SUPPLEMENTARY INFORMATION

Additional examples of biological applications

Plot of expression data

An example of how this database can also be applied to understand development is the study of the role of *ezrin* (*ezr*) genes. Diz-Muñoz *et al.* have shown that during zebrafish early development, inhibition of *ezrb* is sufficient to affect the mechanical properties of precordal plate progenitors (Diz-Muñoz *et al.*, 2010). However, the *ezra* gene was not analysed. Using this database, we can observe that the only paralogue expressed during the first hours of development is *ezrb* (Supplementary Fig. S6), which supports their results and explains why *ezra* gene inhibition was not necessary.

Correlations

An example on how this database can be used to obtain general results that are not specific to regeneration is the study of proteins involved in caveolae formation. To do that, we used all the datasets in the database to find which genes are co-expressed with *cav1*. Interestingly, some of the first genes on the list, such as *ehd2b* (Moren *et al.*, 2012), *sdprb* (Hansen *et al.*, 2009), *myo1ca and myo1cb* (Hernandez *et al.*, 2013) are known to form part, or are closely associated with, caveolae. However, in the top part of this list, we find other genes, such as *ccdc187* and *gypc*, which have not been previously related to caveolae. Our results suggest a possible relationship between these genes and the caveolae (Supplementary Fig. S7).

Venn diagrams

This database includes different datasets that study the regeneration of each organ. However, there are differences in their experimental setup, including the injury model used and the stages analysed. Using this application, we analysed three heart regeneration datasets from the laboratories of Poss (Goldman *et al.*, 2017), Stainier (Lai *et al.*, 2017) and Flores (Bednarek *et al.*, 2015). Besides the experimental differences, we found 269 differentially expressed genes in common in the three different datasets. This provides a high degree of confidence of the behaviour of these genes in response to injury (Supplementary Fig. S8).

Methods

Sources of RNA-Seq datasets

We collected a total of 22 datasets and 340 samples from public platforms Gene Expression Omnibus (GEO) (Barrett *et al.*, 2012), Sequence read Archive (SRA) and Bioproject (BioProject) (Goldman *et al.*, 2017; Lai *et al.*, 2017; Han *et al.*, 2014; Bednarek *et al.*, 2015; Natarajan *et al.*, 2018; King *et al.*, 2018; Sánchez-Iranzo, Galardi-Castilla, Minguillón, *et al.*, 2018; Sánchez-Iranzo, Galardi-Castilla, Sanz-Morejón, *et al.*, 2018; Mokalled *et al.*, 2016; Kang *et al.*, 2016; King *and* Yin, 2016; Rabinowitz *et al.*, 2017; Jiang *et al.*, 2014; Sifuentes *et al.*, 2016; Oosterhof *et al.*, 2017; Feng *et al.*, 2015; Louie *et al.*, 2017; PRJEB1986; Pauli *et al.*, 2012; Levin *et al.*, 2016; Herman *et al.*, 2018).

Datasets were selected according to the following criteria: they can be found in GEO or Bioproject by using the words "zebrafish regeneration" or "fish regeneration". The model organism should be zebrafish or any other fish species, and the datasets should be of general interest, excluding any experiments that are restricted to study the effect of a specific gene. In addition, developmental datasets that are representative of a wide developmental range (defined as including at least 5 different developmental stages) were included.

SRA to Fastq conversion

SRA files were converted into fastq files by using fastq-dump (Sequence Read Archive Handbook) using its default parameters, or --split-files for all datasets that are paired-end.

Quality control and trim of low-quality reads and adapters

A quality control was performed with fastqc (Andrews). Trimmomatic (Bolger *et al.*, 2014) was used to trim lowquality reads and adaptor sequences when necessary. The following parameters were used: "LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36".

Specifically, Trimommatic was applied to a whole dataset when, in "per base sequence quality" section of fastqc, there was at least one of the samples with at least one base with more than 10% of the reads with a quality value (Q in the fastq format) lower than 20 (lower whisker in the red area). This applied to the following datasets: "Heart regeneration (Poss lab.)", "Heart regeneration (Stainier lab)", "Heart regeneration (Xiong lab)", "Heart regeneration (Yin lab.)", "Muller glia (Raymond lab.)", "Fin regeneration (Yin lab)", "Developmental stages (Schier lab)", "Developmental stages (PRJEB1986)".

In addition, Trimmomatic was also applied when the percentage of adapters was too high. We defined too high adapter content when they were present in more than 5% of the reads of at least one of the samples of a dataset (warning in the "adapter content" section of fastqc). This applied to the "Cardiac fibrosis (Mercader lab)", where the ILLUMINACLIP:TrueSeq3-SE.fa:2:30:10" parameter was added; and for the "Liver regeneration (Cui lab)" dataset, where the parameter "ILLUMINACLIP:TruSeq2-PE.fa:2:30:10" was added.

In all the datasets that were paired-end, the option "PE" was included and both paired files were trimmed simultaneously, while when they were single-end, the option "SE" was included.

Alignment to the reference genome

RSEM 1.2.25 (Li and Dewey, 2011), calling Bowtie2 2.2.6 (Langmead and Salzberg, 2012), was utilised to align the reads to the *Danio rerio* reference transcriptome (ENSEMBL release 89). Default parameters were used, except for "--estimate-rspd" in RSEM that was set to "on". The parameter "--paired-end" was included in RSEM when necessary.

RSEM aligned files for the dataset "Spinal cord regeneration P. marinus (Bloom lab.)" were directly downloaded from GEO.

"Expected counts" and "fragments per kilobase of transcript per million mapped reads" (fpkm) were used for further analyses. Fig. 1 shows a schematic representation of this workflow.

Web interface and R analysis

Data was analysed and displayed using R (Team., 2014). Specifically, the Shiny R (Chang W *et al.*, 2015) package was used to build the web interface.

Plot fpkm application

fpkm values were plotted by using ggplot2 (Wickham, 2009). In the box plots, the hinges correspond to the first and third quartiles (25th and 75th percentiles). The whiskers extends from the hinges to the highest and lowest values as long as they don't extend more than 1.5 interquartile ranges from the hinges.

In datasets where there are no replicates, boxplots are substituted by lines.

Moreover, individual data points were overlaid.

In the "Developmental stages (Yanai lab.)" dataset, as there is a big number of points with only one replicate and equally spaced in time, a continuous line was displayed.

Correlations application

Every sample present in the selected datasets is used to calculate the correlations.

Correlations were calculated by using the *cor* function (stats package) with its default parameters. Correlations are calculated using the Pearson method.

t-statistic was calculated by using the following equation:

$$t=r\sqrt{\frac{n-2}{1-r^2}}$$

where r is the correlation coefficient, and n is the number of samples used to calculate a correlation.

The two-tailed p-value was calculated as 2*pt(t, df = (n-1)), where *t* is the t-statistic, *n* is the number of samples used to calculate a correlation and *pt* the R function (stats package).

Differentially expressed genes application

Differentially expressed genes were calculated with the edgeR R package (Robinson et al., 2010).

First, a dataframe is generated, which includes the expected counts of only the samples present in the two groups that are being compared.

Then, low-expressed genes are filtered. To keep a gene for the differential expression analysis, it has to be expressed at more than 1 count per million (cpm) level in at least as many samples as the size of the smallest group that is being compared. For example, if we are comparing a condition including 4 biological replicates to other condition including 3 biological replicates, only genes that are expressed at least at 1 cpm in 3 of the samples are kept.

Normalization is done by using the calcNormFactors function (edgeR package) with its default parameters, which includes the TMM-normalization method (trimmed mean of M-values).

Dispersion is calculated by using the estimateDisp function (edgeR package) with its defaults parameters. For datasets where there were no replicates, a bcv value of 0.4 was used.

exactTest function (edgeR package) with its default parameters is used to calculate differentially expressed genes. When there were no replicates, the parameter dispersion was set to 0.4^{2} .

Volcano plots are made using plotly (Plotly Technologies, 2015).

Datasets information

Information on each sample and links to publications were manually introduced and displayed in the database, according to the information available in GEO.

References

Andrews, S. FastQC: A quality control tool for high throughput sequence data.

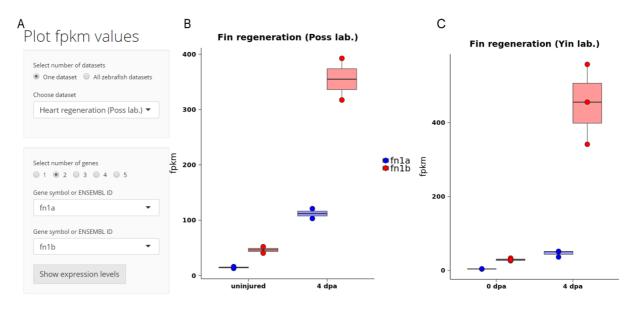
Barrett, T. *et al.* (2012) NCBI GEO: archive for functional genomics data sets—update. *Nucleic Acids Res.*, **41**, D991–D995.

Bednarek, D. *et al.* (2015) Telomerase Is Essential for Zebrafish Heart Regeneration. *Cell Rep.*, **12**, 1691–1703. BioProject *https://www.ncbi.nlm.nih.gov/bioproject*.

Bolger, A.M. *et al.* (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics*, **30**, 2114–2120.

Chang W et al. (2015) Shiny: Web Application Framework for R. http://cran.r-project.org/package=shiny.

Diz-Muñoz, A. *et al.* (2010) Control of Directed Cell Migration In Vivo by Membrane-to-Cortex Attachment. *PLoS Biol.*, **8**, e1000544.


Feng, G. *et al.* (2015) Transcriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. *BMC Genomics*, **16**, 1–11.

Goldman, J.A. *et al.* (2017) Resolving Heart Regeneration by Replacement Histone Profiling. *Dev. Cell*, **40**, 392–404.e5.

- Han, P. *et al.* (2014) Hydrogen peroxide primes heart regeneration with a derepression mechanism. *Cell Res.*, **24**, 1091–1107.
- Hansen, C.G. *et al.* (2009) SDPR induces membrane curvature and functions in the formation of caveolae. *Nat. Cell Biol.*, **11**, 807–814.
- Herman, P.E. *et al.* (2018) Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. *Sci. Rep.*, **8**, 742.
- Hernandez, V.J. et al. (2013) Cavin-3 dictates the balance between ERK and Akt signaling. Elife, 2, e00905.
- Jiang, L. *et al.* (2014) Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. *Proc. Natl. Acad. Sci.*, **111**, E1383–E1392.
- Kang, J. et al. (2016) Modulation of tissue repair by regeneration enhancer elements. Nature, 532, 201–206.
- King,B.L. *et al.* (2018) RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. *npj Regen. Med.*, **3**, 10.
- King,B.L. and Yin,V.P. (2016) A conserved microRNA regulatory circuit is differentially controlled during limb/appendage regeneration. *PLoS One*, **11**, 1–25.
- Lai,S.L. *et al.* (2017) Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. *Elife*, **6**, 1–20.
- Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359.

- Levin, M. *et al.* (2016) The mid-developmental transition and the evolution of animal body plans. *Nature*, **531**, 637–641.
- Li,B. and Dewey,C.N. (2011) RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics*, **12**, 323.
- Louie,K.W. *et al.* (2017) Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration. *BMC Genomics*, **18**, 854.
- Mokalled, M.H. *et al.* (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. *Science* (80-.)., **354**, 630–634.
- Moren, B. *et al.* (2012) EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. *Mol. Biol. Cell*, **23**, 1316–1329.
- Natarajan, N. *et al.* (2018) Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. *Circulation*, **137**, 2152–2165.
- Oosterhof, N. *et al.* (2017) Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish. *Glia*, **65**, 138–149.
- Pauli,A. et al. (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res., 22, 577–591.
- Plotly Technologies, I. (2015) Collaborative data science Publisher: Plotly Technologies Inc.
- PRJEB1986 https://www.ncbi.nlm.nih.gov/bioproject/PRJEB1986.
- Rabinowitz, J.S. *et al.* (2017) Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. *Proc. Natl. Acad. Sci.*, **114**, E717–E726.
- Robinson, M.D. *et al.* (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, **26**, 139–40.
- Sánchez-Iranzo, H., Galardi-Castilla, M., Minguillón, C., *et al.* (2018) Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. *Nat. Commun.*, **9**, 428.
- Sánchez-Iranzo, H., Galardi-Castilla, M., Sanz-Morejón, A., et al. (2018) Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc. Natl. Acad. Sci., 115, 4188–4193.
- Sifuentes, C.J. *et al.* (2016) Rapid, dynamic activation of Müller Glial stem cell responses in Zebrafish. *Investig. Ophthalmol. Vis. Sci.*, **57**, 5148–5160.
- SRA https://www.ncbi.nlm.nih.gov/sra/.
- Team., R.C. (2014) R: a language and environment for statistical computing. http://www.r-project.org.
- Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

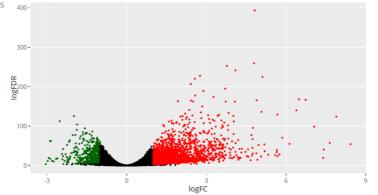
Supplementary Figures

Supplementary Figure 1. Expression of the fn1a and fn1b genes by using the "Plot fpkm" application. (A) Screenshot of the selection menu. Screenshot of the plots showing the expression levels of fn1a and fn1b in the "Fin regeneration (Poss lab.)" dataset (B) and the "Fin regeneration (Yin lab.)" dataset (C).

A Calculate correlations

I	2	
	•	

Calculate correlations	Ensembl gene ID	Gene symbol	Correlations
	ENSDARG0000020007	col1a2	1.0000000
Choose datasets	ENSDARG0000035809	col1a1b	0.9843652
 Heart regeneration (Poss lab.) Heart regeneration (Staining lab.) 	ENSDARG0000002235	mmp14a	0.9346462
 Heart regeneration (Stainier lab.) Heart regeneration (Xiong lab.) 	ENSDARG0000012405	col1a1a	0.9170508
 Heart regeneration (Kong lab.) Heart regeneration (Flores lab.) 	ENSDARG0000009014	col11a1b	0.9130619
Heart regeneration (Lee lab.)	ENSDARG00000059367	mfap2	0.9095764
 Heart regeneration (Yin lab.) 	ENSDARG0000031678	col5a2a	0.8895317
Cardiomyocyte subtypes (Mercader lab.)	ENSDARG0000025641	gli2a	0.8766321
 Cardiac fibrosis (Mercader lab.) 		-	
 Cardiac fibroblast inactivation (Mercader lab.) 	ENSDARG00000079049	cercam	0.8713788
 Spinal cord regeneration (Poss lab.) 	ENSDARG00000044074	loxl2b	0.8639827
 Fin regeneration (Poss lab.) 	ENSDARG0000028071	bmp1a	0.8596621
 Fin regeneration (Yin lab.) 	ENSDARG0000094752	rpe65b	0.8456597
Fin proximodistal (Moon lab.)	ENSDARG0000021948	tnc	0.8444393
 Lateral line (Piotrowski lab.) Muller glia (Raymond lab.) 	ENSDARG00000104267	postnb	0.8397433
Microglia (van Ham lab.)	ENSDARG0000089162	afap1l1a	0.8387874
 Liver regeneration (Cui lab.) 	ENSDARG00000019353	sparc	0.8331497
 Skeletal muscle (Kahana lab.) 			
Developmental stages (PRJEB1986)	ENSDARG0000068036	tmem119b	0.8322230
Developmental stages (Schier lab.)	ENSDARG00000076862	fam198a	0.8303862
Developmental stages (Yanai lab.)	ENSDARG0000036558	col18a1	0.8297215
Gene symbol or EMSEMBL ID	ENSDARG0000078494	ADAMTS14	0.8265787
colla2	ENSDARG0000059693	adam19a	0.8255913
Corraz *	ENSDARG00000026165	col11a1a	0.8253985
Calculate correlated genes	ENSDARG00000032831	htra1a	0.8221051
Download the table	ENSDARG0000020072	thbs4b	0.8220285
	ENSDARG00000102464	wnt5b	0.8214248


Supplementary Figure 2. Correlation of the *col1a2* expression with all the other genes in the zebrafish genome. All the regeneration data sets were used to calculate correlations. (A) Selection panel of the datasets and the gene to be used to calculate the correlations. (B) Genes showing a higher correlation value with the selected gene.

А

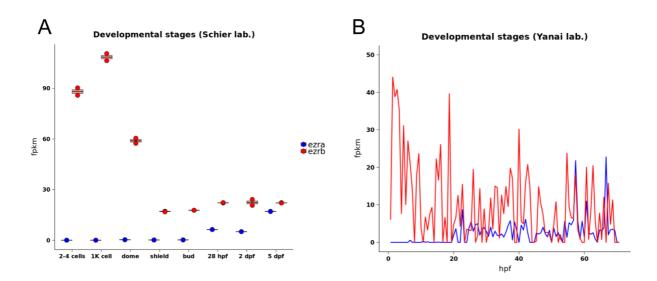
В

Upregulated

Ensembl gene ID	Symbol 🍦	logFC 🔶	logCPM 🔶	PValue	FDR 🔶	logFDR 🔶	Legend
ENSDARG0000075263	ankrd1a	4.821193	5.324303	7.309077e-176	1.196204e-171	393.5629	Upregulated
ENSDARG00000019815 f	in1a	4.797434	9.346662	2.904799e-117	2.376997e-113	259.3263	Upregulated
ENSDARG0000037997 t	ubb5	3.773298	5.001189	3.530555e-114	1.926036e-110	252.6289	Upregulated
ENSDARG0000009014	col11a1b	4.094623	4.436410	3.917284e-109	1.602757e-105	241.2997	Upregulated
ENSDARG0000053091	DAB2	2.762112	7.425201	3.472724e-103	1.136692e-99	227.8278	Upregulated
ENSDARG0000044125 t	xn	5.114308	5.721516	9.187156e-102	2.505950e-98	224.7347	Upregulated
ENSDARG00000011821 p	plod2	2.565402	6.474365	1.235004e-99	2.887440e-96	219.9878	Upregulated
ENSDARG0000013415	mna	2.414015	6.835250	8.625862e-94	1.764636e-90	206.6647	Upregulated
ENSDARG0000036036 r	ndka	3.709869	8.300990	1.230288e-88	2.237211e-85	194.9145	Upregulated
ENSDARG00000055226	slc7a7	2.888318	5.142137	5.067317e-86	8.293170e-83	188.9991	Upregulated
ENSDARG0000010434	tlu	2.578411	5.508846	5.159267e-81	7.676051e-78	177.5635	Upregulated
ENSDARG0000059049 z	zgc:174904	3.270931	6.183739	2.504511e-79	3.415736e-76	173.7681	Upregulated
ENSDARG0000089362 g	grn1	6.484748	6.833140	8.949943e-77	1.126729e-73	167.9694	Upregulated
ENSDARG0000088641 g	grn2	6.740608	5.171708	3.951698e-76	4.619534e-73	166.5584	Upregulated
ENSDARG0000096979	NPC2	4.895844	4.979053	1.513245e-75	1.651051e-72	165.2847	Upregulated
ENSDARG0000043081	tsz	2.417885	6.743727	3.317210e-75	3.393091e-72	164.5644	Upregulated
ENSDARG0000040251	ttsk	1.931087	7.422065	1.685078e-74	1.622235e-71	162.9997	Upregulated
ENSDARG0000095627	:1qc	2.499741	5.928172	2.734149e-74	2.485949e-71	162.5729	Upregulated
ENSDARG0000093748 s	si:ch211-217k17.11	3.729388	4.689974	3.933477e-74	3.388173e-71	162.2633	Upregulated
ENSDARG0000001452 a	adam8a	4.074256	5.062048	6.434118e-74	5.265039e-71	161.8225	Upregulated
ENSDARG0000040178	haver1	2.842657	4.354924	9.905156e-69	7.719418e-66	149.9269	Upregulated
ENSDARG00000044613 c	:1qa	2.354285	5.550918	7.425902e-65	5.524196e-62	141.0511	Upregulated
ENSDARG0000019601	col12a1b	6.392603	6.613110	2.217030e-64	1.577562e-61	140.0018	Upregulated
ENSDARG0000008803 r	marcksb	5.077147	3.730108	9.914065e-63	6.760566e-60	136.2440	Upregulated
ENSDARG0000093440 t	nfaip6	2.790729	5.375003	4.719312e-62	3.089450e-59	134.7245	Upregulated

Supplementary Figure 3. Screenshot of the "Differential expression" application. (A) Selection panel. (B) Interactive volcano plot. (C) Differentially expressed genes between the selected samples.

А


Venn diagram

· crini ci						
Number of dat						
Choose Datase	¢1	Choose Dataset 2		Choose Dataset 3		
Heart rege	eneration (Poss lab.) 👻	Spinal cord regeneration (Poss lab.)	•	Fin regeneration (Poss lab.)		•
Sample group	1	Sample group 1		Sample group 1		
uninjured	-	2 weeks after sham	•	uninjured		•
Sample group 2	2	Sample group 2		Sample group 2		
14 dpa	•	2 weeks after transection	•	4 dpa		•
–			D			
В			D			
	Colort one ention		Common genes in all con Ensembl gene ID	Symbol	🔶 Mean FDR	÷
	 Select one option Upregulated genes 		ENSDARG000000783	362 TNC	1.202395e-60	
	 Opregulated genes Downregulated genes 		ENSDARG00000199	949 serpinh1b	1.129996e-44	
	 Both 		ENSDARG000000117	97 fam46bb	5.170351e-38	
	U BOUT		ENSDARG00000371	45 slc8a4b	5.507456e-37	
	Calculate 🕹 Download t	d the table	ENSDARG00000441	32 ogn	2.722156e-35	
			ENSDARG00000705	97 prelp	6.923048e-32	
			ENSDARG000000773	sypl1	1.347770e-30	
\mathbf{C}			ENSDARG00000032	59 loxa	8.251567e-30	
0	Heart regeneration (Poss lab.)		ENSDARG00000701	41 si:ch211-191i18.2	1.318002e-25	
	Spinal cord regene	eration (Poss Nab.)	ENSDARG00000261	65 col11a1a	2.516242e-23	
			ENSDARG00000680		4.544060e-20	
169			ENSDARG000000763		5.244201e-20	
	1159	1608	ENSDARG00000716		1.518708e-18	
			ENSDARG000000459	32 cpeb1a	3.242530e-17	
			ENSDARG00000358	09 col1a1b	7.142868e-17	
		188	ENSDARG000000217	20 col7a1	1.066579e-16	
			ENSDARG00000454		2.568778e-16	
	574		ENSDARG00000065		5.604598e-15	
			ENSDARG00000784		1.115966e-14	
			ENSDARG00000328		7.459753e-14	
	2334		ENSDARG000000690		4.630516e-13	
			ENSDARG00000069		5.480482e-13	
			ENSDARG000000749 ENSDARG000000628		1.294978e-12	
	Fin rege	neration (Poss lab.)				
			ENSDARG00000072	19 actn1	5.637597e-12	

Supplementary Figure 4. Up-regulated genes in three different organs during regeneration: heart, spinal cord and fin. (A, B) Screenshot of the selection menu. (C) Venn diagram. (D) List of the genes in common among the three lists. Geometric mean of the FDR values is shown and genes are ordered according to the descending order of this value.

eart egeneration Poss lab.)	GSE81865	Resolving Heart Regeneration by Replacement Histone Profiling. Goldman JA, Kuzu G, Lee N, Karasik J et al. Dev Cell 2017 Feb 27;40(4):392-404.	Gene expression profile of heart ventricles after cardiomyocyte genetic ablation. RNA- Seq from uninjured hearts (uninjured) and 14-day post-injured (14 dpi). Two replicates per condition.
leart egeneration stainier lab.)	GSE94617	Reciprocal analyses in zebroffeh and medaka reveal that harnessing the immune response promotes cardiac regeneration. Lai SL, Marn-Juez R, Moura PL, Kuenne C et al. Elife 2017 June 20,6.	RNA-Seq of four heart ventricles pooled at time 0 (uninjured), 6 h, and 1, 2, 3, 4, and 5 days post-sham (6 hps, 1 dps, 2 dps, 3 dps, 5 dps) and after cryoinjury (6 hpi, 1 dpi, 2 dpi, 3 dpi, 5 dpi). One replicate per condition.
leart egeneration Gong lab.)	GSE50203	Hydrogen peroxide primes heart regeneration with a derepression mechanism. Han P, Zhou XH, Chang N, Xiao CL et al. Cell Res 2014 Sep;24(9):1091-1107.	RNA-Seq of one heart after sham (sham) or 7 days after amputation (7 dpa).
leart egeneration Flores lab.)	GSE71755	Telomerase is Essential for Zebrafish Heart Regeneration. Bednarek D, Gonzalez-Rosa JM, Guzman-Martinez G, Gutierrez-Gutierrez O et al. Cell Rep 2015 Sep 8;12(10):1691-703.	Transcriptome of hearts under the control conditions (uninjured) and 3 days after cryoinjury (3 dpi). Four replicates per condition.
leart egeneratoin Lee lab.)	GSE108493	Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Natarajan N, Abbas Y, Bryant DM, Gonzalez-Rosa JM et al. Circulation 2018 Jan 18.	RNA-Seq of the lower halves of heart ventricles at 12, 24 and 48 h post-cryoinjury (12 hpi, 24 hpi, 48 hpi) or sham (12 hps, 24 hps, 48 hps). Three pools of three halves of ventricles were used per condition.
leart egeberation rín lab.)	GSE106884		mRNA gene expression profiling during 0, 1, 3, 7, 14, 21 and 30 days post ventricular resection.
ardiomyocyte ubtypes vlercader lab.)	GSE87596	ToxSa lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Sanchez-Iranzo H, Galardi-Castilla M, Minguillon C, Sanz-Morejon A et al. Nat Commun 2018 Jan 30.9(1):428.	RNA-Seq of the tbx5a-positive (tbx5a-positive) or -negative (tbx5a-negative) cardiomyocytes (CM) from an uninjured heart. Four replicates per condition obtained from the same heart.
ardiac ibrosis Mercader lab.)	GSE101200	Transient fibrosis resolves via fibrobiast inactivation in the regenerating sebrafish heart. Sanches-Iranzo H, Galerdi-Castilla M, Sanz-Morejon A, Gonzalez-Rosa JM et al. Proc Nati Acad Sci U S A 2018 Apr 17;115(16):4188- 4193.	Three to six biological replicates consisting of different cell types obtained from the ventricular apex.
ardiac ibroblast nactivation Vercader lab.)	GSE101199	Transient fibrosis resolves via fibrobiast inactivation in the regenerating zebrafish heart. Sanchez-Iranzo H, Galardi-Castilla M, Sanz-Morejon A, Gonzalez-Rosa JM et al. Proc Natl Acad Sci U S A 2018 Apr 17;115(16)4188- 4193.	postnb-derived cells were FAC sorted from a pool of three to five biological samples. Four pools were collected at 7 dpl and three at 60 dpl. RNA was extracted from those pools and further processed for transcriptome analysis.
pinal cord egeneration Poss lab.)	GSE77025	Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Mokalled MH, Patra C, Dickson AL, Endo T et al. Science 2016 Nov 4;354(6312):630-634.	Gene expression analysis of spinal cord after sham (2 weeks after sham) and after injury (2 weeks after transection). Two replicates per condition.
in egeneration Poss lab.)	GSE76564	Modulation of tissue repair by regeneration enhancer elements. Kang J, Hu J, Karra R, Dickson AL et al. Nature 2016 Apr 14,552(7598):201-6.	Transcriptional profiles of uninjured caudal fin (uninjured) and 4 days after amputation (4 dpa). Two pools of 10 fins per condition.
in egeneration rin lab.)	GSE74415	A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration. King BL, Yin VP. PLoS One 2016;11(6):e0157106.	RNA-Seq of uninjured (uninjured) or 4 days after amputation (4 dpa). Three replicates per condition.
in proximodistal Moon lab.)	G5E92760	Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Rabinowitz JS, Robitalle AM, Wang Y, Ray CA et al. Proc Natl Acad Sci U S A 2017 Jan 31;114(5):E717-E726	RNA-Seq of three locations along the proximo-distal axis of the caudal fin, proximal (prox), middle (mid) and distal (dist). Five replicates per condition, each replicate is a pool of two males and two females.
ateral line Piotrowski ab.)	GSE56176	Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Jiang L, Romero-Carvajal A, Haug JS, Seidel CW et al. Proc Natl Acad Sci U S A 2014 Apr 8;111(14):E1383-82.	RNA-Seq of the GFP-positive cells from the sqET20 transgenic line, which labels inner and mantie support cells (GFP) and the rest of the cells (control) after neomycin treatment (neo) or non-treated (nt). Neomycin chemically ablates hair cells.
/uller glia Raymond lab.)	GSE86872	Rapid, Dynamic Activation of Miler Glial Stem Cell Responses in Zebrafish. Sifuentes CJ, Kim JW, Swaroop A, Raymond PA. Invest Ophthalmol Vis Sci 2016 Oct 1;57(13):5148-5160.	RNA-Seq from Muller gla 0, 8 and 16 h post-injury. Three replicates per condition.
/icroglia (van łam lab.)	GSE86921	Identification of a conserved and acute neurodegeneration-specific microgilal transcriptome in the zebrafish. Oosterhof N, Holtman IR, Kull LE, van der Linde HC et al. Gila 2017 Jan, 55(1):138-149.	Transcriptome analysis of brain cell (orain), homeostatic microglia (microglia control) (triplicates per condition) and activated microglia after cell ablation by nitroreductase at 24 (active microglia 24 h) and 48 h after treatment (active microglia 48 h). Two replicates per condition.
iver egeneration Cui lab.)	SRP053395	FTranscriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. eng G, Long Y, Peng J, Li Q, Cui Z, BMC Genomics 2015. Nov 19;16:979	RNA-Seq transcriptomic analysis of 12 female livers after 6 (6 h) and 12 (12 h) h after partial hepatectomy, and from 24 h post-sham surgery (sham). One replicate per condition.
keletal huscle	G5E92489	Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration. BMC Genomics 2017 Nov 9;18(1):854.Louie KW, Saera-Vila A, Kish PE, Colacino JA et al.	RNA-seq of zebrafish lateral eye muscle 0 (0 hpi), 9 (0 hpi) and 18 (18 hpi) hours post injury. Four replicates per condition.
evelopmental ages RJEB1986)	PRJEB1986		RNA-Seq from embryos after 1, 2, 3, 5 and 14 days post-fertilisation. 1dpf (2 replicates), 2dpf (2 replicates), 3dpf (3 replicates), 5dpf (3 replicates) and 14dpf (1 replicate).
evelopmental ages (Schier lb.)	GSE32898	Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Pauli A, Valen E, Lin MF, Garber M et al. Genome Res 2012 Mar;22(3):577-91. Chew GL, Pauli A, Rinn JL, Regev A et al. Ribosome profiling reveals reamblance between long non-coding RNAs and 5' leaders of coding RNAs. Development 2013 Jul;140(13):2828-34.	RNA-Seq of embryos at 2-4 celis (2-4 celis), one thousand celis (1K celi), dome (dome) and bud (bud) stages, and after 28 h post-fertilisation (26 hpf) and 2 (2 dpf) and 5 days post-fertilisation. Two replicates per condition.
levelopmental tages (Yanai sb.)	GSE60619	The mid-developmental transition and the evolution of animal body plans. Levin M, Anavy L, Cole AG, Winter E et al. Nature 2016 Mar 31;531(7596):637-641.	RNA-Seq from one single embryo every 40 minutes from fertilisation. No replicates.
oinal cord generation marinus iloom lab.)	GSE60619	Highly conserved molecular pathways, including Wint signaling, promote functional recovery from spinal cord injury in lampreys. Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM et al. Sci Rep 2018 Jan 158(1):742.	RNA-Seq from spinal cord (SC) and brain (BR) uninjured and 6 hours (6 hpi), 1 and 3 days (1 dpi, 3 dpi), 1, 2, 3, 4, 5, 6, and 12 weeks (1 wpi, 2 wpi, 3 wpi, 4 wpi, 5 wpi, 12 wpi) after spinal cord injur. One replicate per condition. RNA from 4-6 animals pooled.

Supplementary Figure 5. Screenshot of the information and references provided about each dataset. Links to the publication that describes the datasets and the raw data repository are provided. To facilitate the rapid understanding of the data, a short summary of the experiment is provided.

Supplementary Figure 6. Expression of the *ezra* and *ezrb* genes using the "Plot fpkm" application. Expression of *ezra* and *ezrb* are shown in different development stages datasets from Schier lab. (A), and Yanain lab. (B).

А Calc

Calculate correlations	Ensembl gene ID	Gene symbol	Correlations
	ENSDARG00000103747	cav1	1.0000000
Choose datasets	ENSDARG0000020924	myo1ca	0.7861321
 Heart regeneration (Poss lab.) 	ENSDARG0000071196	sdprb	0.7658510
Heart regeneration (Stainier lab.)	ENSDARG00000100968	si:ch211-1a19.3	0.7616283
Heart regeneration (Xiong lab.)	ENSDARG0000040362	ehd2b	0.7473702
Heart regeneration (Flores lab.)			
Heart regeneration (Lee lab.)	ENSDARG0000054451	lox11	0.7335184
Heart regeneration (Yin lab.)	ENSDARG0000061579	myo1cb	0.7245319
 Cardiomyocyte subtypes (Mercader lab.) Cardiac fibrosis (Mercader lab.) 	ENSDARG0000053857	ccdc187	0.7219719
 Cardiac fibroblast inactivation (Mercader lab.) 	ENSDARG00000041546	gypc	0.7050950
Spinal cord regeneration (Poss lab.)	ENSDARG0000040133	ackr4b	0.7015259
Fin regeneration (Poss lab.)	ENSDARG00000105653	BX323797.4	0.7011573
Fin regeneration (Yin lab.)	ENSDARG0000061941	trpv4	0.7000284
 Fin proximodistal (Moon lab.) 	ENSDARG0000073711	mmrn2b	0.6947155
 Lateral line (Piotrowski lab.) 			
 Muller glia (Raymond lab.) 	ENSDARG0000019367	tgfb3	0.6922020
 Microglia (van Ham lab.) 	ENSDARG00000105065	dock9a	0.6896928
 Liver regeneration (Cui lab.) 	ENSDARG0000070391	tspan4b	0.6861500
Skeletal muscle (Kahana lab.)	ENSDARG0000004451	tnfrsfa	0.6856331
Developmental stages (PRJEB1986)	ENSDARG00000103020	si:dkey-237i9.8	0.6841137
Developmental stages (Schier lab.)	ENSDARG0000040920		0.6825790
Developmental stages (Yanai lab.)		si:dkey-49n23.1	
Gene symbol or EMSEMBL ID	ENSDARG0000099891	si:ch211-57n23.1	0.6822988
cav1 🗸	ENSDARG0000029072	klf6a	0.6816982
	ENSDARG0000039881	cemip	0.6810626
Calculate correlated genes	ENSDARG0000034718	tfpia	0.6800483
Lownload the table	ENSDARG00000103774	limch1b	0.6762323
	ENSDARG0000035858	cnn2	0.6753525

В

Supplementary Figure 7. Correlation of the cav1 expression with all the other genes in the zebrafish genome. All the datasets were used to calculate correlations. (A) Selection panel of the datasets and the gene to be used to calculate the correlations. (B) Genes showing a higher correlation value with the selected gene.

A Venn diagram

Number of datasets			
Choose Dataset 1	Choose Dataset 2	Choose Datase	t 3
Heart regeneration (Poss lab.)	Heart regeneration (Stainier lab.)	▼ Heart rege	eneration (Flores lab.) 🔹
Sample group 1	Sample group 1	Sample group	1
uninjured	uninjured	▼ uninjured	•
Sample group 2	Sample group 2	Sample group 2	2
14 dpa	5 dpi	▼ 3 dpi	•
D			
В	Common genes in all c	omparisons	
	Ensembl gene ID	\$ymbol	Mean FDR 🔶
Select one option	ENSDARG000007526	ankrd1a	1.517492e-63
Upregulated genes	ENSDARG000001981	5 fn1a	6.116973e-42
Downregulated genes	ENSDARG000000901	4 col11a1b	2.143921e-41
Both	ENSDARG000003799	tubb5	2.220153e-39
	ENSDARG000004412	5 txn	5.268458e-37
Calculate 🕹 Download the table	ENSDARG000003603	16 mdka	6.205232e-33
	ENSDARG000005904	9 zgc:174904	2.816338e-31
_	ENSDARG000008864	1 grn2	4.312869e-31
С	ENSDARG000001043	4 clu	8.625036e-30
Heart regeneration (Poss lab.)	ENSDARG000008936	2 grn1	1.214575e-29
	ENSDARG000001960	1 col12a1b	1.971203e-29
Heart regeneration (Stainier lab	ENSDARG000000145	adam8a	2.993890e-29
60	ENSDARG000009374	si:ch211-217k17.11	6.578861e-29
1472 190	ENSDARG000004017	8 havcr1	9.265716e-29
	ENSDARG000009697	9 NPC2	8.633365e-28
269	ENSDARG000000880	3 marcksb	5.151995e-26
	ENSDARG0000003044	9 crabp2b	1.036045e-25
1016 109	ENSDARG0000004461	3 c1qa	9.850418e-25
	ENSDARG000007589	1 sall1b	1.698623e-24
	ENSDARG00000554	9 adamtsl7	1.525654e-23
1106	ENSDARG000006112	0 slc43a2b	1.630468e-23
	ENSDARG000006091	7 anln	2.901153e-22
	ENSDARG000000578	9 enpp1	5.205089e-22
Heart regeneration (Flor	ENSDARG0000007526	timp2b	9.417912e-22
	ENSDARG0000003785	i9 il11a	3.982114e-21

Supplementary Figure 8. Genes differentially expressed in three heart regeneration datasets each of them performed by a different laboratory. (A, B) Screenshot of the selection menu. (C) Venn diagram. (D) List of the genes in common among the three lists. Geometric mean of the FDR values is shown and genes are ordered according to the descending order of this value.