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1 Detailed results of the simulation studies

We assessed the 15 possible combinations of our four moves according to the following:

• Whether or not all the chains for all the simulated data sets for a particular combination of moves
have converged by the 10,000th thinned sample at the 1.1, 1.07, 1.05, and 1.02 levels for the
Gelman-Rubin (GR) R̂-statistic in terms of both the log-likelihood and the L1-distances of the
sampled cell positions the true reference positions 1:90.

• The average number of samples across the 16 simulated data sets until convergence at all the above
levels, where we computed the R̂-statistics in intervals of 20 for the thinned samples.

• The maximum number of samples over the 16 simulated data sets until convergence at all the above
levels (note again that the R̂-statistics are in intervals of 20).

Tables 1, 2, and 3 list the values of these criteria for each combination of moves for the three different
scenarios explored in our simulation studies. For each criterion, the best performing combination is
marked in magenta.

Figures 1, 2 and 3 illustrate the performance of the different combinations of moves in terms of the
R̂-statistic of the log-likelihood. Each line in the plots represents the R̂-statistic corresponding to one of
the 16 simulated data sets. Figures 4, 5 and 6 do the same for the R̂ for the L1-distances.
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Figure 1: Simulation 1: GR statistic for log-likelihood. 16 simulated data sets with 5 MCMC
chains per data set.
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Figure 2: Simulation with fewer capture times: GR statistic for log-likelihood. 16 simulated
data sets with 5 MCMC chains per data set.
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Figure 3: Simulation with more noise: GR statistic for log-likelihood. 16 simulated data sets
with 5 MCMC chains per data set.
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Figure 4: Simulation 1: GR statistic for L1-distance from ref. permutation. 16 simulated data
sets with 5 MCMC chains per data set.
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Figure 5: Simulation with fewer capture times: GR statistic for L1-distance from ref. per-
mutation. 16 simulated data sets with 5 MCMC chains per data set.
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Figure 6: Simulation with more noise: GR statistic for L1-distance from ref. permutation.
16 simulated data sets with 5 MCMC chains per data set.

10



2 Further description of data sets

We applied GPseudoRank to several publicly available single-cell expression data sets of different size and
generated using different experimental protocols. The Shalek (Shalek et al., 2014) data set is described
in the main paper. GEO accession number: GSE48968.

Klein et al., 2015 (Klein data set) used droplet barcoding to study RNA expression levels of mouse
embryonic stem cells after Leukemia inhibition factor withdrawal. We use log-transformed data corrected
for cell-cycle as in Haghverdi et al., 2016, and apply GPseudoRank to the main branch identified in the
latter publication, consisting of 1543 cells. Out of the genes used in Haghverdi et al., 2016, we select
100 genes with high temporal variation according to an anova-test measuring differences between mean
RNA expression levels (for each capture time, the mean is taken over all the cells at this capture time)
for different capture times. The data, prior to performing the gene selection using anova, are available
as supplementary material to Haghverdi et al., 2016.

Shin et al., 2015 (Shin data set) generated an in-vivo scRNA-seq data set of mouse adult hippocampal
quiescent neural stem cells and their immediate progeny, using 101 of the cells captured for pseudotem-
poral ordering, excluding a small set of cells forming a separate branch and several outliers. In the
absence of (at least two different) capture times, we choose the subset of genes to which to apply the
GPseudoRank algorithm as follows: we first select all genes for which more than 70% of the cells have
non-zero expression levels. Out of these genes we intersect the set of the 500 genes with the highest
mean and that of the 500 genes with the highest variance, resulting in final set of 213 genes. We log-
transformed the data before applying GPseudoClust. The data are available as supplementary material
to Shin et al., 2015.

Stumpf et al., 2017 (Stumpf data set) generated an RT-PCR data set from two cell lines, following the
development of mouse embryonic stem cells along the neuronal lineage. The data set consists of 96 genes
including two loading controls, and 96 cells per capture time (0h, 24h, 48h, 72h, 96h, 120h, 172h). We
compute the pseudotime trajectory for both cell lines jointly.

For the preprocessing of the data, we follow the steps performed in Stumpf et al., 2017, resulting in a
preprocessed data set with 550 cells. We apply GPseudoRank to all the genes, excluding the two loading
controls (Actb and Gapdh). The data are available on Mendeley Data
(http://dx.doi.org/10.17632/g2md5gbhz7.1).

Shalek et al., 2013 (Shalek13 data set) obtained scRNA-seq data from mouse bone-marrow-derived dend-
ritic cells after exposure to lipopolysaccharide, the same condition as studied, among others, in Shalek
et al., 2014. All 18 cells were captured 4h after initial exposure. The data set containing many zeros,
we consider all genes expressed in at least 30% of the cells. Out of these we intersect the 1000 with the
highest variance with the 1000 with the highest mean, where we chose 1000 instead of 500 because there
is less overlap between the two groups compared to the Shin data. This results in a final 142 genes. GEO
accession number: GSE41265.

3 Approximation for large data sets

Following the recommendations for the number of clusters in Section 2.6 of the main paper, we use 21
small clusters for each of the 5 capture times of the Shalek data set, resulting in a total of 105 mini-
clusters, and 15 mini-clusters for each of the 7 capture times of the Stumpf data set, resulting again in a
total of 105 mini-clusters. For the droplet-based Klein data set with a main branch of 1543 cells, we use
1
8 th of the cells of each capture time, with a minimum of 30 cells per capture time. This results in a data
set with 226 mini-clusters. Figure 7 illustrates the performance of the mini-cluster approximation on
the Stumpf data set and compares it to the full algorithm. Figures 7a and 7b and Table 5 illustrate the
boost in computational efficiency obtained for this data set by the approximation thanks to the much
faster convergence of the approximate method and the more efficient likelihood computations. Figure 7c
shows that the mini-cluster method approximates well the posterior means of the pseudotimes of the
cells. Comparing Figures 7d and 7e, we see that both the level and the changes of pseudotime uncertainty
over the course of pseudotime are preserved by the approximation.

While we recommend the mini-cluster approximation for our MCMC algorithm, previously sparse GPs
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Figure 7: Stumpf data, comparison between exact method and mini-cluster approximation.
a) R̂-statistic for exact GPseudoRank inference. b) R̂-statistic for approximation with mini-clusters. c)
Scatterplot comparing the posterior means of the pseudotimes for each cell computed with the full model
(x-axis) to those obtained using the mini-cluster approximation (y-axis). Semi-transparent dots show
overlapping cells d) and e) Standard deviation of pseudotime as a function of mean pseudotime. Each
dot corresponds to one cell. Semi-transparent dots show overlaps. d) approximate method, e) exact
method.

have been used for GP latent variable models (Ahmed et al., 2018; Reid and Wernisch, 2016). Sparse
GPs approximate GPs in such a way that computations of inverses and determinants are only required
for auxiliary GPs with a small number u of inducing points. While efficient alternatives with optimised
inducing points have been implemented for variational inference of pseudotime (Ahmed et al., 2018),
optimisation at every iteration, or sampling the inducing points, would be computationally expensive in
an MCMC sampler. We therefore use fixed inducing points and the sparse GP approximation of Snelson
and Ghahramani, 2006, as in Reid and Wernisch, 2016. We obtain a method accurately estimating
the posterior means of the pseudotimes (see Figure 8d), but overestimating the posterior uncertainty
(see Figure 8f). The overestimation of uncertainty probably results from the fact that the sparse GP
likelihood is less sensitive to changes of the ordering not crossing inducing points. Therefore, while
providing accurate point estimates, sparse GPs might not be the ideal likelihood approximation for our
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Figure 8: Shalek data, approximation methods. a) and b) R̂-statistic for approximation with
mini-clusters (a) and sparse GPs (b). c) and d) Scatterplots comparing the posterior means of the
pseudotimes for each cell computed with the full model (x-axis) to those obtained using the mini-cluster
approximation (c) and sparse GPs (d). Semi-transparent dots show overlapping cells. e), f) and g)
Standard deviation of pseudotime as a function of mean pseudotime, a) mini-cluster method, b) sparse
GPs, c) full likelihood.

MCMC sampler. The mini-cluster approximation performs better at estimating the posterior uncertainty
of orders and its change over the course of pseudotime.
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4 Ordering data sets without capture times

While we showed convergence of our algorithm when the first two and the last two capture times for
the Shalek data are merged for the initialisation in Figure 3 in the main paper, we now go further and
show convergence with fully random starting paths, not using any capture time information. This means
that a focus on large moves is required (for a discussion of local and larger moves, see Section 6); we
use a combination of moves 2, 3, which are adaptive, and move 4, applying each of these moves with
probability 0.3327, and move 5 with probability 0.0019. The settings for move 4 are the same as those
used with capture time information, but we temper the proposals for moves 2 and 3 by a factor α = 0.1,
to make them larger. Figure 9a shows that, measured in terms of the R̂ statistic, convergence is still
good according to the recommendation to run chains until a threshold of 1.2 has been reached for the
R̂-statistic (see also Table 5). However, convergence is not reached as fast as when the capture times are
used for the initialisation, compare Figure 9b to the corresponding figure for a chain initialised using some
capture time information (Figure 3 in the main paper). We also plotted the Pearson correlations between
capture times and posterior positions of the cells in the order (see Figure 9c, observing that both the
posterior mean and median are highly correlated with the capture times, while the individual posterior
samples are slightly less correlated. This illustrates the concept of uncertainty, where each sample will
contain a number of less likely positions for a few individual cells, therefore being less correlated with the
capture times than the posterior mean is. Therefore, it is interesting to see the two non-MCMC based
methods in between the samples and the mean and median solutions by GPseudoRank.
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random order, discarding any information on capture
times. Compare to Figure 3 in the main paper.

0.9 0.92 0.94 0.96 0.98 1
0

200

400

600

800

1000

1200

1400

GPseudoRank samples (position vectors)
TSCAN (positions)
SLICER (positions)
GPseuoRank mean positions
GPseudoRank median positions

(c) Pearson correlation to capture times. Com-
paring the posterior samples of GPseudoRank, TS-
CAN, SLICER, mean positions inferred by GPseudoR-
ank, median positions inferred by GPseudoRank.

Figure 9: Shalek data, fully random initalisation without any use of capture time informa-
tion.

To illustrate further how GPseudoRank can be used for data sets with only one unique capture time for
each cell, we applied it to the Shalek13 and Shin data sets (see Section 2 for a description of the data).

For the starting orders for the Shin data set, we fully randomly permuted the 101 cells. For the sampling
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we applied moves 2, 3 and 4 with equal probabilities of 0.3327, and move 5, the reversal of the entire
ordering, with a probability of 0.0019. The reason for not applying move 1, the swaps of neighbouring
cells in the current order, is the fact that without capture time information for a not very small data set
moves are preferred that propose larger changes to the ordering. Figure 10a illustrates the high level of
convergence leading to practically similar posterior distributions of the positions in the order for each
individual cell for 12 MCMC chains with fully random starting orders.

Without capture times, GPseudoRank samples the full symmetric distribution of orders, which includes
an order and its reverse with equal probabilities (see Figure 10a). As there are no capture times, we
cannot use positive or negative correlation with capture times to decide which of the two groups of orders
need to be reversed, and therefore rely on different biological information. Figure 10b shows how to find
which of the two groups of orders to reverse: both Sox11 and Eomes are markers for early intermediate
progenitor cells (Ming and Song, 2011; Shin et al., 2015), therefore those orders for which their expression
level decreases need to be reversed.

With the Shalek13 data set, we proceed in a similar way concerning the reversal of orders. We use the
same core antiviral score as in Figure 5 of the main paper. We reverse an order if the average for this
score over the first 5 cells in the order is higher than that of the last 5 cells.

5 Summaries and representations of posterior distributions of
orders

5.1 Distances from reference permutations

We use L1-distances of cell position vectors, that is inverse permutations of orders. For instance, if the
order of the cells is cell 4, cell 2, cell 1, cell 3, then the cell position vector is (3, 2, 4, 1), that is cell 1
is at position 3, cell 2 is at position 2 etc. This distance measure is useful to obtain an overview over
the posterior distribution of the orders, and it is the statistic we use, apart from the log-likelihood, for
the assessment of convergence in terms of the Gelman-Rubin R̂-statistic, see Figure 1 in the main text,
Figures 4, 5, 6, 7a, 7b, 8a, 8b, and 9a in the supplementary materials, and Tables 1, 2, 3 and 5, also in
the supplement. This distance statistic is particularly useful for convergence assessment because of its
tendency to be comparatively close to a normal distribution (see Figures 11 and 12).

As the true order is not known unless in the case of applying the algorithm to microarray data for testing
purposes and we do not want the reference permutation to depend on the data likelihood, we take a fixed
(fixed for computing the distance of all samples from the posterior distribution for the same reference
permutation), but randomly chosen permutation as the reference permutation. If there are capture times,
we chose a reference permutation where cell positions are permuted only within the capture times.

While the tendency of the distribution of this distance statistic to have only one mode and be relatively
close to a normal distribution makes it a good statistic for convergence assessment using the Gelman-
Rubin statistic, it often fails to capture the multi-modal structure of the posterior distribution of the
cell position vectors, and orders which are not particularly close to each other might still have similar
distances from some reference permutations. This also makes the distance statistic an insufficient criterion
for the comparison of different pseudotime methods (see Figures 11 and 12). For instance, the solutions
obtained by TSCAN and SLICER look similar to each other with some of the reference permutations,
although other reference permutations reveal the difference between the two solutions.

5.2 Multi-dimensional scaling and multi-modal structure of posterior distri-
butions

To illustrate more in detail the complex structure of posterior distributions of orders, we also analysed the
Shalek13 (Shalek et al., 2013) data set, where the structure in the MDS projection of the vectors of cell
positions is more clearly visible because of the overall smaller number of different possible orders due to
the small size of the data set. Figure 13a shows the MDS projection. We performed k-medoids clustering
with k = 4 on the projections, to identify groups of similar orders. For the orders corresponding to the
medoids of the four groups we plotted the average expression levels of a set of antiviral genes also used
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(a) Distribution of cell positions. Each matrix illustrates the posterior probabilities of the positions of the
cells for one of 12 MCMC chains with different fully random starting orders. The cells are ordered along the
horizontal axis in the same way for each of the subplots, the posterior density of the position of each cell in the
order is plotted along the vertical axis. 15,000 thinned samples after burn-in of 15,000.
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(b) Marker genes. The cells in green are ordered in terms of the 18,000th sample of the posterior distribution,
the cells in blue in terms of the 25,000th sample.

Figure 10: Analysis of Shin data.
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for the analysis of the other Shalek data set (Shalek et al., 2014) in the main paper (see Section 3.2 and
Figure 5 of the main text). Each subplot of Figure 13b compares the trajectory of the antiviral scores
belonging to two different medoids in Figure 13a. We see that the beginning of the trajectory is very
certain, while there is more uncertainty towards the end.

6 Further description of proposal distribution for orders

The MCMC moves described in Section 2.5 of the main paper are an efficient proposal distribution based
on a combination of local and larger moves. The inclusion of larger moves, rather than just swapping
neighbours in the ordering, is essential to avoid getting trapped in local maxima, in particular because
the structure of the posterior distribution tends to be complicated, see Figure 2 in the main paper and
Figure 13a in this text for examples.

The parameters n0, n3 and n3a, γ, α2 and α3 are as in Section 2.5 of the main text.

1. Move 1 is a local move, in the sense that only pairs of neighbouring cells in the order are swapped.

2. Moves 2 and 3 are based on the observation that the acceptance rates of pairwise swaps of cells and
reversals of orders between pairs of cells depend on the L1-distances between these cells as elements
in Rng , where ng is the number of genes. The reason for using L1-distances rather than Euclidean
ones is the lower sensitivity to outliers. We found a negative squared exponential function of
the L1-distances, that is a Gaussian kernel function, with a very slow decay an effective way of
constructing the density for choosing pairs of cells for these moves. Moves 2 and 3 are adaptive,
as once the chain has come closer to convergence, the cells close in L1-distance are more likely to
be closer to each other in the ordering.

3. Move 4 is similar to move 1, but less local, as it uses small random permutations of cells close to
each other in the ordering rather than swaps of neighbours only.

4. Move 5 is accepted with probability 1, as it swaps around the entire ordering, therefore it does not
change the likelihood of the GPseudoRank model. It is not absolutely necessary, but without it the
distribution we sample on large data sets might not be symmetric, because of the lower probability
of a swap of the entire ordering occurring with the other moves only, and we found this symmetry
an additional help with the assessment of convergence without having to run multiple chains.

The number of possible permutations of T cells is equal to T !. This makes the choice of a suitable
proposal distribution for the MCMC sampler a matter of importance. On the other hand, we want to
provide a default parameter choice and a guide to setting the parameters depending on the size of the
data set. However, every data set is different, therefore using non-default parameters for the proposal
distribution may improve acceptance rates. Our general guidelines are the following:

It is generally most effective to use a combination of more local and larger moves, but the larger moves
are crucial. When there is no capture time information a higher proportion of larger moves are required,
and we recommend leaving out move 1 in that case. For the same reason, for using GPseudoRank on
large data sets without the mini-cluster approximation, we recommend using moves 3, 4, and 5 only. For
move 1 we found a recommended default of n0 = bnC/7c, where nC is the number of cells, to work well
in general, for move 4, we generally set n3 = bnC/20c and n3a = bnC/12c. However, n3 and n3a need
to be decreased for large data sets. We generally recommend a flat distribution for choosing the cells for
moves 2 and 3, with γ = 1

8000 , α2 = 0.1, and α3 = 0.1. However, the ideal setting depends on the specific
data set and it is recommend to increase α1 and α2 and/or γ in case of low acceptance rates. Finally,
for very small data sets, such as the Shalek13 data set, move 4 is similar to move 1 and move 2, and
therefore it is sufficient to use moves 3 and 4. Table 4 lists in detail our parameter settings for the data
sets analysed in this publication. We used a variety of different data sets with different experimental
protocols and of different sizes (see Section 2) to provide good guidelines for the practitioner with regard
to the parameter settings. The table shows that we sometimes deviated to some extent from the default
parameter settings to optimise acceptance rates. However, default parameter settings tend to work fine
in most cases, and a function to set default parameters is provided as part of the software package.
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1
γ n0 n3 n3a α2 α3 moves

Shalek13 8000 3 3 0.01 3-5
Shin 1000 bnC/20c bnC/12c 1 1 2-5
Shalek, CT 4000 bnC/4c bnC/20c bnC/12c 1 1 1-5
Shalek, no CT 4000 bnC/20c bnC/12c 0.1 0.1 2-5
Shalek, appr. 8000 bnCl/7c bnCl/20c bnCl/12c 0.1 0.1 1-5
Stumpf 8000 bnC/40c bnC/24c 0.1 3-5
Stumpf, appr. 8000 bnCl/7c bnCl/20c bnCl/12c 0.1 0.1 1-5
Klein 8000 bnCl/7c bnCl/20c bnCl/12c 0.1 0.1 1-5

Table 4: Parameters used for proposal distributions for all scRNA-seq data sets. nCl is the
number of clusters used for the mini-cluster approximations. nC refers to the number of cells. CT refers
to capture time, appr. to the mini-cluster approximation. Move 5 was used with probability 0.002, all
other moves with equal probabilities. The Shalek data set was analysed twice, once using capture time
information for the intialisation of the sampler (CT) and once without using this information (no CT).

18



7500 8000 8500 9000
0

1

2

3

4
10 4

8000 8500 9000
0

1

2

3

4
10 4

7000 7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500 9000
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

7500 8000 8500
0

1

2

3

4
10 4

Figure 11: L1-distances from reference permutations. For each subfigure, the reference permuta-
tion is a random permutation of the cells of each capture time. SLICER estimate represented as a red
line, TSCAN as a green line.
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Figure 12: L1-distances from reference permutations. For each subfigure, the reference permuta-
tion is a random permutation of all the cells, not only within, but across capture times. SLICER estimate
represented as a red line, TSCAN as a green line.
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Figure 13: Analysis of Shalek13 data set. a) MDS of posterior cell position vectors. Each posterior
sample is represented by one semi-transparent dot. Samples with higher frequency, i.e. modes, therefore
correspond to overlapping, less-transparent dots. Percentage of orders in clusters: c1: 21%, c2: 11%, c
3: 29%, c 4: 38% b) Antiviral score (as in Figure 5 of the main paper), each subplot compares ordered
antiviral scores corresponding to one pair of medoids (as in a)).
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7 Computation times

Table 5 lists the computation times on a laptop for all the single-cell data sets analysed. Computation
times depend on the number of cells, the number of genes used for the analysis (this explain the slightly
longer computation times per 1,000 samples for the Shin compared to the Shalek data with k-means
approximation), and the number of samples required to reach convergence. For the number of cells and
genes for each data set, see Section 2. As before, we assess convergence using the Gelman-Rubin statistic
on the log-likelihood and the distances of the sampled cell position vectors from a reference permutation.
The number of iterations until convergence listed in Table 5 is the number obtained from one random
run of multiple chains. As the starting orders are random, different runs of the algorithm may lead to
slightly different, but similar, numbers of iterations required.

appr cells 1,000 1.2 level 1.1 lev. 1.2 lev. 1.1 lev.
(thinned)

Shalek13 no 18 10 sec 250 550 3 sec 6 sec
Shin no 101 35 sec 26,000 29,000 15 min 17 min
Shalek, CT no 307 51 sec 3,750 6,000 192 sec 306 sec
Shalek, no CT no 307 51 sec 5,500 22,450 281 sec 19 min
Shalek yes 307 21 sec 1,300 1,350 27 sec 28 sec
Stumpf no 550 159 sec 16,250 17,250 43 min 48 min
Stumpf yes 550 25 sec 1,000 2,300 25 sec 58 sec
Klein yes 1543 32 sec 9,300 11,300 5 min 6 min

Table 5: Computation times until convergence for all single-cell data sets. Convergence meas-
ured in terms of the R̂-statistic on the log-likelihood and L1-distances from a reference permutation.
To demonstrate the efficiency of GPseudoRank and show that it can be run on a laptop, we performed
the runtime analysis on a 2013 Macbook Pro with 2.3 GHz Intel Core i7 (4 cores) and 16GB DDR3,
with matrix operations performed multi-threaded on all available cores. For the performance analysis
the Matlab implementation of GPseudoRank was used. The table lists whether the full or approximate
model were used (approx), how long it took to run 1,000 thinned samples (10,000 real samples), and how
many samples and how much computing time were needed for convergence at the 1.2 and 1.1 levels for
the R̂-statistic for both the L1-distances and log-likelihoods.
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