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1 A Change-Point Model

In this section, we describe a more general change-point model that includes the model
presented in Section 2.1 of the paper. As our sequential algorithm is based on the test
procedure of Briane et al. (2018), we consider a similar diffusion process as in Briane et al.
(2018) adapted for the change-point problem :

dXt = µ(Xt, t)dt+ σ(t)dB
h(t)
t , t ∈ [t0, tn−1], (1.1)

where Bh(t) denotes a d−dimensional fractional Brownian motion of Hurst parameter h(t);
the unknown parameters of the model are the Hurst parameter function h : R+ → (0, 1),
the diffusion coefficient function σ : R+ → (0,∞) and the drift term µ : Rd × R+ → Rd.
Compared to the model presented in Section 2.1, we add the Hurst parameter h(t) : when
h 6= 1/2 the SDE (1.1) is driven by fractional Brownian motion Bh(t) which has correlated
increments. Also, in model (1.1), we assume that the diffusion coefficient σ can vary over
time while this parameter is constant in the model of the paper.
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As before we suppose that the parameters defining the diffusion (1.1) are piecewise
constant over time. Then, we assume that there exists a sequence of N change-points on
[t0, tn−1], namely t0 = τ0 < τ1 < . . . τN < τN+1 = tn−1 such that,

µ(x, t) = µj(x), h(t) = hj, σ(t) = σj for t ∈ [τj, τj+1). (1.2)

The unknown parameters of the model are the vector of change-points (τj)j=1...N , the
number of change-points N, and the parameters (hj, µj, σj) of the diffusion process re-
stricted on subinterval [τj, τj+1). The drift term µj is assumed to satisfy the usual Lips-
chitz and linear growth conditions in order that the SDE (1.1) admits a strong solution
on [τj, τj+1) (see (Nualart & Ouknine 2002) for 0 < h ≤ 1/2 and (Mishura 2008) for
1/2 < h < 1). We extend by continuity the solution on each subinterval to get a solution
on [t0, tn−1].

Again we assume that for each τj there exists 0 ≤ j? ≤ n such that τj = tj∗ (the change
of motion occurs precisely at a sampling time). In analogy with the model of the paper, we
assume that (hj, µj) and (hj+1, µj+1) are associated to different types of diffusion (Brownian
motion, subdiffusion or superdiffusion). We note that the parameter σj does not influence
the type of diffusion.

Finally we have to mention that the test procedure of Briane et al. (2018) has also
been validated in the case of continuous time random walk (CTRW) characterized by a
subdiffusive behaviour. CTRW are not defined through stochastic differential equations.
Then, our sequential algorithm can deal with an even greater variety of change-point models
than the two presented here (for instance transition of motion including CTRW).

1.1 Choice of the cut-off value (γ1, γ2) in Procedure 1 Ideally, γ1 and γ2 are
choosen such that we control the type I error at level 0 < α < 1; in other words such
that we control the probability to detect falsely a change-point when the trajectory is fully
Brownian. Then, controlling the type I error at level 0 < α < 1 is equivalent to have :

PH0

(
∃i ∈ {k, . . . , n?},

i+c−1∑
j=i

Qj ≥ pc

)
≤ α, (1.3)

where n? = n− k− c+ 1 and PH0 is the probability under H0, that is under the hypothesis
that the trajectory is fully Brownian. In fact, the left hand side of Equation (1.3) is the
probability to build one cluster of minimal size c under H0, when clusters are defined thanks
to Eq. (3.3) (see step 2 of Procedure 1). Then, controlling the probability in (1.3) at level
α under H0 is equivalent to control the probability to detect falsely a change-point under
H0 at level α (definition of the type I error).
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Proposition 1. Let define di = min(Bi, Ai) and Di = max(Bi, Ai) where Ai and Bi are
the test statistics (3.1), for i = k, . . . , n?. We define γ?1 and γ?2 as:

PH0

(
min

i=k,...,n?
di(dpc/2e) < γ?1

)
=
α

2
,

PH0

(
max

i=k,...,n?
Di(c−dpc/2e) > γ?2

)
=
α

2
,

(1.4)

where,

• di(dpc/2e) is the dpc/2e smallest element of (di, . . . , di+c−1),

• Di(c−dpc/2e) the c−dpc/2e smallest element of (Di, . . . , Di+c−1) (equivalently the dpc/2e
greatest element).

In other words, γ?1 is the quantile of order α/2 of the random variable mini=k,...,n? di(dpc/2e)
and γ?2 is the quantile of order 1−α/2 of the random variable maxi=k,...,n? Di(c−dpc/2e). With
the choice of cut-off values γ?1 and γ?2 Procedure 1 with parameters (k, c, p) controls the type
I error (1.3) at level α.

Proposition 1 provides a choice for γ1 and γ2 in order to control the level of the pro-
cedure. These thresholds γ?1 and γ?2 can be approximated by Monte Carlo estimate, see
Algorithm 1. A proof of Proposition 1 is available in Section 1.2. Nethertheless this choice
is too conservative as it is shown in Table 1. This fact is not surprising since the bound in
Equation (1.11) is loose in the proof of Proposition 1.

We investigate another choice by Monte Carlo experiments, and we recommend to use
the heuristic cut-off values (γ̃1, γ̃2) defined as follow :

PH0

(
min

i=k,...,n?
di(dpce) < γ̃1

)
=
α

2
,

PH0

(
max

i=k,...,n?
Di(c−dpce) > γ̃2

)
=
α

2
.

(1.5)

Notice that we replace pc/2 in Equation (1.4) by pc. Then, it is straightforward to show that
γ?1 ≤ γ̃1 and γ?2 ≥ γ̃2. As a consequence, Procedure 1 with (γ̃1, γ̃2) is less conservative than
with (γ?1 , γ

?
2). In other words, Procedure 1 is more sensitive to the presence of subdiffusion

or superdiffusion with (γ̃1, γ̃2) than with (γ?1 , γ
?
2). Moreover Table 1 illustrates that the

Monte Carlo estimates of the type I error rate is very closed to the expected value α = 5%
whatever the values of n and k. As (γ̃1, γ̃2) are both controlling the type I error rate and
are more sensitive to detect subdiffusion and superdiffusion, they are naturally preferred to
(γ?1γ

?
2). Table 2 gives Monte Carlo approximations of (γ?1 , γ

?
2) and (γ̃1, γ̃2) as an illustration.
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Table 1: Monte Carlo estimates of the type I error rates (in percentage) of Procedure 1 for
different choices of the cut-off values (γ1, γ2) when α = 5% and (c, p) = (k/2, 0.75). The
number of Monte Carlo replications is 100 001 to get a standard deviation around ±0.14%
of the Monte Carlo estimates.

Probability of Type I error
n k with (γ?1 , γ

?
2) with (γ̃1, γ̃2)

150 20 0.60 5.21
150 30 0.65 4.81
150 40 0.94 4.56
300 20 0.47 5.04
300 30 0.59 4.89
300 40 0.82 4.83

Table 2: Cut-off values (γ1, γ2) of Procedure 1 at level α = 5% defined in Equation (2.2) and
(2.3) according the trajectory sizes n and window size k for dimension d = 2. We use Monte
Carlo experiments over 10 001 replications and the default parameters (c, p) = (k/2, 0.75).

n k γ?1 γ?2 γ̃1 γ̃2
150 20 0.61 3.38 0.74 3.12
150 30 0.65 3.35 0.79 3.09
150 40 0.68 3.28 0.81 3.05
300 20 0.58 3.55 0.71 3.29
300 30 0.62 3.55 0.74 3.28
300 40 0.64 3.52 0.75 3.27

Remark 1.1. We note that the cut-off values defined by (1.4) or (1.5) potentially depend
on the diffusion coefficient σ (and on the step of time ∆). In fact, the null hypothesis
H0 depends on parameter σ (and ∆). However, the test statistics (3.1) do not depend on
(σ,∆) under H0. Consequently, the cut-off values defined by (1.4) or (1.5) neither depend
on (σ,∆).

1.2 Proof of Proposition 1

Proof. We suppose that the trajectory Xn is generated under the null hypothesis (3.2) that
is the trajectory is fully Brownian. For simplicity, we note P the probability under H0

(noted PH0 previously).We want to show that under H0, Procedure 1 with thresholds γ1
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and γ2 defined in Proposition 1, controls the probability of the type I error at level α:

P

(
∃i ∈ {k, . . . , n?},

i+c−1∑
j=i

Qj ≥ pc

)
≤ α (1.6)

where n? = n− k − c+ 1.
We express the event {Qi = 1} as:

{Qi = 1} = {γ1 ≤ Bi ≤ γ2, Ai < γ1} ∪ {γ1 ≤ Bi ≤ γ2, Ai > γ2}
∪ {Bi < γ1, γ1 ≤ Ai ≤ γ2} ∪ {Bi > γ2, γ1 ≤ Ai ≤ γ2}
∪ {Bi < γ1, Ai > γ2} ∪ {Bi > γ2, Ai < γ1}

(1.7)

Then we deduce the following :

{Qi = 1} ⊂ {Bi < γ1} ∪ {Ai < γ1} ∪ {Bi > γ2} ∪ {Ai > γ2}
= {min(Bi, Ai) < γ1} ∪ {max(Bi, Ai) > γ2}

(1.8)

In the sequel, we note di = min(Bi, Ai) and Di = max(Bi, Ai). Then we have:

P (Qi = 1) ≤ P ({di < γ1} ∪ {Di > γ2}), i = k, . . . , n?. (1.9)

This implies the following:

P
(i+c−1∑

j=i

Qj ≥ pc
)
≤ P

(i+c−1∑
j=i

1({dj < γ1} ∪ {Dj > γ2}) ≥ pc
)

(1.10)

Now, we can bound the right-hand side of Equation (1.10):

P
(i+c−1∑

j=i

1({dj < γ1} ∪ {Dj > γ2}) ≥ pc
)

≤P
(i+c−1∑

j=i

1({dj < γ1}) + 1({Dj > γ2}) ≥ pc
)

≤P
(i+c−1∑

j=i

1({dj < γ1}) ≥ pc/2
)

+ P
(i+c−1∑

j=i

1({Dj > γ2}) ≥ pc/2
)

(1.11)

Then, we can express the right-hand side of Equation (1.11) as:

P
(i+c−1∑

j=i

1({dj < γ1}) ≥ pc/2
)

+ P
(i+c−1∑

j=i

1({Dj > γ2}) ≥ pc/2
)

=P (di(dpc/2e) < γ1) + P (Di(c−dpc/2e) > γ2)

(1.12)
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Finally we have:

P (∃i ∈ {k, . . . , n?},
i+c−1∑
j=i

Qj ≥ pc)

=P
( n?⋃
i=k

{i+c−1∑
j=i

Qj ≥ pc
})

≤P
( n?⋃
i=k

{i+c−1∑
j=i

1({dj < γ1}) ≥ pc/2
})

+ P
( n?⋃
i=k

{i+c−1∑
j=i

1({Dj > γ2}) ≥ pc/2
})

=P
( n?⋃
i=k

{di(dpc/2e) < γ1}
)

+ P
( n?⋃
i=k

{Di(c−dpc/2e) > γ2}
)

=P
(

min
i=k,...,n?

di(dpc/2e) < γ1

)
+ P

(
max

i=k,...,n?
Di(c−dpc/2e) > γ2

)
=
α

2
+
α

2
= α

(1.13)

We go from line 2 to line 3 using Equations (1.10) and (1.11). We go from line 3 to line
47 using Equation (1.12). Finally, we go from line 5 to 6 using the thresholds γ1 and γ2 of
Proposition 1. It finishes the proof.

1.3 Monte Carlo Algorithm for Computing (γ1, γ2)
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Input: n, k, c, p, α, V
// the length n of the trajectory

// the window size k
// the cluster parameters (c, p)
// the level α ∈ (0, 1)
// the number V of Monte Carlo experiments

Result: γ̂1(n, k, c, p, α) γ̂2(n, k, c, p, α)
for i=1 to V do

Generate Xi
n of size n from the null hypothesis (3.2) (see the paper) with σ = 1

and ∆ = 1 ;
// Compute the statistics (4.1) (see the paper) along Xi

n

for j=k to n-k do
Compute (Bi

j, A
i
j) from (4.1);

Set dij = min(Bi
j, A

i
j);

Set Di
j = max(Bi

j, A
i
j);

end
for r=k to n-k-c+1 do

Compute sir the dpce smallest element of (dir, . . . , d
i
r+c−1);

Compute Sir the c− dpce smallest element of (dir, . . . , d
i
r+c−1);

end
Compute mi = minr(S

i
r) and Mi = maxr(s

i
r);

end

Let (m̃1, . . . , m̃V ) the sorted mis and (M̃1, . . . , M̃V ) the sorted Mis;

Set γ̂1(n, k, α) = m̃b(α/2)V c and γ̂2(n, k, α) = M̃b(1−α/2)V c;

Algorithm 1: Estimation of the cut-off values γ̃1 and γ̃2 by Monte Carlo simulations.
For estimating (γ?1 ,γ?2), one should turn pc into pc/2 in this algorithm.
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2 Choice of the Parameter (c, p) in the Aggregated

Procedure 1

A cluster of candidate change-points (Step 2 of Procedure 1) is defined as a subset of
successive indexes M such that, for all subsets of size c of successive indexes of M, the
proportion of candidate change-points is larger than the proportion p. Then the selection
of the segment of the trajectory where a change-point is detected is very dependent on the
choice of the parameter (c, p). As discussed in Section 4.1 of the paper, it is natural to choose
a value p in the interval (1/2, 1) and a value of c smaller than the size k of subtrajectories.
Based on these ideas, we carried a sensivity analysis on parameter (c, p) on the simulation
schemes described in Table 2 of the paper. The results are summarized in Table 3. The
choice (c, p) = (k/2, 0.75) appears to be a good compromise to detect the right number of
change-points across the different scenario. In fact, over all the simulation schemes, this
choice has the best (e.g lowest) mean rank in terms of percentages of trajectories detected
with the right number of change-points.

3 Other Simulation Results

In this section we present some others results on simulation.

3.1 Change in Parameter Values for a Fixed Type of Motion In this subsection,
we study the performance of our approach for detecting changes in parameter values for
a fixed type of motion. Monnier et al. (2015) consider this case in Model 3 and 5, see
Section 6.2 of the paper. Table 5 shows that our procedure do not detect the change-points
for Scenario 7 (Table 4) since the percentage of detections is around the type I error rate
α = 5% whatever the scale of changes in the diffusion coefficient for Brownian motion.
Such result was expected as the distribution of the test statistic do not depend on the
diffusion coefficient σ under Brownian motion. In other words, our procedure will detect
with probability (1−α) the trajectory as Brownian even if the diffusion coefficient switches
over time.
If such changes have to be explored, we recommend : i/ to apply our procedure in order
to detect if the trajectory is fully Brownian (or even if it exists a Brownian subtrajectory
long-enough); ii/ to use a specific procedure which takes into account such changes in their
model, as in Monnier et al. (2015), Yin et al. (2018) or standard statistical change-points
techniques (see for example Killick & Eckley (2014)) which detects switching of diffusion
coefficient.
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Brownian with drift Ornstein-Uhlenbeck
(c/k, p) v = 0.6 v = 0.8 v = 1 v = 2 λ = 1 λ = 2 λ = 3 λ = 4 Mean Rank

(0.25,0.5) 10 13 9 13 14 15 14 14 12.75
(0.25,0.6) 16 15 16 15 18 16 17 17 16.25
(0.25,0.7) 17 17 18 18 16 19 18 19 17.75
(0.25,0.75) 20 20 21 20 19 21 21 21 20.375
(0.25,0.80) 23 22 22 22 22 22 22 23 22.25
(0.25,0.9) 25 24 25 25 24 24 24 24 24.375
(0.25,1) 26 26 26 26 25 25 27 27 26.00
(0.5,0.5) 14 12 13 11 4 6 4 4 8.50
(0.5, 0.6) 9 8 7 8 6 7 7 7 7.375
(0.5,0.7) 5 4 4 5 5 10 10 10 6.625
(0.5,0.75) 2 3 3 2 7 12 11 12 6.50
(0.5, 0.8) 4 5 5 3 9 13 15 15 8.625
(0.5,0.9) 6 7 8 7 15 18 19 18 12.25
(0.5,1) 8 9 11 9 23 23 23 22 16.00
(0.75,0.5) 22 23 23 23 3 1 1 1 12.125
(0.75,0.6) 18 18 17 17 1 2 2 2 9.625
(0.75,0.7) 11 11 10 10 2 3 3 6 7.00
(0.75,0.75) 7 6 6 6 8 8 9 9 7.375
(0.75,0.8) 3 2 2 4 11 9 12 11 6.75
(0.75,0.9) 1 1 1 1 20 20 20 20 10.50
(0.75,1) 12 10 12 12 26 26 26 26 18.75
(1,0.5) 27 27 27 27 12 4 6 3 16.625
(1,0.6) 24 25 24 24 10 5 5 5 15.25
(1,0.7) 19 21 19 19 13 11 8 8 14.75
(1,0.75) 15 16 15 16 17 14 13 13 14.875
(1,0.8) 13 14 14 14 21 17 16 16 15.625
(1,0.9) 21 19 20 21 27 27 25 25 23.125
(1,1) 28 28 28 28 28 28 28 28 28.00

Table 3: Ranks of the performances of the aggregated Procedure 1 according to the pair values

(c/k, p) and the simulation scenario (see Table 2 of the paper). The ranks are computed from 1 001

trajectories of length n = 300 for each simulation scenario. We use the aggregated Procedure 1

with window sizes (20, 30, 40). For each pair (c/k, p), and for each simulation scenario, we compute

the percentage of trajectories for which we detect the right number of change-points. Then, for a

fixed simulation scenario, we rank the pairs (c/k, p) according to this criterion. The last column

averages all the ranks over the different scenarios. The pair (c/k, p) with the lowest mean rank is

highlighted in bold.
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Table 4: Simulation scenario for changes in diffusion coefficient for Brownian motion

Times Scenario 7
[1, 75] Brownian motion with σ1 = 1
[76, 150] Brownian motion with σ2 6= 1

Table 5: Estimated probability of detecting a change-point with Procedure 1 in Scenario 7
(Table 4) over 1 001 Brownian trajectories and for different window sizes k.

Diffusion coefficient σ2
k 2 5 10 100

20 4.2 5.9 4.7 5.5
30 5.9 4.3 5.6 5.5
40 5.8 5.1 5.7 6.5

3.2 Comparisons with Competitive Methods Table 6 and 7 assess the method of
Vega et al. (2018) on scenario 1 and 2 (see Table 2 of the paper). Our method outperforms
Vega et al. (2018) in all cases suggesting that the choice of the thresholds of the MSS-slopes
depend very much on the models chosen for calibration.

Table 6: Performance of the method of Vega et al. (2018) for Scenario 2 (see Table 2 of the
paper) for different values of parameter v over 1 001 simulated trajectories.

N̂ −N
λ -2 -1 0 1 ≥ 2 τ1 τ2

1 29.8 5.2 46.2 11.3 7.6 102.9 (36.9) 181.8 (31)
2 17.8 3.7 56.7 14.2 7.6 102.5 (26.7) 175.1 (23.7)
3 12.7 1 63.2 16.5 6.6 104.5 (19.2) 174.6 (15.9)
4 6.3 1.1 68.1 16.9 7.6 103.5 (16.9) 173.4 (16.4)
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Table 7: Performance of the method of Vega et al. (2018) for Scenario 1 (see Table 2) for
different values of parameter v.

N̂ −N
v -2 -1 0 1 ≥ 2 τ1 τ2

0.6 14.8 7.7 47.9 13.5 16.2 97.1 (38.7) 180.5 (37.5)
0.8 0.7 8.9 63.3 14.6 12.5 93.3 (27.4) 188.7 (31.2)
1 0.3 5.8 67.9 15.6 10.4 90.5 (23.2) 187.5 (27.1)
2 0 3.3 78.6 12.7 5.4 93.9 (13.7) 181 (12.6)

4 Alternative Testing Strategy

As mentioned in Section 4.1 of the paper, we carry 2(n − 2k + 2) tests, testing if the
backward trajectory and forward trajectory starting at ti i = k, . . . , n − k are Brownian
or superdiffusive/subdiffusive. Then, we proposed a test procedure that controls the type
I error at level α : when the trajectory is fully Brownian, we falsely detect a change-point
with probability α.

In this context of multiple tests, a natural idea is to use the Benjamini & Hochberg
(1995) method that controls another error rate at level α, namely the false discovery rate.
In our case, due to the overlapping of the tested subtrajectories, the tests are correlated. In
such a situation, Benjamini et al. (2001) propose a modification of the original procedure of
Benjamini & Hochberg (1995). Specifically, they modify the threshold of the procedure of

Benjamini & Hochberg (1995) originally set to α. Instead they use the threshold α/
m∑
i=1

1/i,

m denoting the number of tests.
However, in our case the interpretation of the false discovery rate is not clear. In fact, the

tested subtrajectories containing a true change-point are a mix of Brownian, superdiffusion
or superdiffusion. Then, for these subtrajectories, none of the hypothesises of the test (H0i :
Brownian, H1i subdiffusive or H2i superdiffusive) is true. Therefore, we can not define the
false discovery rate which is based on the numbers of misclassified hypothesises.

Nevertheless, the procedure could provide satisfying results even without this interpre-
tation. Then, we implement the Benjamini & Hochberg (1995) procedure in our method.
As we deal with three-decision test, we use the extension of the Benjamini & Hochberg
(1995) proposed in (Briane et al. 2018, Sec. IV). The step 1(b) of Procedure 1 is replaced
by the modified Benjamini & Hochberg (1995) procedure for three-decision test. We can
carry the aggregation strategy as for the original Procedure 1.

The performances of the aggregated Procedure 1 with the Benjamini & Hochberg (1995)
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Table 8: Performance of the aggregated Procedure 1 with the Benjamini & Hochberg (1995)
step on the Scenario 1 (see Table 2 of the paper) for different values of parameter v.

N̂ −N
Threshold v -2 -1 0 1 ≥ 2 τ1 τ2

α

0.6 24.0 6.9 64.5 1.4 3.2 113.2 (14.8) 165.2 (15.4)
0.8 1.6 3.1 84.7 2.0 8.6 108.5 (11.4) 169.6 (11.2)
1 0.1 2.1 88.7 2.2 6.9 104.4 (7.5) 172.8 (7.1)
2 0.0 2.3 92.7 1.8 3.2 101.3 (3.6) 176.0 (5.1)

α
m∑
i=1

1/i

0.6 57.0 5.3 36.5 0.8 0.4 115.4 (14.6) 163.2 (15.3)
0.8 10.1 6.9 79.6 0.4 3.0 109.9 (11.9) 167.8 (11.5)
1 0.4 4.0 89.0 2.0 4.6 105.3 (7.6) 172.4 (7.1)
2 0.0 3.5 95.6 0.5 0.4 101.4 (2.7) 175.7 (2.5)

step on the simulation scheme 1 (see Section 5.2) are shown in Table 8 and Table 9. We
aggregate the detections of the window sizes (20, 30, 40) using nmin = 10. We compute the
performances for the original procedure of Benjamini & Hochberg (1995) (threshold set to
α) and for the modified procedure of Benjamini et al. (2001) which takes into account the

correlations between the tests (threshold set to α/
m∑
i=1

1/i).

Actually, the results are significantly worse than with our original algorithm when we

use the modified threshold α/
m∑
i=1

1/i (here the number of tests is m = 2(n − 2k + 2)) on

both simulation scenario (Table 8 and Table 9). When we use the original threshold α
(which does not take into account the correlation between tests), we got better results.
The performances are still always worse than with our original algorithm. Note that when
we use the Benjamini & Hochberg (1995) procedure in our algorithm, it is also more time
consuming (166 sec for 1 001 trajectories from the simulation scheme 1) than the original
version of our algorithm (99 sec for 1 001 trajectories from the simulation scheme 1). It is
due to the fact that we have to estimate the p-values in the Benjamini & Hochberg (1995)
procedure.
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Table 9: Performance of the aggregated Procedure 1 with the Benjamini & Hochberg (1995)
step on the Scenario 2 (see Table 2 of the paper) for different values of parameter v.

N̂ −N
Threshold λ -2 -1 0 1 ≥ 2 τ1 τ2

α

1 17.8 5.6 73.6 1.7 1.3 107.8 (11.5) 167.4 (10.9)
2 3.7 4.9 84.9 2.7 3.8 109.0 (9.2) 167.4 (8.9)
3 2.0 5.3 85.7 3.3 3.7 110.0 (9.4) 166.9 (9.2)
4 2.4 6.0 84.3 3.2 4.1 110.6 (8.8) 166.0 (8.6)

α
m∑
i=1

1/i

1 75.2 4.8 19.9 0.1 0.0 110.5 (10.7) 163.8 (11.7)
2 25.9 6.8 66.9 0.4 0.0 112.4 (11.1) 164.4 (10.4)
3 21.4 6.6 70.5 1.4 0.1 112.8 (10.4) 164.0 (10.0)
4 22.8 7.1 68.7 1.3 0.1 112.8 (10.7) 163.3 (10.0)

5 Supplementary Figures

Figure 1: Simulated trajectories from Scenario 1 (left) with v = 0.8 and from Scenario 2
with λ = 1 (right). Two change-points N̂ = 2 (yellow dots) are respectively detected at
(τ̂1, τ̂2) = (89, 172) (on left) and (τ̂1, τ̂2) = (87, 165) (on right) with Procedure 1 and k = 30.

13



k = 10 k = 15

Figure 2: β-actin mRNP trajectory analysed with the Procedure 1 with window size k = 10
(left) and k = 15 (right). The detected change-points are τττ = (67, 75) for k = 10; the
motion alternates between Brownian, superdiffusion and Brownian. The detected change-
points are τττ = (62, 75, 282) for k = 15; the motion alternates between Brownian motion,
superdiffusion, Brownian motion and finally subdiffusion. The motion type of the sub-
trajectories is depicted in blue for Brownian, in red for superdiffusion, and in green for
subdiffusion.
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