Supplementary Information for LION LBD: a Literature-Based Discovery System for Cancer Biology

This document contains supplementary information for the paper LION LBD: a Literature-Based Discovery System for Cancer Biology.

1 Task setting

For a simple weighted graph $G=(N, E)$ where N is the set of nodes, E the set of edges $E \subset N \times N, w(i, j)$ is the weight of the edge from i to j and f_{g} a weight aggregation function, the basic closed discovery task for nodes a and c can be addressed as

```
function ClosedDiscovery \((a, c)\)
    for all \(b\) in \(\mathcal{N}(a) \cap \mathcal{N}(c)\) do
        yield \(b, f_{\mathrm{g}}(w(a, b), w(b, c))\)
```

where $\mathcal{N}(i)=\{j \mid(i, j) \in E\}$ is the set of neighbours of node i and yield is defined as in Python as generating a sequence of returned values. Given an accumulation function f_{c} and a corresponding initial value s_{0} (e.g. 0 for sum and $-\infty$ for \max), open discovery can be similarly cast as

```
function OpenDiscovery \((a)\)
    for all \(c\) in \(\mathcal{N}(\mathcal{N}(a)) \backslash \mathcal{N}(a)\) do
        \(s_{c} \leftarrow s_{0}\)
    for all \(b \in \mathcal{N}(a)\) do
        for all \(c \in \mathcal{N}(b) \backslash \mathcal{N}(a)\) do
            \(s_{c} \leftarrow f_{\mathrm{c}}\left(s_{c}, f_{\mathrm{g}}(w(a, b), w(b, c))\right)\)
    for all \(c\) in \(\mathcal{N}(\mathcal{N}(a)) \backslash \mathcal{N}(a)\) do
        yield \(c, s_{c}\)
```

As the relevant neighbour set operations can be implemented in linear time, the former algorithm has linear and the latter quadratic complexity with respect to the number of neighbours $\stackrel{1}{1}^{1}$

[^0]
2 Metrics

For terms a and b, we denote below the number of contexts where the terms (co-)occur by C and the total number of contexts by N. The Count and Doc-count metrics for an edge between nodes representing a and b are defined simply as $C(a, b)$ where the context is defined as a sentence for the former and a document for the latter. The context is set as sentence for all other metrics.

Pointwise mutual information (PMI) is defined as

$$
\begin{equation*}
w_{\mathrm{PMI}}(a, b)=\log \frac{P(a, b)}{P(a) P(b)}=\log \frac{C(a, b) N}{C(a) C(b)} \tag{1}
\end{equation*}
$$

and the normalized PMI (NPMI) metric as

$$
\begin{equation*}
w_{\mathrm{NPMI}}(a, b)=\frac{w_{\mathrm{PMI}}(a, b)}{-\log (P(a, b))}=\frac{\log \frac{C(a, b) N}{C(a) C(b)}}{\log \frac{N}{C(a, b)}} \tag{2}
\end{equation*}
$$

Symmetric conditional probability (SCP) is

$$
\begin{equation*}
w_{\mathrm{SCP}}(a, b)=P(a \mid b) P(b \mid a)=\frac{P(a, b)^{2}}{P(a) P(b)}=\frac{C(a, b)^{2}}{C(a) C(b)} \tag{3}
\end{equation*}
$$

and the Jaccard index as

$$
\begin{equation*}
w_{\mathrm{Jaccard}}(a, b)=\frac{C(a, b)}{C(a)+C(b)-C(a, b)} \tag{4}
\end{equation*}
$$

The Chi-squared $\left(\chi^{2}\right)$ metric is defined based on the contingency matrices of the observed and expected values as

$$
\begin{equation*}
w_{\chi^{2}}=\frac{N(C(a, b)(N+C(a, b)-C(a)-C(b))-(C(a)-C(a, b))(C(b)-C(a, b)))^{2}}{C(a) C(b)(N-C(a))(N-C(b))} \tag{5}
\end{equation*}
$$

and the Student's t-test statistic as

$$
\begin{equation*}
w_{t \text { test }}=\frac{N C(a, b)-C(a) C(b)}{N \sqrt{C(a, b)}} \tag{6}
\end{equation*}
$$

Finally, the log likelihood ratio (LLR) is estimated as

$$
\begin{align*}
w_{\mathrm{LLR}}=2(& C(a, b) \log \frac{C(a, b) N}{C(a) C(b)}+(C(b)-C(a, b)) \log \frac{N(C(b)-C(a, b))}{C(b)(N-C(a))} \\
& +(C(a)-C(a, b)) \log \frac{N(C(a)-C(a, b))}{C(a)(N-C(b))} \tag{7}\\
& \left.+(N-C(a)-C(b)+C(a, b)) \log \frac{N(N-C(a)-C(b)+C(a, b))}{(N-C(a))(N-C(b))}\right)
\end{align*}
$$

3 Results for cancer discoveries

Tables 15 present the detailed closed discovery results and Tables 610 the open discovery results for the five cancer discoveries test cases. In addition to the rank of the target concept among the returned results, we also report the total number of results (n) and the relative rank of the target. In all result tables, the best result in each row is underlined and the best result in each column in bold.

	Aggregation function f_{g} Metric		
min	avg	\max	
NPMI	$47(2.00 \%)$	$\underline{38}(1.61 \%)$	$120(5.19 \%)$
SCP	$\underline{10}(0.39 \%)$	$60(2.57 \%)$	$65(2.79 \%)$
χ^{2}	$\underline{8}(0.31 \%)$	$60(2.57 \%)$	$65(2.79 \%)$
t-test	$\underline{6}(0.22 \%)$	$\mathbf{2 1}(0.87 \%)$	$\mathbf{4 6}(1.96 \%)$
LLR	$\underline{8}(0.31 \%)$	$47(2.00 \%)$	$49(2.09 \%)$
Jaccard	$\underline{\mathbf{4}}(0.13 \%)$	$34(1.44 \%)$	$\mathbf{4 6}(1.96 \%)$
Count	$\underline{19}(0.78 \%)$	$47(2.00 \%)$	$50(2.14 \%)$
Doc-count	$\underline{27}(1.13 \%)$	$49(2.09 \%)$	$56(2.40 \%)$

Table 1: Closed discovery results for $\mathrm{A}=\mathrm{PR}: 000001754$ (NF- $\kappa \mathrm{B}$), $\mathrm{B}=\mathrm{PR}: 000002307$ (Bcl-2), $\mathrm{C}=\mathrm{MESH}: \mathrm{D} 000236$ (Adenoma), query year 2011, $n=2294$.

Metric	\min	Aggregation function avg	f_{g} \max
NPMI	$504(76.91 \%)$	$379(57.80 \%)$	$\underline{\underline{238}(36.24 \%)}$
SCP	$564(86.09 \%)$	$196(29.82 \%)$	$\underline{\underline{184}}(27.98 \%)$
χ^{2}	$485(74.01 \%)$	$196(29.82 \%)$	$\underline{\underline{184}}(27.98 \%)$
t-test	$487(74.31 \%)$	$275(41.90 \%)$	$\underline{\underline{\mathbf{1 2 7}}(19.27 \%)}$
LLR	$486(74.16 \%)$	$\mathbf{1 6 3}(24.77 \%)$	$\underline{\underline{143}}(21.71 \%)$
Jaccard	$515(78.59 \%)$	$213(32.42 \%)$	$\underline{\underline{169}}(25.69 \%)$
Count	$\mathbf{4 2 9}(65.44 \%)$	$181(27.52 \%)$	$\underline{\underline{158}}(24.01 \%)$
Doc-count	$508(77.52 \%)$	$169(25.69 \%)$	$\underline{\underline{151}}(22.94 \%)$

Table 2: Closed discovery results for $\mathrm{A}=\mathrm{PR}: 000011331$ (NOTCH1), $\mathrm{B}=\mathrm{HOC}: 42$ (senescence), C=PR:000005308 (C/EBP β), query year 2011, $n=654$.

	Aggregation function f_{g}		
Metric	\min	avg	\max
NPMI	$22(4.94 \%)$	$\underline{\mathbf{3}}(0.47 \%)$	$\mathbf{5}(0.94 \%)$
SCP	$\underline{3}(0.47 \%)$	$5(0.94 \%)$	$\mathbf{5}(0.94 \%)$
χ^{2}	$\underline{3}(0.47 \%)$	$5(0.94 \%)$	$\mathbf{5}(0.94 \%)$
t-test	$\underline{6}(1.18 \%)$	$16(3.53 \%)$	$21(4.71 \%)$
LLR	$\underline{5}(0.94 \%)$	$17(3.76 \%)$	$17(3.76 \%)$
Jaccard	$\underline{\mathbf{2}}(0.23 \%)$	$4(0.71 \%)$	$\mathbf{5}(0.94 \%)$
Count	$\underline{12}(2.59 \%)$	$23(5.18 \%)$	$23(5.18 \%)$
Doc-count	$\underline{12}(2.59 \%)$	$26(5.88 \%)$	$27(6.12 \%)$

Table 3: Closed discovery results for $\mathrm{A}=\mathrm{PR}: 000001138$ (IL-17), B=PR:000003107 (p38 $)$), C=PR:000006736 (MKP-1), query year 2010, $n=425$.

Metric	Aggregation function f_{g}		
	min	avg	max
NPMI	86 (19.14\%)	119 (26.58\%)	170 (38.06\%)
SCP	$\underline{70}$ (15.54\%)	249 (55.86\%)	284 (63.74\%)
χ^{2}	74 (16.44\%)	212 (47.52\%)	224 (50.23\%)
t-test	56 (12.39\%)	136 (30.41\%)	237 (53.15\%)
LLR	$\underline{65}$ (14.41\%)	203 (45.49\%)	240 (53.83\%)
Jaccard	81 (18.02\%)	230 (51.58\%)	253 (56.76\%)
Count	$\underline{245}$ (54.95\%)	263 (59.01\%)	258 (57.88\%)
Doc-count	$\underline{231}(51.80 \%)$	329 (73.87\%)	323 (72.52\%)

Table 4: Closed discovery results for $\mathrm{A}=\mathrm{PR}: 000011170$ (Nrf2), $\mathrm{B}=\mathrm{CHEBI}: 26523$ (ROS), C=MESH:D010190 (pancreatic cancer), query year 2006, $n=444$.

	Aggregation function		
Metric	\min	avg	\max
NPMI	$\underline{732}(69.69 \%)$	$824(78.46 \%)$	$877(83.51 \%)$
SCP	$\underline{614}(58.44 \%)$	$915(87.13 \%)$	$955(90.94 \%)$
χ^{2}	$\underline{771}(73.40 \%)$	$817(77.79 \%)$	$871(82.94 \%)$
t-test	$\underline{755}(71.88 \%)$	$786(74.83 \%)$	$873(83.13 \%)$
LLR	$\underline{766}(72.93 \%)$	$802(76.36 \%)$	$871(82.94 \%)$
Jaccard	$\underline{472}(44.90 \%)$	$813(77.41 \%)$	$935(89.04 \%)$
Count	$\underline{461}(43.85 \%)$	$734(69.88 \%)$	$737(70.16 \%)$
Doc-count	$\underline{\mathbf{4 0 6}}(38.61 \%)$	$\mathbf{5 4 9}(52.24 \%)$	$\mathbf{5 5 4}(52.72 \%)$

Table 5: Closed discovery results for $\mathrm{A}=\mathrm{PR}: 000006066$ (CXCL12), $\mathrm{B}=\mathrm{HOC}: 42$ (senescence), C=MESH:D013964 (thyroid cancer), query year 2012, $n=1049$.

		Accumulation function $f_{\mathrm{c}}\left(\right.$ Aggregation function $\left.f_{\mathrm{g}}\right)$				
Metric	sum (\min)	$\max (\min)$	$\operatorname{sum}(\mathrm{avg})$	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	$\max (\max)$
NPMI	$137498(99.98 \%)$	$18377(13.36 \%)$	$784(0.57 \%)$	$24071(17.50 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$7407(5.39 \%)$
SCP	$\underline{42}(0.03 \%)$	$925(0.67 \%)$	$336(0.24 \%)$	$1286(0.93 \%)$	$338(0.25 \%)$	$1221(0.89 \%)$
χ^{2}	$87183(63.40 \%)$	$2241(1.63 \%)$	$\underline{357}(0.26 \%)$	$1389(1.01 \%)$	$\underline{357}(0.26 \%)$	$1198(0.87 \%)$
t-test	$137514(99.99 \%)$	$56(0.04 \%)$	$137489(99.98 \%)$	$\mathbf{1 0}(0.01 \%)$	$\underline{2}(0.00 \%)$	$25(0.02 \%)$
LLR	$137468(99.96 \%)$	$169(0.12 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$434(0.31 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$441(0.32 \%)$
Jaccard	$\underline{\mathbf{1}}(0.00 \%)$	$70(0.05 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$1168(0.85 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$1394(1.01 \%)$
Count	$\underline{\mathbf{1}}(0.00 \%)$	$\mathbf{1 9}(0.01 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$22(0.01 \%)$	$2(0.00 \%)$	$23(0.02 \%)$
Doc-count	$\underline{\mathbf{1}}(0.00 \%)$	$60(0.04 \%)$	$2(0.00 \%)$	$19(0.01 \%)$	$2(0.00 \%)$	$\mathbf{1 9}(0.01 \%)$

Table 6: Open discovery results for $\mathrm{A}=\mathrm{PR}: 000001754$ (NF- $\kappa \mathrm{B}$), $\mathrm{C}=\mathrm{MESH}: \mathrm{D} 000236$ (Adenoma), query year 2011, $n=137522$.

Metric	Accumulation function f_{c} (Aggregation function f_{g})					
	$\operatorname{sum}(\mathrm{min})$	$\mathrm{x}(\mathrm{min})$	sum(avg)	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	$\max (\max)$
NPMI	10 (0.01\%)	7887 (6.25\%)	$\underline{7}$ (0.00\%)	4817 (3.82\%)	20 (0.01\%)	1400 (1.11\%)
SCP	$\underline{276}$ (0.22\%)	2773 (2.20\%)	400 (0.32\%)	411 (0.32\%)	399 (0.31\%)	408 (0.32\%)
χ^{2}	448 (0.35\%)	3843 (3.04\%)	$\underline{402}$ (0.32\%)	412 (0.33\%)	$\underline{402}$ (0.32\%)	409 (0.32\%)
t-test	118751 (94.11\%)	626 (0.50\%)	$\underline{19}$ (0.01\%)	1252 (0.99\%)	145 (0.11\%)	1375 (1.09\%)
LLR	$\underline{57}$ (0.04\%)	951 (0.75\%)	382 (0.30\%)	646 (0.51\%)	472 (0.37\%)	645 (0.51\%)
Jaccard	13 (0.01\%)	1991 (1.58\%)	67 (0.05\%)	259 (0.20\%)	93 (0.07\%)	258 (0.20\%)
Count	382 (0.30\%)	3285 (2.60\%)	829 (0.66\%)	3586 (2.84\%)	933 (0.74\%)	2393 (1.90\%)
Doc-count	$\underline{372}$ (0.29\%)	3262 (2.58\%)	942 (0.75\%)	3292 (2.61\%)	1088 (0.86\%)	2736 (2.17\%)

Table 7: Open discovery results for $\mathrm{A}=\mathrm{PR}: 000011331$ (NOTCH1), $\mathrm{C}=\mathrm{PR}: 000005308$ (C/EBP β), query year 2011, $n=126179$.

4 Results for Swanson's discoveries

Tables 1115 present the detailed open discovery results for the Swanson's discoveries test cases. As for the cancer discoveries evaluation above, we report the rank of the target concept among

Metric	Accumulation function f_{c} (Aggregation function f_{g})					
	$\operatorname{sum}(\min)$	$\max (\min)$	sum(avg)	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	$\max (\max)$
NPMI	$\underline{\mathbf{2 3}}$ (0.02\%)	4181 (3.52\%)	27 (0.02\%)	5897 (4.97\%)	149 (0.12\%)	2268 (1.91\%)
SCP	$\underline{532}(0.45 \%)$	6989 (5.89\%)	658 (0.55\%)	1176 (0.99\%)	661 (0.56\%)	727 (0.61\%)
χ^{2}	$\underline{547}$ (0.46\%)	4969 (4.18\%)	652 (0.55\%)	1159 (0.97\%)	656 (0.55\%)	1159 (0.97\%)
t-test	105625 (88.96\%)	1579 (1.33\%)	16 (0.01\%)	1152 (0.97\%)	289 (0.24\%)	2386 (2.01\%)
LLR	$\underline{212}$ (0.18\%)	1935 (1.63\%)	469 (0.39\%)	2907 (2.45\%)	537 (0.45\%)	6823 (5.75\%)
Jaccard	$\underline{135}$ (0.11\%)	1089 (0.92\%)	353 (0.30\%)	962 (0.81\%)	394 (0.33\%)	1122 (0.94\%)
Count	1435 (1.21\%)	5495 (4.63\%)	1124 (0.95\%)	3709 (3.12\%)	$\underline{1053}$ (0.89\%)	1860 (1.57\%)
Doc-count	1566 (1.32\%)	6235 (5.25\%)	1291 (1.09\%)	2815 (2.37\%)	$\underline{1232}$ (1.04\%)	7481 (6.30\%)

Table 8: Open discovery results for $\mathrm{A}=\mathrm{PR}: 000001138$ (IL-17), $\mathrm{C}=\mathrm{PR}: 000006736$ (MKP-1), query year 2010, $n=118735$.

Metric	sum(min)	Accumulation function f_{c} (Aggregation function f_{g})				$\max (\max)$
		$\max (\min)$	sum(avg)	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	
NPMI	98698 (99.75\%)	27373 (27.66\%)	121 (0.12\%)	17420 (17.61\%)	$\underline{\mathbf{3 6}}$ (0.03\%)	4992 (5.04\%)
SCP	$\underline{316}$ (0.32\%)	926 (0.93\%)	1034 (1.04\%)	3709 (3.75\%)	1039 (1.05\%)	3638 (3.68\%)
χ^{2}	98463 (99.51\%)	3582 (3.62\%)	1252 (1.26\%)	3889 (3.93\%)	$\underline{1233}$ (1.25\%)	3994 (4.04\%)
t-test	98747 (99.80\%)	$\underline{63}$ (0.06\%)	98406 (99.45\%)	325 (0.33\%)	69 (0.07\%)	176 (0.18\%)
LLR	98677 (99.73\%)	$\underline{187}$ (0.19\%)	344 (0.35\%)	666 (0.67\%)	319 (0.32\%)	640 (0.65\%)
Jaccard	268 (0.27\%)	$5 \overline{062}$ (5.11\%)	107 (0.11\%)	2219 (2.24\%)	$\underline{104}(0.10 \%)$	2451 (2.48\%)
Count	15 (0.01\%)	514 (0.52\%)	55 (0.06\%)	49 (0.05\%)	55 (0.06\%)	49 (0.05\%)
Doc-count	$\underline{23}$ (0.02\%)	414 (0.42\%)	56 (0.06\%)	52 (0.05\%)	57 (0.06\%)	52 (0.05\%)

Table 9: Open discovery results for A=PR:000011170 (Nrf2), C=MESH:D010190 (pancreatic cancer), query year 2006, $n=98945$.

Metric	Accumulation function f_{c} (Aggregation function f_{g})					
	sum(min)	$\max (\min)$	sum(avg)	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	$\max (\max)$
NPMI	132123 (99.71\%)	15476 (11.68\%)	612 (0.46\%)	4568 (3.45\%)	$\underline{95}$ (0.07\%)	1329 (1.00\%)
SCP	$\underline{58}$ (0.04\%)	179 (0.13\%)	341 (0.26\%)	460 (0.35\%)	343 (0.26\%)	533 (0.40\%)
χ^{2}	296 (0.22\%)	$\underline{223}$ (0.17\%)	354 (0.27\%)	757 (0.57\%)	359 (0.27\%)	588 (0.44\%)
t-test	132397 (99.92\%)	$\underline{4}$ (0.00\%)	132356 (99.89\%)	57 (0.04\%)	125 (0.09\%)	163 (0.12\%)
LLR	132161 (99.74\%)	$\underline{5}$ (0.00\%)	69 (0.05\%)	406 (0.31\%)	73 (0.05\%)	805 (0.61\%)
Jaccard	$\underline{29}$ (0.02\%)	497 (0.37\%)	78 (0.06\%)	155 (0.12\%)	89 (0.07\%)	705 (0.53\%)
Count	$\underline{4}(0.00 \%)$	1005 (0.76\%)	54 (0.04\%)	52 (0.04\%)	62 (0.05\%)	54 (0.04\%)
Doc-count	$\underline{10}$ (0.01\%)	738 (0.56\%)	72 (0.05\%)	68 (0.05\%)	74 (0.06\%)	68 (0.05\%)

Table 10: Open discovery results for A=PR:000006066 (CXCL12), C=MESH:D013964 (thyroid cancer), query year 2012, $n=132503$.
the results, the total number of results (n), and the relative rank of the target. As above, the best result in each row is underlined and the best result in each column in bold in all result tables.

		Accumulation function $f_{\mathrm{c}}\left(\right.$ Aggregation function $\left.f_{\mathrm{g}}\right)$				
Metric	$\operatorname{sum}(\mathrm{min})$	$\max (\mathrm{min})$	$\operatorname{sum}(\mathrm{avg})$	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	$\max (\max)$
NPMI	$37835(99.85 \%)$	$8869(23.41 \%)$	$790(2.08 \%)$	$9229(24.36 \%)$	$\underline{74}(0.20 \%)$	$1317(3.48 \%)$
SCP	$327(0.86 \%)$	$592(1.56 \%)$	$\underline{70}(0.18 \%)$	$82(0.22 \%)$	$71(0.19 \%)$	$82(0.22 \%)$
χ^{2}	$37827(99.83 \%)$	$7820(20.64 \%)$	$75(0.20 \%)$	$84(0.22 \%)$	$\underline{74}(0.20 \%)$	$84(0.22 \%)$
t-test	$37822(99.82 \%)$	$2517(6.64 \%)$	$37368(98.62 \%)$	$15(0.04 \%)$	$18(0.05 \%)$	$\underline{14}(0.04 \%)$
LLR	$37820(99.81 \%)$	$3404(8.98 \%)$	$\underline{\mathbf{9}}(0.02 \%)$	$\underline{\mathbf{9}}(0.02 \%)$	$\underline{\mathbf{9}}(0.02 \%)$	$\underline{\mathbf{9}}(0.02 \%)$
Jaccard	$51(0.13 \%)$	$1728(4.56 \%)$	$\underline{26}(0.07 \%)$	$66(0.17 \%)$	$\underline{26}(0.07 \%)$	$66(0.17 \%)$
Count	$\underline{16}(0.04 \%)$	$56(0.15 \%)$	$20(0.05 \%)$	$21(0.06 \%)$	$21(0.06 \%)$	$18(0.05 \%)$
Doc-count	$\underline{\mathbf{1 5}}(0.04 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$20(0.05 \%)$	$24(0.06 \%)$	$21(0.06 \%)$	$17(0.04 \%)$

Table 11: Open discovery results for $\mathrm{A}=\mathrm{MESH}: \mathrm{D} 008881$ (Migraine), C=MESH:D008274 (Magnesium), query year 1983, $n=37892$.

		Accumulation function $f_{\mathrm{c}}\left(\right.$ Aggregation function $\left.f_{\mathrm{g}}\right)$				
Metric	$\operatorname{sum}(\mathrm{min})$	$\max (\mathrm{min})$	$\operatorname{sum}(\operatorname{avg})$	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	$\max (\max)$
NPMI	$11(0.03 \%)$	$267(0.65 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$811(1.97 \%)$	$\mathbf{2}(0.00 \%)$	$514(1.25 \%)$
SCP	$\underline{23}(0.06 \%)$	$31(0.08 \%)$	$154(0.37 \%)$	$200(0.49 \%)$	$154(0.37 \%)$	$199(0.48 \%)$
χ^{2}	$\underline{9}(0.07 \%)$	$\underline{29}(0.07 \%)$	$156(0.38 \%)$	$200(0.49 \%)$	$155(0.38 \%)$	$200(0.49 \%)$
t-test	$40103(97.50 \%)$	$56(0.14 \%)$	$\underline{\mathbf{1}}(0.00 \%)$	$116(0.28 \%)$	$3(0.01 \%)$	$105(0.26 \%)$
LLR	$36(0.09 \%)$	$68(0.17 \%)$	$\underline{5}(0.01 \%)$	$\mathbf{4 5}(0.11 \%)$	$10(0.02 \%)$	$\mathbf{4 3}(0.10 \%)$
Jaccard	$\underline{\mathbf{1}}(0.00 \%)$	$\mathbf{2}(0.00 \%)$	$5(0.01 \%)$	$163(0.40 \%)$	$6(0.01 \%)$	$163(0.40 \%)$
Count	$\underline{\underline{3}}(0.02 \%)$	$43(0.10 \%)$	$33(0.08 \%)$	$318(0.77 \%)$	$38(0.09 \%)$	$261(0.63 \%)$
Doc-count	$\underline{3}(0.01 \%)$	$21(0.05 \%)$	$33(0.08 \%)$	$313(0.76 \%)$	$38(0.09 \%)$	$237(0.58 \%)$

Table 12: Open discovery results for $\mathrm{A}=\mathrm{PR}: 000009182$ (Somatomedin C), $\mathrm{C}=\mathrm{CHEBI}: 29016$ (Arginine), query year $1985, n=41131$.

Metric	sum(min)	Accumulation function f_{c} (Aggregation function f_{g})				$\max (\max)$
		$\max (\min)$	sum(avg)	$\max (\mathrm{avg})$	$\operatorname{sum}(\max)$	
NPMI	58865 (100.00\%)	12379 (21.03\%)	58864 (100.00\%)	17449 (29.64\%)	$\underline{174}$ (0.30\%)	7071 (12.01\%)
SCP	$\underline{18}(0.03 \%)$	28 (0.05\%)	52 (0.09\%)	250 (0.42\%)	52 (0.09\%)	250 (0.42\%)
χ^{2}	58865 (100.00\%)	987 (1.68\%)	54 (0.09\%)	263 (0.45\%)	$\underline{54}$ (0.09\%)	263 (0.45\%)
t-test	58865 (100.00\%)	51 (0.09\%)	58865 (100.00\%)	$\underline{1}(0.00 \%)$	5 (0.01\%)	$\underline{1}$ (0.00\%)
LLR	58865 (100.00\%)	101 (0.17\%)	$\underline{1}(0.00 \%)$	$\underline{1}(0.00 \%)$	$\underline{1}(0.00 \%)$	$\underline{1}$ (0.00\%)
Jaccard	6 (0.01\%)	461 (0.78\%)	$\underline{\underline{2}}$ (0.00\%)	237 (0.40\%)	$\underline{\underline{2}}$ (0.00\%)	240 (0.41\%)
Count	2 (0.00\%)	3 (0.01\%)	$\underline{1}(0.00 \%)$	$\underline{1}(0.00 \%)$	$\underline{1}(0.00 \%)$	$\underline{1}$ (0.00\%)
Doc-count	3 (0.01\%)	$\underline{1}(0.00 \%)$				

Table 13: Open discovery results for $\mathrm{A}=\mathrm{MESH}: \mathrm{D} 000544$ (Alzheimer's disease), $\mathrm{C}=\mathrm{MESH}: \mathrm{D} 004967$ (Estrogen), query year 1991, $n=58866$.

Metric	sum(min)	Accumulation function f_{c} (Aggregation function f_{g})				$\max ($ max $)$
NPMI	58857 (99.99\%)	8629 (14.66\%)	58840 (99.96\%)	9715 (16.50\%)	30 (0.05\%)	5545 (9.42\%)
SCP	124 (0.21\%)	427 (0.73\%)	405 (0.69\%)	1633 (2.77\%)	405 (0.69\%)	1631 (2.77\%)
χ^{2}	58857 (99.99\%)	13013 (22.11\%)	457 (0.78\%)	1646 (2.80\%)	$\underline{452}$ (0.77\%)	1644 (2.79\%)
t-test	58854 (99.99\%)	1808 (3.07\%)	58846 (99.97\%)	25666 (43.60\%)	$\underline{\underline{1}}$ (0.00\%)	23966 (40.72\%)
LLR	58854 (99.99\%)	3407 (5.79\%)	$\underline{20}$ (0.03\%)	76 (0.13\%)	$\underline{20}$ (0.03\%)	70 (0.12\%)
Jaccard	$\underline{6}$ (0.01\%)	1075 (1.83\%)	$\underline{6}$ (0.01\%)	994 (1.69\%)	9 (0.02\%)	993 (1.69\%)
Count	8 (0.01\%)	28 (0.05\%)	$\underline{6}$ (0.01\%)	29 (0.05\%)	$\underline{6}$ (0.01\%)	24072 (40.90\%)
Doc-count	7 (0.01\%)	31 (0.05\%)	$\underline{5}$ (0.01\%)	31 (0.05\%)	$\underline{5}$ (0.01\%)	24170 (41.06\%)

Table 14: Open discovery results for $\mathrm{A}=\mathrm{MESH}: \mathrm{D} 000544$ (Alzheimer's disease), $\mathrm{C}=\mathrm{MESH}: \mathrm{D} 007213$ (Indomethacin), query year 1991, $n=58862$.

Metric	sum(min)	Accumulation function f_{c} (Aggregation function f_{g})				max(max)
		$\max (\mathrm{min})$	sum(avg)	max(avg)	sum(max)	
NPMI	41837 (65.89\%)	33884 (53.37\%)	16714 (26.32\%)	29246 (46.06\%)	22122 (34.84\%)	38396 (60.47\%)
SCP	22002 (34.65\%)	37252 (58.67\%)	25093 (39.52\%)	12955 (20.40\%)	25192 (39.68\%)	$\underline{11340}$ (17.86\%)
χ^{2}	33790 (53.22\%)	30165 (47.51\%)	25171 (39.64\%)	21321 (33.58\%)	25863 (40.73\%)	$\underline{16825}$ (26.50\%)
t-test	35556 (56.00\%)	30949 (48.74\%)	31641 (49.83\%)	14148 (22.28\%)	19755 (31.11\%)	9695 (15.27\%)
LLR	31629 (49.82\%)	26828 (42.25\%)	16398 (25.83\%)	13184 (20.76\%)	21797 (34.33\%)	13332 (21.00\%)
Jaccard	15834 (24.94\%)	14880 (23.44\%)	21675 (34.14\%)	19067 (30.03\%)	22233 (35.02\%)	17932 (28.24\%)
Count	17387 (27.38\%)	14281 (22.49\%)	21150 (33.31\%)	10711 (16.87\%)	21260 (33.48\%)	$\underline{2470}$ (3.89\%)
Doc-count	17326 (27.29\%)	14301 (22.52\%)	21089 (33.22\%)	10630 (16.74\%)	21213 (33.41\%)	$\underline{\underline{2401}}$ (3.78\%)

Table 15: Open discovery results for $\mathrm{A}=\mathrm{MESH}: \mathrm{D} 012559$ (Schizophrenia), $\mathrm{C}=\mathrm{PR}: 000012942$ (Calcium Independent Phospholipase A_{2}), query year 1993, $n=63492$.

5 Manual analysis

This section details the task setting and results of the manual analysis.
Each case is defined by a query year and either an (A,C) term pair (closed discovery) or an A term (open discovery). In closed discovery, the annotators were provided with B terms and asked to decide for each is there a potential biologically meaningful connection between A and C via B. In open discovery, annotators were provided with C terms and asked to decide for each is there a potential biologically meaningful indirect connection between A and C.
The annotators were asked to consider each case in the context of its query year (i.e. reflecting the state of published knowledge at the time) and record their judgment for each candidate simply as "yes" or "no". For open discovery, annotators were additionally instructed to answer "no" for any known direct connections between the query term A and any candidate C.
The candidates and annotator judgments are shown in Tables 1620 for closed discovery and Tables 2125 for open discovery.

B ID	B name	judgment
PR:000025365	cytochrome c oxidase subunit 2	no
MESH:D003110	Colonic Neoplasms	no
PR:000003035	cellular tumor antigen p53	yes
PR:000013428	prostaglandin G/H synthase 2	yes
PR:000005121	G1/S-specific cyclin-D1	yes
PR:000002198	catenin beta-1	yes
MESH:D010190	Pancreatic Neoplasms	no
HOC:92	Growth promoting signals	no
HOC:9	Proliferative signaling	no
MESH:D009369	Neoplasms	no

Table 16: Closed discovery analysis for $\mathrm{A}=\mathrm{PR}: 000001754$ (NF- $\kappa \mathrm{B}$), $\mathrm{C}=\mathrm{MESH}: \mathrm{D} 000236$ (Adenoma), query year 2011.

B ID	B name	judgment
PR:000007106	endothelial PAS domain-containing protein 1	no
PR:000011152	neurogenic differentiation factor 1	no
PR:000001412	CD86 molecule	no
PR:000026269	survival motor neuron protein	no
PR:000003809	alpha-fetoprotein	yes
PR:000015058	solute carrier family 2, facilitated glucose transporter member 1	no
MESH:D006528	Carcinoma, Hepatocellular	no
PR:000006066	stromal cell-derived factor 1	yes
PR:000012332	histone acetyltransferase KAT2B	yes
PR:000001393	interleukin-6	yes

Table 17: Closed discovery analysis for $\mathrm{A}=\mathrm{PR}: 000011331$ (NOTCH1), $\mathrm{C}=\mathrm{PR}: 000005308$ (C/EBP β), query year 2011.

B ID	B name	judgment
MESH:C001899	triptolide	no
PR:000010413	macrophage migration inhibitory factor	no
PR:000002206	mitogen-activated protein kinase 8	yes
PR:000002121	C-C motif chemokine 13	no
PR:000005308	CCAAT/enhancer-binding protein beta	yes
PR:000005145	cyclin-dependent kinase 20	no
PR:000006063	growth-regulated alpha protein	yes
MESH:C093642	SB 203580	no
PR:000010902	mast cell protease 1	no
PR:000010488	stromelysin-1	no

Table 18: Closed discovery analysis for $\mathrm{A}=\mathrm{PR}: 000001138$ (IL-17), C=PR:000006736 (MKP-1), query year 2010.

B ID	B name	judgment
MESH:D064420	Drug-Related Side Effects and Adverse Reactions	no
PR:000017049	UDP-glucuronosyltransferase 1-10	no
MESH:D005978	Glutathione	yes
PR:000000103	mitogen-activated protein kinase 1	yes
PR:000001962	tumor necrosis factor receptor superfamily member 6	yes
MESH:D009393	Nephritis	no
PR:000007597	proto-oncogene c-Fos	yes
PR:000014413	protein S100-A6	yes
PR:000001970	vascular cell adhesion protein 1	yes
PR:000007498	fibroblast growth factor 7	no

Table 19: Closed discovery analysis for A=PR:000011170 (Nrf2), C=MESH:D010190 (pancreatic cancer), query year 2006.

B ID	B name	judgment
CHEBI:61432	phosphotungstic acid polymer	no
MESH:D006331	Heart Diseases	no
MESH:D015470	Leukemia, Myeloid, Acute	no
PR:000017445	protein Wnt-5a	yes
MESH:D003111	Colonic Polyps	no
MESH:C012589	trichostatin A	yes
PR:000001850	cathepsin K	yes
PR:000002193	apoptosis regulator BAX	yes
MESH:C471405	sorafenib	yes
MESH:C562463	Pancreatic Carcinoma	no

Table 20: Closed discovery analysis for $\mathrm{A}=\mathrm{PR}: 000006066$ (CXCL12), $\mathrm{C}=\mathrm{MESH}: \mathrm{D} 013964$ (thyroid cancer), query year 2012.

C ID	C name	judgment
MESH:D002869	Chromosome Aberrations	no
PR:000011387	neuropeptide Y	no
PR:000004900	complement C3	no
MESH:D019342	Acetic Acid	no
MESH:D002331	Carnitine	no
CHEBI:16027	adenosine 5'-monophosphate	no
PR:000001843	Thy-1 membrane glycoprotein	yes
MESH:D009503	Neutropenia	no
NCBITaxon:3847	Glycine max	no
MESH:D013921	Thrombocytopenia	yes

Table 21: Open discovery analysis for $\mathrm{A}=\mathrm{PR}: 000001754$ (NF- $\kappa \mathrm{B}$), query year 2011.

C ID	C name	judgment
PR:0000002035	beta-type platelet-derived growth factor receptor	no
PR:000002317	caspase-8	yes
PR:000000364	smad2	no
MESH:C113580	U 0126	no
PR:000000176	GTP-binding protein RhoA	no
MESH:D053632	X-Linked Combined Immunodeficiency Diseases	no
PR:000010125	dual specificity mitogen-activated protein kinase kinase 1	yes
PR:000008902	interferon alpha-inducible protein 27	yes
PR:000006937	early growth response protein 1	no
MESH:D020151	Protein C Deficiency	no

Table 22: Open discovery analysis for $\mathrm{A}=\mathrm{PR}: 000011331$ (NOTCH1), query year 2011.

C ID	C name	judgment
PR:000002309	caspase-1	no
PR:000012289	poly [ADP-ribose] polymerase 1	yes
MESH:D000241	Adenosine	no
NCBITaxon:9615	Canis lupus familiaris	no
PR:000009054	insulin	no
PR:000001465	high affinity immunoglobulin gamma Fc receptor I	yes
CHEBI:35366	fatty acid	no
PR:000024839	heat shock 70 kDa protein 1B	yes
PR:000002998	tyrosine-protein kinase Lck	yes
CHEBI:52450	2-O-acetyl-1-O-octadecyl-sn-glycero-3-phosphocholine	no

Table 23: Open discovery analysis for $\mathrm{A}=\mathrm{PR}: 000001138$ (IL-17), query year 2010.

C ID	C name	judgment
PR:0000002112	vascular endothelial growth factor receptor 2	yes
MESH:D008545	Melanoma	yes
MESH:D000244	Adenosine Diphosphate	no
PR:000007840	glyceraldehyde-3-phosphate dehydrogenase	yes
MESH:C038491	allyl sulfide	no
PR:000007640	forkhead box protein O1	yes
MESH:D011064	Poly Adenosine Diphosphate Ribose	no
PR:000000182	TGF-beta 1	no
MESH:D017239	Paclitaxel	yes
PR:000006130	cytochrome P450 3A4	no

Table 24: Open discovery analysis for $A=P R: 000011170$ (Nrf2), query year 2006.

C ID	C name	judgment
MESH:D012175	Retinoblastoma	no
PR:000001945	transferrin receptor protein 1	no
PR:000001153	Toll-like receptor 2	yes
PR:000003414	heat shock 70 kDa protein 4	no
PR:000016285	protransforming growth factor alpha	yes
MESH:D018235	Smooth Muscle Tumor	no
CHEBI:4806	(-)-epigallocatechin 3-gallate	no
PR:000001905	platelet glycoprotein 4	yes
PR:000001083	CD2 molecule	no
MESH:C059514	resveratrol	no

Table 25: Open discovery analysis for $\mathrm{A}=\mathrm{PR}: 000006066$ (CXCL12), query year 2012.

[^0]: ${ }^{1}$ While fully sorting the returned (node, score) sequences requires $O(n \log n)$ time, the top k highest-scoring nodes can be determined in linear time, thus not impacting the overall complexity in either case.

