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1 Loss functions

In Section 2.1 of the main manuscript, we claim that ranking parameters
using p-values is roughly equivalent to choosing a rank vector, R, to optimize

E(L((θ1, ..., θN), R)|X) = E(
∑
i≤N

RiI{θi = 0}|X) (1.1)

The equivalence is exact when there is a monotonic increasing relationship
between the p-value for experiment i and the posterior probability: P(θi =
0|X). For the examples described in this manuscript, both the p-value and
posterior probability are functions of the test statistic Z. In this case p-values
will exactly optimize the following loss function provided that P(θi = 0|X) is
decreasing in the test statistic |Z|. While this is only guaranteed to be true
for certain classes of priors (for example any normal prior with mean 0), it
should be approximately true for all reasonable priors. The assertion that
(1) is minimized by choosing ranks according to the posterior probabilities
P(θi 6= 0|X) can be deduced by applying the following result to the numbers
ai = −P(θi 6= 0|X).

Claim. Consider a permutation, π, of {1, ..., n} to be “consistent with the
ranks of a1, . . . , an” if, for all i and j, π(i) < π(j) =⇒ ai ≤ aj. Then, given
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numbers a1, ..., an, the permutations π of {1, ..., n} that maximize the sum∑
π(i)ai are those that are consistent with the ranks of a1, . . . , an.

Proof. Let π be any permutation not consistent with the ranks of a. We will
show that we can find a permutation π′ such that ∑

π
′(i)ai >

∑
π(i)ai. By

our assumption about π, there exist j and k such that π(j) < π(k) and
aj > ak. Define π′ by:

π
′(j) = π(k)
π

′(k) = π(j)
π

′(i) = π(i) for i /∈ {j, k}.

Then,

∑
i π

′(i)ai −
∑
i π(i)ai = ∑

i∈{j,k}(π
′(i)− π(i))ai

= (π′(j)− π(j))aj + (π′(j)− π(k))ak
= (π(k)− π(j))(aj − ak) > 0.

Thus any permutation, π, not consistent with the ranks of a can be
improved, so that all optimal permutations must be consistent with the ranks
of a.

Conversely, to see that all permutations that are consistent with the ranks
of a are optimal, suppose two permutations, π1 and π2are both consistent
with the ranks of a. We have for all i and j

π1(i) < π1(j) =⇒ ai ≤ aj and π2(i) < π2(j) =⇒ ai ≤ aj

Let o1 = π−1
1 and o2 = π−1

2 be the corresponding orderings. Then from
the display above it follows that for all i and j,

i < j =⇒ ao1(i) ≤ ao1(j) and i < j =⇒ ao2(i) ≤ ao2(j),

that is, ao1(1) ≤ ao1(2) ≤ ... ≤ ao1(n) and ao2(1) ≤ ao2(2) ≤ .... ≤ ao2(n). So
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we see that ao1(i) = ao2(i) for all i, from which we get

∑
i

π1(i)ai =
∑
j

jao1(j) =
∑
j

jao2(j) =
∑
i

π2(i)ai.

2 Simulations

2.1 RNA Sequencing

Here we give more background regarding the calculation of Sj , mi and di, the 
parameters represented in the negative binomial distribution from equation 
(10) of the main manuscript, and subsequent simulation of RNA-
sequence data. For convenience, equation (1) is represented again below:

Gij ∼
NB(Sjmi, di) j ∈ group 1
NB(Sj2θimi, di) j ∈ group 2

where as detailed in the main manuscript, Gij represents the simulated
negative binomial count for individual j, gene and the fixed parameters mi,
Sj, and di, representing scaled mean counts, relative library sizes and disper-
sions for gene i, library individual j.

• First, the Turing-Good procedure, [5] as implemented in [4] was used to
estimate the proportion of DNA fragments originating from each gene
in the Bottomly mouse expression data set [1], based on the matrix of
RNA-Sequence counts. These proportions were produced separately for
each of the 21 libraries and then averaged over the 21 libraries. We refer
to the resulting estimated proportions as m1, ....,mN were N=36,536.
Note, however, that only 13,932 of these genes correspond to non-zero
estimated proportions.
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• Depending on the value for the percentage of differently expressed
genes, pDE, (either 5%, 10% or 20%), independent binary indicators for
differential expression status were simulated for each of the N genes,
based on the appropriate bernoulli distribution.

• Log (base 2) fold change values, θi, were then simulated for each gene

– According to a N(0, σFC) distribution, where σFC was set at either
0.5 or 1 when the gene was tagged as differentially expressed

– Set at 0 when the gene was not differentially expressed.

• The total library size, Sj, for individual j was randomly selected from
the integers (n1, ...., n21) with nl, l = 1, 2, ..., 21 representing the aggre-
gate sum total of reads from the lth Bottomly sample.

• The mean count for gene i individual j was set at
Sjmi j = 1, ..., n
Sj2θimi j = n+ 1, ..., 2n.

.

• The R package, Edge-R, [7] was used to estimate dispersion parameters:
d∗i for each gene from the Bottomly mouse expression dataset. di was
then simulated using: di = d∗i e

Zi where Zi ∼ N(0, 1).

• Finally, the simulated countGij is simulated from the negative binomial
with mean Sj2θimi and dispersion parameter d∗i .

• To reduce the number of rows in the final dataset, we excluded non-
informative genes, i, where ∑2n

i=1 Gij < 10 in the final dataset.

Simulation results:

More extensive results to the RNA Sequence simulations are given below. 
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Figure 1: RNASeq simulations. Ranking performance measured via percent-
age overlap between the estimated and true ranks of the top K experiments.
Simulations assumed mean counts estimated from [1], and simulated fold
change from a log-normal distribution; Estimated fold changes and standard
errors were calculated with DEseq2. Each boxplot represents 8 simulations.
B1: Bayesian ranking as described in manscript, p: p-value using DEseq2,
M: non-negative matrix factorization, F: FCROS, B2: Empirical Bayes using
Smoothing by Roughening

(a) pDE=0.05 (b) pDE=0.2
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Figure 2: RNASeq simulations. Ranking performance measured via the per-
centile of set of parameters ranked within the top K in a particular simulation,
within the list of true absolute value parameters. Simulations assumed mean
counts estimated from [1], and simulated fold change from a log-normal dis-
tribution; Estimated fold changes and standard errors were calculated with
DEseq2. Each boxplot represents 8 simulations. B1: Bayesian ranking as
described in manscript, p: p-value using DEseq2, M: non-negative matrix
factorization, F: FCROS, B2: Empirical Bayes using Smoothing by Rough-
ening

(a) pDE=0.05 (b) pDE=0.2
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Figure 3: RNASeq simulations. Ranking performance measured via the 
diffrence between assigned ranks and true ranks. Simulations assumed mean 
counts estimated from [1], and simulated fold change from a log-normal dis-
tribution; Estimated fold changes and standard errors were calculated with 
DEseq2. Each line represents a loess smooth of 8 simulations. EB: Bayesian 
ranking as described in manscript, p: p-value using DEseq2, DNMF: non-
negative matrix factorization, AF: fold change ranking based on FCROS

(a) pDE=0.05 (b) pDE=0.2
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Additional Simulations

Additional RNASeq simulations were carried out using the simulation process
described above. The purpose of these additional simulations is three-fold:

1. To compare the default Empirical Bayes squared error loss ranking with
other alternative loss functions and other possible ranking methods

2. To investigate whether pre-selection (that is only ranking the experi-
ments that were significant at 5% using a Benjamini Hochberg FDR
threshold) helped or hinders ranking.

3. To investigate the effect of Monte Carlo error in estimating the posterior
distributions of ranks on Ranking performance.

In more detail, Jewett et. al [9] considered a number of possible loss func-
tions for ranking, extending the default squared error rank loss. Here we
investigate the performance of choosing the rank vector that minimizes pos-
terior ’position loss’ (here the penalty for assigning rank i to position j as
(θj − θ(i))2) in terms of the overlap beween the top K assigned ranks and
top K true ranks. The Bayesian computation of this loss is difficult for large
parameter sets, as it requires estimating: E(θj − θ(i)|X)2 for each combina-
tion of experiments i, j ≤ N , that is N(N − 1)/2 separate calcualtions .
Our strategy to avoid this is to fit the Empirical Bayes prior using all the
data-points, but only rank those that were significant at a 5% false discovery
rate threshold. This also allows us to compare the ranking performance of
the hybrid ranking scheme, that involves a pre-ranking selection step and
only ranks the parameters that are selected to ranking all parameters. Note
that all of the data is integrated when fitting the Empircal Bayes prior, and
the overlaps are reported with top K parameters from the full parameter list
(not from the sublist that meets the pre-selection threshold). We also com-
pare our approach against the ranking achieved using the package ’R-values’
[8] Ranking according to R-values is interesting as informally it attempts
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to maximize the overlap between the true and reported top units over all
possible list sizes. We had difficulty using the R-values package with our
MCMC output, so we ran instead on default settings (which fits a normal
prior distribution for effect sizes, with estimated hyperparameters). Again,
only parameters that are significant at 5% FDR are ranked. Finally, we
compare our Bayesian ranking algorithm to posterior expected fold changes
produced via EB-Seq [10]. Results indicate comparable ranking performance
for squared error loss and the Jewett et. al. position loss optimized according
to our fitted Empirical Bayes ranking model; both of which are superior to
using r-values on default settings (which fits an alternative prior). To investi-
gate the effect of Monte-Carlo error, we give results where posterior ranks are
calculated using 1, 10, 100 and 1,000 simulations. Figures 4 shows that the
effect of Monte Carlo error is practically negligible, even for 10 simulations
from the posterior) when effect sizes are reasonably large (σ = 0.5, 1 or 2). In
contrast 1,000 Monte Carlo simulations from the posterior are necessary to
generate accurate ranking when the effect sizes are smaller (see σ = .3, note
that not enough SNPs were FDR significant to compare Monte Carlo error
at σ = 0.2). Note that more Monte Carlo simulations might be necessary to
ensure accurate ranking if pre-selection is not used. Interestingly, comparing
Figure 4(d) with Figure 1(c) (both with n=10), pre-selection (Figure 4(d))
seems to help slightly with identifying the top ranks, in addition to reducing
the effect of Monte Carlo error in estimating posterior ranks when effect sizes
are weak, but has a negative effect on selecting the top ranks when effect sizes
are strong.
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Figure 4: RNASeq simulations. Simulations, similar to Figure 2, except
that only experiments that had statistically significant θ̂ at a 5% FDR are
ranked. Ranking performance measured via percentage overlap between the
estimated and true ranks of the top K experiments. Simulations assumed
mean counts estimated from [1], and simulated fold change from a log-normal
distribution; Estimated fold changes and standard errors were calculated with
DEseq2. Each boxplot represents 8 simulations of 10 case RNA-Seq samples
and 10-control RNA-Seq samples. The number of Monte Carlo simulations
from the posterior for the Bayesian ranking algorithm is varied over the
4 boxplots. B1: Bayesian ranking as described in manscript, J: Bayesian
ranking as described in manuscript, except that Jewett[9] position squared
error loss used in ranking, R: r-values on default settings [8], EBS: ranking
according to EBseq estimated posterior fold change [10]
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(c) nsim=100 (d) nsim=1,000
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Figure 5: RNASeq simulations. Simulations, similar to Figure 2, except
that only experiments that had statistically significant θ̂ at a 5% FDR are
ranked. Ranking performance measured via percentage overlap between the
estimated and true ranks of the top K experiments. Simulations assumed
mean counts estimated from [1], and simulated fold change from a log-normal
distribution; Estimated fold changes and standard errors were calculated with
DEseq2. Each boxplot represents 8 simulations. The number of Monte Carlo
simulations from the posterior for the Bayesian ranking algorithm is varied
over the 4 boxplots. Here the true fold changes are on average smaller than
the simulations in Figure 4; implying that the Monte Carlo error will be
higher. B1: Bayesian ranking as described in manscript, J: Bayesian ranking
as described in manuscript, except that Jewett position squared error loss
used in ranking [9], R: r-values on default settings [8], EBS: ranking according
to EBseq estimated posterior fold change [10]
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Figure 6: RNA-seq results on real data (rankings evaluated using Limma). B1: 
Bayesian ranking as described in manscript, p: p-value using Limma, M: non-
negative matrix factorization, F: FCROS, B2: Empirical Bayes using Smoothing 
by Roughening)
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2.2 Genome Wide Association Studies

As described in the main manuscript, summary Genome Wide Associa-
tion results were downloaded for 4 study accession numbers, representing
Crohn’s disease (pha002847), Schizophrenia (pha002857), Multiple Sclerois
(pha002861) and Parkinson’s Disease (pha002868) , from the dbGAP database.
The steps in the simulation of a dataset, for a particular simulation set up
(involving a particular disease and either n cases and controls) were as fol-
lows:

• The simulations described in the main manuscript assumed underlying
true odds ratios for each SNP calculated by adjusting the raw odds
ratios for the ’Winner’s Curse’ phenonemon, using an Empirical Bayes
method described in [3]. The results (on the log-scale) are shown in
Figure 2.1 below. Note that the blue distribution represents the log
OR-distribution that was assumed for the simulations, whereas the red
distribution (including individual raw log odds ratios marked by aster-
ixes) shows the distribution of the raw log odds ratios before applying
the method.

• Marginal SNP frequencies for each SNP included in the 4 files were
found by matching rsid with a database of SNP frequencies for the
hg18 genome, found from the UCSC Genome Browser.

• Next, SNP minor allele frequencies in cases and controls were estimated
by using Bayes theorem, assuming an additve logistic model relating
probability of disease to the number of copies of the SNP and a disease
prevalence of 0.01. The log-ORs, representing the β- coefficient in
these regressions, were calculated according to the shrinkage procedure
above.

• Finally, sampled log-odds ratios and standard errors were indepen-
dently calculated for each SNP from these minor allele frequencies,
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Figure 7: Shrunken effect sizes used for simulation
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Figure 8: Schizophrenia
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Figure 9: Crohn's Disease
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Figure 10: Parkinson's Disease
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Figure 11: MS
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Figure 12: n=2000: weak signal, Bayesian ranking only on 5% FDR 
significant SNPs
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Figure 13: n=10,000: Bayesian ranking only on 5% FDR significant SNPs
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3 Settings for EM algorithm

As discussed in the main manuscript, we have adapted the EM algorithm de-
scribed in [6], to estimate the parameters: m = (m0, ...,mJ),s = (s0, ..., sJ)
and π = (π0, .., πJ). We investigated the influence of a number of tuning
parameters for the algorithm in a series of simulations. These tuning param-
eters were: the maximum number of non-null clusters that could be selected,
Jmax, which has a default of 4 in our package; a penalty term, p, so that the
mixing probabilities on step t of the algorithm, πt0, ..., πtJ are adjusted to:

πt,adjust0 = 1
N + (N/p){

∑
i≤N

P (t)(θi = 0|Zi) +N/p} = 1
1 + (1/p)(πt0 + 1/p)

πt,adjustj = 1
1 + (1/p)π

t
j;

(this is equivalent to adding a prior pseudo-count of N/p to the standard EM 
estimate of the null probability, then rescaling -[6] uses p = 5 as a default 
in estimating FDR); finally, the effect of forcing the 2nd mixing component to 
have a mean of 0 and standard deviation of 10. The simulations investigated 
the ranking quality in terms of the overlap between the indexes for the true 
top K effect sizes, θi , and the indexes according to the top K estimated for K 
∈ {10, 100}, when 10,000 standardized effect sizes: µ = θ /SE(θˆ) were 
simulated under the following mixture normal distributions:

µ ∼ π0δ{0}+ (1−π0)
4 N(−3, 1) + (1−π0)

4 N(−1, 1) + (1−π0)
4 N(1, 1) + (1−π0)

4 N(3, 1),
or: µ ∼ π0δ{0}+ (1− π0)N(3, 1),

depending on whether the number of components, nc, was 5 or 2. Other dis-
tributions were also investigated, with larger effect sizes and differing num-
bers of mixing components, but the results are excluded here for brevity.
Standard errrors were simulated according to an exponential distribution
with rate 1. A few observations regarding these simulations, the results of
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which are summarized in supplementary tables 1 and 2 below, are as fol-
lows. First, fixing the mean and variance of the second cluster (results not
shown) didn’t have a great impact on the estimated overlap for the mixture-
normal simulation scenarios investigated, provided flexibility was provided
to estimate at least 5 clusters (Jmax = 4); the results presented correspond
to estimated rankings where the second component was allowed to freely
vary. However, as mentioned in the main manuscript, a large variance com-
ponent was helpful to detect rare strong associations in the context of GWAS
data with sparse signals (as simulated in 2.3), so is included as a default in
the algorithm. While a substantial Dirichlet penalization (p = 5) did im-
prove estimation of the null mixing probability, using a much weaker penalty
(p = 5000) as shown in Table 1 and 2, or potentially removing the penalty
altogether, seem to give more favorable results in Bayesian ranking. The orig-
inal motivation for the Dirichlet penalty in [6] was actually to allow shrinkage
to an empirical null distribution, useful when the test statistics: θ̂/SE(θ̂)
may not be N(0, 1) under the null hypothesis, as well as to increase stabil-
ity of prior estimation in the context of FDR estimation. In the context of
Bayesian ranking, these arguments are not as compelling since we are not
fitting an empirical null distribution (the first mixing component is always
N(0, 1)), and are interested in ranking rather than effect estimation. The
effect of Jmax corresponds to the extra benefit we achieve by ranking accord-
ing to the mixture algorithm in [6] compared to estimating with a spike and
slab prior). Interestingly, the overlap between the true ranking and estimated
ranks seem to be reasonably robust, even when a spike and slab prior is used,
indicating a rather limited benefit of fitting more complicated mixture nor-
mal distributions. Different combinations of the tuning parameters (Jmax,p)
were compared by looking at the maximum regret (the deviation from the
best overlap over all tuning parameters and the actual overlap), maximized
over all possible simulation parameters. (Jmax = 4, p = 5000) was the tuning
parameter set minimizing this maximum regret.
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Table 1: Effect of tuning parameters on average %overlap in top 10 SNPs
(Higher is better)

Simulation parameters
nc 2 5 max-regret %

Tuning parameters π0 0.8 0.98 0.8 0.98
Jmax p
1 5 62(1.3) 45(1.5) 55(1.4) 32(1.4) 5
4 5 60(1.3) 45(1.7) 55(1.3) 33(1.3) 4
1 5000 60(1.2) 45(1.4) 55(1.5) 35(1.4) 3
4 5000 60(1.2) 43(1.3) 55(1.5) 37(1.4) 2

Table 2: Effect of tuning parameters on average % overlap in top 100 SNPs
(Higher is better)

Simulation parameters
nc 2 5 max-regret %

Tuning parameters π0 0.8 0.98 0.8 0.98
Jmax p
1 5 65(0.4) 33(0.5) 58(0.4) 27(0.4) 10
4 5 66(0.3) 37(0.5) 60(0.4) 33(0.4) 4
1 5000 66(0.4) 40(0.4) 60(0.4) 37(0.4) 1
4 5000 67(0.4) 41(0.4) 60(0.4) 37(0.5) 0
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