factors of interest (here 36 risk-associated TFs)
risk.tfs <- c("AFF3", "AR", "ARNT2", "BRD8", "CBFB", "CEBPB", "E2F2", "E2F3", "ENO1",

"ESR1", "FOSL1", "FOXA1", "GATA3", "GATAD2A", "LZTFL1", "MTA2", "MYB",
"MZF1", "NFIB", "PPARD", "RARA", "RB1", "RUNX3", "SNAPC2", "SOX10",
"SPDEF", "TBX19", "TCEAL1", "TRIM29", "XBP1", "YBX1", "YPEL3", "ZNF24",
"ZNF434", "ZNF552", "ZNF587")

1.3 Preparing data for input to RTNduals

To prepare the input data for RTNduals we run two commands. The first filters an TNI-class object with
the tni.dpi.filter function, and the second creates an MBR-class object with the tni2mbrPreprocess
function. The tni.dpi.filter function will update the TNI-class object called rtni1st, for eps = NA (see
below). The tni2mbrPreprocess function will then create the MBR-class object called mbr1st, which will
require (1) a transcriptional regulatory network computed by the RTN package (the mbr1st loaded above),
and (2) a list of regulators.

As we explain in section 2.3, the eps argument sets the ARACNe algorithm’s mutual information (MI)
threshold. When we want to remove all dependencies between regulons, e.g. to enrich regulons with direct
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targets, we recommend setting eps = 0.0, which is the default option. The regulatory network that we’ve
loaded would have been calculated with this setting. For RTNduals, however, we want to assess the overlap
between pairs of target gene sets, so we need to re-run this step on the rtni1st object. We recommend
setting eps = NA, which will estimate a nonzero MI threshold from the empirical null distribution computed
in the permutation and bootstrap steps.
#-- Update the 'rtni1st' object
rtni1st <- tni.dpi.filter(rtni1st, eps = NA)

#-- Check consistency of the input data and build an MBR-class object
mbr1st <- tni2mbrPreprocess(tni = rtni1st, regulatoryElements = risk.tfs)

1.4 A single step infers dual regulons

The mbrAssociation function tests the association between pairs of regulons, using Fisher’s exact test and
permutation analysis to assess the statistical significance of the overlap and the correlation between regulons,
respectively.
#-- Run 'mbrAssociation' pipeline
mbr1st <- mbrAssociation(mbr1st)

#-- Get a list of dual regulons ranked by correlation statistics
#-- (Supplementary Table 1)
mbr1st_results <- mbrGet(mbr1st, "dualsCorrelation")
mbr1st_results[1:10,]

Dual Regulon
ESR1~FOXA1

MI Regulators

ESR1~GATA3

R Regulons

FOXA1~GATA3

Pvalue

AFF3~ESR1

Adjusted Pvalue*

MYB~FOXA1
RUNX3~FOXA1
ESR1~MYB
XBP1~FOXA1
XBP1~ESR1
AFF3~GATA3

0.34
0.55
0.43
0.32
0.30
0.20
0.38
0.54
0.33
0.33

0.84
0.84
0.81
0.72
0.73

−0.73
0.73
0.73
0.68
0.69

2.32e−117
2.02e−112
5.95e−111
2.06e−85
7.47e−85
1.81e−82
8.10e−82
7.17e−81
2.70e−80
9.11e−78

1.46e−114
1.27e−109
3.75e−108
1.30e−82
4.71e−82
1.14e−79
5.10e−79
4.52e−78
1.70e−77
5.74e−75

Supplementary Table 1. Top 10 dual regulons ranked by P-value.

*Benjamini-Hochberg (BH) adjusted p-values

Supplementary Table 1 shows the top 10 dual regulons in the mbr1st_results object. All but one of them
have positive Spearman correlation coefficients (R Regulons > 0), meaning that both TFs co-operate by
influencing shared target genes in the same direction (i.e. either co-activating or co-repressing the shared
targets, see below).

1.5 Representing dual regulons with scatter plots

The mbrPlotDuals function allows us to represent how the expression of the shared targets of a dual regulon
is correlated with the expression of each regulator. In Supplementary Figure 1 we show ESR1~FOXA1
and ESR1~YBX1 as examples generated by this function.
#-- Scatter plots of shared targets
#-- (Supplementary Figure 1)
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mbrPlotDuals(mbr1st, "ESR1~FOXA1")
mbrPlotDuals(mbr1st, "ESR1~YBX1")
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Supplementary Figure 1: Relationship between the expression of shared targets in a dual regulon, computed from the
expression profiles of METABRIC breast cancer data, n=997 (Fletcher et al., 2013). (a) Transcription factors ESR1 and FOXA1
co-operate in influencing shared target genes, while (b) ESR1 and YBX1 have opposite-signed correlations (see Figure 1c,d for
ESR1∼GATA3 and ESR1∼NFIB dual regulons, respectively).

1.6 A heatmap of correlations for regulon pairs

We can now visualize a heatmap to summarize the relationships between all regulon pairs assessed in the
analysis pipeline. For this, we need to call the mbrGet function to obtain a correlation matrix with all
Spearman correlation coefficients, and then plot a heatmap.
#-- Get the correlation matrix between regulons
dmat <- mbrGet(mbr1st, what="dualsCorMatrix")

#-- Plot the correlation matrix between regulons
#-- (Supplementary Figure 2)
library(pheatmap)
colorpal <- c("#018571","#80CDC1","#F5F5F5","#DFC27D","#A6611A")
pheatmap(mat = dmat$cormat, display_numbers = dmat$sigmat,

color = colorRampPalette(colorpal)(100),
clustering_distance_rows = "correlation",
clustering_distance_cols = "correlation")

Each square in the heatmap of the Supplementary Figure 2 represents a Spearman correlation coefficient
estimated for a regulon pair, and summarizes the more detailed information shown in the scatter plots of
Supplementary Figure 1 for individual dual regulons. Since the heatmap represents a correlation matrix,
values are mirrored across the diagonal. All significant associations (P < 0.001, BH adjusted) are marked
with asterisks.

The lower right corner, in “Cluster 1”, contains a region with highly correlated regulons that is enriched with
significant predictions, particularly among GATA3, ESR1 and FOXA1, all of which are highly influential
in ER+ breast cancer (Theodorou et al., 2013). Duals ESR1~YBX1 (Supplementary Figure 1b) and
ESR1~NFIB (Figure 1d) are also of note: both NFIB and YBX1 interact with the ESR1-FOXA1 complex
and inhibit the transactivational potential of ESR1, and these interactions further repress ESR1 target gene
expression when in association with induced FGFR2 signalling (Campbell et al., 2018). There is also evidence
linking SOX10 and TRIM29 (Panaccione et al., 2017) (as indicated in Supplementary Figure 2), both of
which are associated with a neural stem cell-like signature in ER- tumours.
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Supplementary Figure 2: Heatmap showing the correlation matrix between regulons for 36 transcription factors. Each point
in the heatmap summarizes the relationship between a regulon’s shared targets as shown in the scatter plots of Supplementary
Figure 1. Significant associations (P < 0.001, BH adjusted) are indicated with asterisks. "Cluster 1" and "Cluster 2", as named
in Castro et al. (2016), represent regulons associated with ER+ and ER- tumours, respectively.

1.8 Other tools for inferring co-regulation

Several algorithms have been developed that support exploring regulation in biological networks. Bionet
(Beisser et al., 2010), Minet (Meyer et al., 2008), and CoRegNet (Nicolle et al., 2015) are examples of
R/Bioconductor packages that implement routines and hypothesis testing methods for functional analysis of
biological networks. Nicolle et al. (2015) compiled features of a large number of tools to compare state of the
art methods and concluded that, at that time, only CoRegNet provided methods to infer co-regulation. The
same authors assessed RTN as able to do “network inference”, “genomic data integration”, and “differential
analysis”, but not “co-regulation”. Now, given RTNduals, the RTN toolset addresses co-regulation. Next
we run the CoRegNet (version 1.20.0) with the same gene expression data and 36 risk TFs that we used in
RTNduals (version 1.6.2). RTNduals returned 86 dual regulons; CoRegNet returns 76 co-regulator pairs.
#-- Run CoRegNet with the same input data used in RTNduals
library(CoRegNet)
gexp1st <- tni.get(rtni1st, what="gexp", idkey = "SYMBOL")
coreg1st <- hLICORN(gexp1st, TFlist=risk.tfs)

#-- Get co-regulators ranked by CoRegNet 'support' statistics
#-- (Supplementary Table 2)
coreg1st_results <- coregulators(coreg1st, adjustMethod = "BH")
coreg1st_results[1:10,]
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Supplementary Table 2. Top 10 co-regulators reported by CoRegNet.

*Benjamini-Hochberg (BH) adjusted p-values
**Co-regulators also listed as dual regulons in Supplementary Figure 2

Co−regulator
ESR1~GATA3**

Reg1

ESR1~AFF3**

Reg2

AFF3~GATA3**

Support

ESR1~FOXA1**

Fisher Test

FOXA1~GATA3**

Adjusted Pvalue*

ESR1~MYB**
FOXA1~AFF3
MYB~GATA3**
ESR1~XBP1**
AFF3~XBP1**

ESR1
ESR1
AFF3
ESR1

FOXA1
ESR1

FOXA1
MYB
ESR1
AFF3

GATA3
AFF3

GATA3
FOXA1
GATA3
MYB
AFF3

GATA3
XBP1
XBP1

0.053
0.041
0.037
0.032
0.029
0.024
0.019
0.018
0.016
0.014

0.00e+00
0.00e+00
0.00e+00

6.87e−124
1.42e−41
2.38e−86
2.57e−46
8.85e−11

8.36e−257
7.76e−266

0.00e+00
0.00e+00
0.00e+00

6.38e−123
5.61e−41
1.50e−85
1.10e−45
2.59e−10

1.47e−255
1.53e−264

Supplementary Table 2 shows that the top 10 co-regulators reported by CoRegNet are consistent with
the regulons identified by RTNduals, with nine of them listed in Supplementary Figure 2. Next we use a
Venn diagram to extend the comparison with RTNduals to all co-regulators.
#-- Align labels between CoRegNet and RTNduals
lab <- paste(coreg1st_results$Reg1, coreg1st_results$Reg2, sep="~")
idx <- lab %in% rownames(mbr1st_results)
lab[!idx] <- paste(coreg1st_results$Reg2, coreg1st_results$Reg1, sep="~")[!idx]
rownames(coreg1st_results) <- lab

#-- Plot a Venn diagram (Supplementary Figure 3)
library(VennDiagram)
res <- list(RTNduals = rownames(mbr1st_results),

CoRegNet = rownames(coreg1st_results))
venn.diagram(res, fill=c("#e41a1c","#1f78b4"), col="grey85",

alpha=c(0.1,0.3), cex=2.5, cat.cex=2.5, cat.pos=0,
cat.fontface=4, lty=1, fontfamily=3, filename="venn.tiff")

Supplementary Figure 3: Venn diagram showing the overlap between dual regulons and co-regulators (inferred by RTNduals
and CoRegNet, respectively) for the same input gene expression data.
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Supplementary Figure 3 shows that 30 (39%) of 76 of the CoRegNet co-regulators were also identified
as dual regulons. Differences in reported co-regulation may be due to differences in the input regulatory
networks. These packages use different algorithms to compute the regulatory networks; CoRegNet detects
TF-gene interactions with the LICORN algorithm (Rouveirol et al., 2007), while RTN reconstructs regulons
with the ARACNe algorithm (Margolin et al., 2006) (additional comments in section 2.3). After computing
the regulatory network, both packages use similar approaches to access the number of targets shared between
a pair of regulators. The main conceptual difference relies on what is considered a regulatory unit, which
shapes the analysis workflows. For RTNduals, the regulatory unit is the regulon (e.g. group of genes and a
given regulator) and regulation is investigated between regulons. For CoRegNet, the regulatory unit is formed
by one gene and two regulators (e.g. cooperative regulations are enumerated in the first place) and regulation
is investigated between regulators. These packages take complementary directions: RTNduals implements a
top-down approach, breaking down regulons to gain insight into the subsystems, while CoRegNet implements
a bottom-up strategy, linking together individual co-regulatory elements to form larger subsystems. Users
may benefit from exploring regulatory associations with both packages to check the overall consistency of the
results.

2 TCGA breast invasive carcinoma cohort (TCGA-BRCA)

2.1 Context

In section 1, we used a precalculated transcriptional network for the METABRIC breast cancer cohort, which
we made available as the Fletcher2013b data package. In section 2, we will show how to prepare input
data for the RTN and RTNduals packages using the publicly available mRNA-seq data for the TCGA-BRCA
cohort. We will show how to download harmonized GRCh38/hg38 data from the Genomic Data Commons
(GDC) using the TCGAbiolinks package (Colaprico et al., 2016). The preprocessing will generate generate a
SummarizedExperiment object that contains gene expression data, which we will then use to generate the
transcriptional network. The subsequent steps will infer dual regulons, following exactly the same steps as
described in section 1.4.

2.2 Using TCGAbiolinks to download data from GDC

Please ensure you have installed all libraries before proceeding.
library(SummarizedExperiment)
library(TCGAbiolinks)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)

We’ll use the Bioconductor package TCGAbiolinks to query and download from the GDC. We are looking for
the harmonized, normalized RNA-seq data for the TCGA-BRCA cohort.

TCGAbiolinks will create a directory called GDCdata in your working directory and will save into it
the files downloaded from the GDC. The download can take a while. The files for each patient will be
downloaded in a separate file. Then, the GDCprepare function will compile the files into an R object of class
RangedSummarizedExperiment.

The RangedSummarizedExperiment has 6 slots. The most important are rowRanges (gene metadata),
colData (patient metadata), and assays, which contains the gene expression matrix.
#-- Subset BRCA cohort for a quicker demonstration
subsample <- TCGAquery_subtype(tumor = "BRCA")
subsample <- subsample$patient[sample(nrow(subsample),500)]
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#-- Download mRNA TCGA-BRCA data
query <- GDCquery(project= "TCGA-BRCA",

data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "HTSeq - FPKM",
sample.type = c("Primary solid Tumor"),
barcode = subsample)

GDCdownload(query)
tcgaBRCA_mRNA_data <- GDCprepare(query)

The object downloaded from GDC contains gene-level expression data that includes both coding and noncoding
genes (e.g. lncRNAs). We will filter these, retaining only genes annotated in the UCSC hg38 known gene list.
#-- Subset by known gene locations
geneRanges <- genes(TxDb.Hsapiens.UCSC.hg38.knownGene)
tcgaBRCA_mRNA_data <- subsetByOverlaps(tcgaBRCA_mRNA_data, geneRanges)

Finally, we’ll change column names for better internal pre-processing in RTN’s tni.constructor function.
Having the SYMBOL column will enable genes with the same symbol to be preprocessed by this function. When
this step has been run, the tcgaBRCA_mRNA_data object is ready for the RTN pipeline.
#-- Change column names for best 'tni.constructor' summarizations
#-- and save the preprocessed data for subsequent analyses
colnames(rowData(tcgaBRCA_mRNA_data)) <- c("ENSEMBL", "SYMBOL", "OG_ENSEMBL")
save(tcgaBRCA_mRNA_data, file = "tcgaBRCA_mRNA_data_preprocessed.RData")

2.3 Inferring the regulatory network with RTN

The RTN pipeline starts with the construction of a TNI-class object, using the tni.constructor method.
This method takes in a matrix of gene expression and metadata on the samples and genes, as well as
a list of the regulators to be evaluated. Here, the expression matrix and metadata are available as a
SummarizedExperiment object, and the list of regulators will be extracted from the rtni1st object with
the tni.get accessory function. The tni.constructor method will check the consistency of all the given
arguments. The inference pipeline is then executed in three subsequent steps: (i) compute mutual information
(MI) between a regulator and all potential targets, removing non-significant associations by permutation
analysis, (ii) remove unstable interactions by bootstrapping, and (iii) apply the ARACNe algorithm, which
uses the data processing inequality (DPI) theorem to remove indirect interactions(for additional details,
please refer to Margolin et al. (2006) and Fletcher et al. (2013)). Briefly, consider three random varibles, X, Y
and Z forming a network triplet, with X interacting with Z only through Y (i.e., the interaction network is
X->Y->Z), and no alternative path exists between X and Z). The DPI theorem states that the information
transferred between Y and Z is always larger than the information transferred between X and Z. Based on
this assumption, the ARACNe algorithm scans all triplets formed by two regulators and one target and
removes the edge with the smallest MI value of each triplet, which is regarded as a redundant association. As
the DPI filter eliminates shared targets between regulators, the overlap between regulons is observed in the
interactions not removed by the ARACNe algorithm (see below).
#-- Get the list of regulatoryElements available from the 'rtni1st' object
regulatoryElements <- names(tni.get(rtni1st, what="regulatoryElements"))

#-- TNI constructor
rtni_tcgaBRCA <- tni.constructor(tcgaBRCA_mRNA_data,

regulatoryElements = regulatoryElements)
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To compute a large regulatory network we recommend using a multithreaded mode with the snow package.
As minimum computational resources, we suggest a processor with >= 4 cores and RAM >= 8 GB per
core (specific routines should be adjusted for the available resources). The makeCluster function will set
the number of nodes to create on the local machine, making a cluster object available for the TNI-class
methods. This example (29885 rows vs. 500 columns gene expression matrix and 809 regulators) should take
2h to conclude when running in a 2.9 GHz Core i9-8950H workstation with 32GB DDR4 RAM.
#-- Compute the reference regulatory network by permutation and
#-- bootstrap analyses. For RNA-seq data we recommend using the
#-- non-parametric estimator of the mutual information
#-- (estimator = "spearman").
library(snow)
options(cluster=makeCluster(4, "SOCK"))
rtni_tcgaBRCA <- tni.permutation(rtni_tcgaBRCA, pValueCutoff = 10^-7,

estimator = "spearman")
rtni_tcgaBRCA <- tni.bootstrap(rtni_tcgaBRCA, nBootstraps = 200)
stopCluster(getOption("cluster"))

Next we run the ARACNe algorithm. Note that the overlap between regulons is affected by the eps argument,
which sets the threshold for removing the edge with the smallest MI value of each triplet (see comments
above and the aracne function documentation). In order to access the overlap between regulons in RTNduals,
we recommend setting eps = NA, which will result in the MI threshold being estimated from the empirical
null distribution computed in the permutation and bootstrap steps.
#-- Compute the DPI-filtered regulatory network
rtni_tcgaBRCA <- tni.dpi.filter(rtni_tcgaBRCA, eps = NA)

#-- Save the TNI object for subsequent analyses
save(rtni_tcgaBRCA, file="rtni_tcgaBRCA.RData")

Please note that some level of missing annotation is expected, as not all gene symbols listed in the
regulatoryElements might be available in the TCGA-BRCA preprocessed data. Also, data that are
inconsistent with the calculation may be removed in the tni.constructor preprocess; for example, it is not
possible to test associations for a gene whose expression does not vary across samples, so such genes are not
included in the analysis (in this example, genes “SOX10”, “XBP1” and “ZNF434” were missed or removed,
so we tested fewer regulons than those tested in section 1). For a summary of the resulting regulatory
network we recommend using the tni.regulon.summary function.

#-- Summary
tni.regulon.summary(rtni_tcgaBRCA)

## This regulatory network comprised of 771 regulons.

## -- DPI-filtered network:

## regulatoryElements Targets Edges
## 771 21389 81866
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 28 71 106 136 1600

## -- Reference network:

## regulatoryElements Targets Edges
## 771 21389 1724922
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 326 1802 2237 3674 8013
## ---
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Additionally, all parameters, input data, and results available in the final TNI-class object can be retrieved
by the tni.get accessory function.
#-- For example, to retrieve DPI-filtered regulons with a given annotation
regulons <- tni.get(rtni_tcgaBRCA, what="regulons", idkey="SYMBOL")

Note that the MI statistics are based on a gene’s expression varying across a cohort. If a gene’s expression
does not vary across a cohort, it is not possible to associate this gene’s expression with the expression of
other genes in the cohort. As an extreme case (noted above), genes that exhibit no variability (e.g. that
are not expressed in all samples) are excluded from the analysis. Large cohorts of tumour samples typically
contain multiple molecular subtypes, and typically provide good expression variability for building regulons.
In contrast, sample sets that are more homogeneous may be more challenging to explore with regulons, and
this may be the case with sets of normal, non-cancerous samples. We do not recommend computing regulons
for cohorts of low variability, or for subsets of a cohort.

2.4 Inferring dual regulons

The mbrAssociation function will call dual regulons following exactly the same steps as described in section
1.4, but now for regulons computed for the TCGA-BRCA cohort.
#-- Run 'tni2mbrPreprocess' and check datasets
mbr_tcgaBRCA <- tni2mbrPreprocess(tni = rtni_tcgaBRCA, regulatoryElements = risk.tfs)

#-- Run 'mbrAssociation' pipeline
mbr_tcgaBRCA <- mbrAssociation(mbr_tcgaBRCA, pValueCutoff = 0.05)

#-- Get a list of dual regulons
#-- (Supplementary Table 3)
mbr_tcgaBRCA_results <- mbrGet(mbr_tcgaBRCA, "dualsCorrelation")
mbr_tcgaBRCA_results[1:10,]

Dual Regulon
ESR1~FOXA1**

MI Regulators

FOXA1~GATA3**

R Regulons

ESR1~GATA3**

Pvalue

CEBPB~FOXA1**

Adjusted Pvalue*

FOXA1~YBX1**
AFF3~ESR1**
ESR1~ZNF552**
AR~FOXA1**
ESR1~YBX1**
NFIB~TBX19

0.42
0.43
0.37
0.24
0.27
0.30
0.30
0.25
0.30
0.15

0.85
0.77
0.84

−0.78
−0.70
0.74
0.84
0.62

−0.71
0.68

6.57e−90
2.45e−82
1.72e−76
2.53e−75
8.99e−73
1.17e−58
1.39e−56
2.20e−53
5.46e−52
6.69e−47

3.47e−87
1.29e−79
9.07e−74
1.33e−72
4.75e−70
6.19e−56
7.34e−54
1.16e−50
2.88e−49
3.53e−44

Supplementary Table 3. Top 10 dual regulons in the TCGA-BRCA cohort.

*Benjamini-Hochberg (BH) adjusted p-values
**Dual regulons also listed in Supplementary Figure 2

Supplementary Table 3 shows the top 10 dual regulons in the mbr_tcgaBRCA_results object; nine of
these are listed in Supplementary Figure 2, which shows dual regulons inferred in the microarray-based
METABRIC cohort 1 data.
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2.5 Retrieving target genes from dual regulons

Possible follow-up analyses include enrichment-based methods (e.g. pathway enrichment analysis) to explore
genes co-regulated by dual regulons. For such analyses, users may want to extract information about dual
regulons from the MBR-class object. Below, we show how to retrieve the target genes in each regulon, and
the number and names of target genes that are shared between two regulons.

#-- Get the overlap statistics
mbr_tcgaBRCA_overlap <- mbrGet(mbr_tcgaBRCA, "dualsOverlap")
mbr_tcgaBRCA_overlap[1:3,-c(1,2)]

## Universe.Size Regulon1.Size Regulon2.Size Expected.Overlap
## NFIB~TRIM29 21389 156 375 2.735051
## FOXA1~GATA3 21389 668 407 12.711020
## NFIB~TBX19 21389 156 450 3.282061
## Observed.Overlap Pvalue Adjusted.Pvalue
## NFIB~TRIM29 39 6.506605e-34 3.435487e-31
## FOXA1~GATA3 69 4.118702e-31 2.174674e-28
## NFIB~TBX19 39 7.530390e-31 3.976046e-28

#-- Extract network summary and regulons
tni <- mbrGet(mbr_tcgaBRCA, what="TNI")
tniSummary <- tni.get(tni, what="summary")
regulons <- tni.get(tni, what="regulons", idkey = "SYMBOL")
Genes.In.Overlap <- intersect(regulons$FOXA1,regulons$GATA3)
head(Genes.In.Overlap, n = 5)

## [1] "LIN28B" "CAMKV" "AP000477.2" "SLC26A9" "CASC8"

#-- Reproduce the overlap statistics (e.g. FOXA1~GATA3 dual regulon)

#-- (1) Get counts
Universe.Size <- tniSummary$results$tnet[1,"Targets"]
Regulon1.Size <- length(regulons$FOXA1)
Regulon2.Size <- length(regulons$GATA3)
Observed.Overlap <- length(Genes.In.Overlap)
Expected.Overlap <- (Regulon2.Size/Universe.Size)*Regulon1.Size

#-- (2) Run 'phyper' function
Pvalue <- phyper(q = Observed.Overlap - 1,

m = Regulon1.Size,
n = Universe.Size - Regulon1.Size,
k = Regulon2.Size, lower.tail = FALSE)

#-- (3) Check results
data.frame(Universe.Size, Regulon1.Size, Regulon2.Size, Expected.Overlap,

Observed.Overlap, Pvalue)

## Universe.Size Regulon1.Size Regulon2.Size Expected.Overlap
## 1 21389 668 407 12.71102
## Observed.Overlap Pvalue
## 1 69 4.118702e-31
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Session information

## R version 3.5.3 (2019-03-11)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] TxDb.Hsapiens.UCSC.hg38.knownGene_3.4.0
## [2] GenomicFeatures_1.34.1
## [3] AnnotationDbi_1.44.0
## [4] TCGAbiolinks_2.10.0
## [5] SummarizedExperiment_1.12.0
## [6] DelayedArray_0.8.0
## [7] BiocParallel_1.16.4
## [8] matrixStats_0.54.0
## [9] Biobase_2.42.0
## [10] GenomicRanges_1.34.0
## [11] GenomeInfoDb_1.18.1
## [12] IRanges_2.16.0
## [13] S4Vectors_0.20.1
## [14] BiocGenerics_0.28.0
## [15] pheatmap_1.0.10
## [16] RTNduals_1.7.2
## [17] Fletcher2013b_1.18.0
## [18] igraph_1.2.2
## [19] RedeR_1.30.0
## [20] RTN_2.7.3
## [21] Fletcher2013a_1.18.0
## [22] limma_3.38.3
##
## loaded via a namespace (and not attached):
## [1] backports_1.1.3 snow_0.4-3
## [3] circlize_0.4.5 aroma.light_3.12.0
## [5] plyr_1.8.4 selectr_0.4-1
## [7] ConsensusClusterPlus_1.46.0 lazyeval_0.2.1
## [9] splines_3.5.3 ggplot2_3.1.0
## [11] sva_3.30.0 digest_0.6.18
## [13] foreach_1.4.4 htmltools_0.3.6
## [15] gdata_2.18.0 magrittr_1.5
## [17] memoise_1.1.0 cluster_2.0.7-1
## [19] doParallel_1.0.14 mixtools_1.1.0
## [21] ComplexHeatmap_1.20.0 Biostrings_2.50.1
## [23] readr_1.3.1 annotate_1.60.0
## [25] R.utils_2.7.0 prettyunits_1.0.2
## [27] colorspace_1.3-2 blob_1.1.1
## [29] rvest_0.3.2 ggrepel_0.8.0
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## [31] xfun_0.4 dplyr_0.7.8
## [33] crayon_1.3.4 RCurl_1.95-4.11
## [35] jsonlite_1.6 genefilter_1.64.0
## [37] bindr_0.1.1 zoo_1.8-4
## [39] survival_2.43-3 iterators_1.0.10
## [41] glue_1.3.0 survminer_0.4.3
## [43] gtable_0.2.0 zlibbioc_1.28.0
## [45] XVector_0.22.0 GetoptLong_0.1.7
## [47] shape_1.4.4 scales_1.0.0
## [49] DESeq_1.34.0 futile.options_1.0.1
## [51] DBI_1.0.0 edgeR_3.24.3
## [53] ggthemes_4.0.1 Rcpp_1.0.0
## [55] cmprsk_2.2-7 xtable_1.8-3
## [57] progress_1.2.0 bit_1.1-14
## [59] matlab_1.0.2 km.ci_0.5-2
## [61] httr_1.4.0 gplots_3.0.1
## [63] RColorBrewer_1.1-2 pkgconfig_2.0.2
## [65] XML_3.98-1.16 R.methodsS3_1.7.1
## [67] locfit_1.5-9.1 tidyselect_0.2.5
## [69] rlang_0.3.0.1 munsell_0.5.0
## [71] tools_3.5.3 downloader_0.4
## [73] generics_0.0.2 RSQLite_2.1.1
## [75] broom_0.5.1 evaluate_0.12
## [77] stringr_1.3.1 yaml_2.2.0
## [79] knitr_1.21 bit64_0.9-7
## [81] survMisc_0.5.5 caTools_1.17.1.1
## [83] purrr_0.2.5 bindrcpp_0.2.2
## [85] nlme_3.1-137 EDASeq_2.16.0
## [87] formatR_1.5 R.oo_1.22.0
## [89] xml2_1.2.0 biomaRt_2.38.0
## [91] compiler_3.5.3 e1071_1.7-0
## [93] minet_3.40.0 viper_1.16.0
## [95] tibble_1.4.2 geneplotter_1.60.0
## [97] stringi_1.2.4 futile.logger_1.4.3
## [99] lattice_0.20-38 Matrix_1.2-17
## [101] KMsurv_0.1-5 pillar_1.3.1
## [103] GlobalOptions_0.1.0 data.table_1.11.8
## [105] bitops_1.0-6 rtracklayer_1.42.1
## [107] R6_2.3.0 latticeExtra_0.6-28
## [109] hwriter_1.3.2 ShortRead_1.40.0
## [111] KernSmooth_2.23-15 gridExtra_2.3
## [113] codetools_0.2-16 lambda.r_1.2.3
## [115] MASS_7.3-51.1 gtools_3.8.1
## [117] assertthat_0.2.0 rjson_0.2.20
## [119] GenomicAlignments_1.18.0 Rsamtools_1.34.0
## [121] GenomeInfoDbData_1.2.0 mgcv_1.8-28
## [123] hms_0.4.2 VennDiagram_1.6.20
## [125] grid_3.5.3 tidyr_0.8.2
## [127] class_7.3-15 rmarkdown_1.11
## [129] segmented_0.5-3.0 ggpubr_0.2
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