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Feature engineering from DNA sequences  

The pseudo k-tuple nucleotide composition (PseKNC) (Chen, et al., 2014) was widely used to 

describe the sequence level characteristics of DNA or RNA elements and have been 

successfully utilized for predicting various genetic elements, e.g., genomic replication origins 

(Liu, et al., 2018), enhancers (Liu, et al., 2018), and N(6)-methyladenosine sites (Chen, et al., 

2015), etc. PseKNC calculated the frequencies of the oligonucleotide components and the inter-

nucleotide physicochemical properties (Chen, et al., 2014). So PseKNC described both short-

range and long-range information of a given DNA sequence and its successful applications in 

predicting various genetic elements suggested that PseKNC may have captured the inherent 

properties of a genetic element. 

This study utilized the parallel correlation PseKNC features, which was the type I PseKNC 

(Chen, et al., 2014). The type I PseKNC calculated (4t+r) features from a given DNA sequence, 

as defined in the following formula: 
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The variable L is the length of the given DNA sequence. The two parameters of the type I 

PseKNC were the tuple size t and the correlation rank r. The xth tier correlation factor θx was 

defined as the sequence order correlation between all the xth most contiguous t-tuple 

nucleotides. The correlation rank r describes the correlation rank (or tier), so r is smaller than 

(L-t). The detailed illustration may be found in (Chen, et al., 2014). 

The correlation function is defined as: 

𝐶𝐶𝑖𝑖,𝑖𝑖+𝑗𝑗 = 1
𝛥𝛥
∑ [𝐻𝐻𝜉𝜉(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1 …𝑅𝑅𝑖𝑖+𝑡𝑡−1) −𝐻𝐻𝜉𝜉(𝑅𝑅𝑖𝑖+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1 …𝑅𝑅𝑖𝑖+𝑗𝑗+𝑡𝑡−1)]2𝛥𝛥
𝜉𝜉=1  (2) 

where i∈{1, 2, …, L-t+1}, j∈{1, 2, …, r}, and r<L-t. Ri is the nucleotide in the position i, and 

Ri∈{A, C, G, T}. Hξ(RiRi+1…Ri+t-1) is the ξth physiochemical property for the t-tuple 

RiRi+1…Ri+t-1 in the given DNA sequence. And Hξ(Ri+jRi+j+1…Ri+j+t-1) is that of the next 

jth t-tuple. The total number of the correlation functions is defined as Δ. After the standard 



normalization procedure (Chen, et al., 2014), a feature vector of length (4t+r) may be calculated 

as: 

 D=[𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑4𝑡𝑡 ,𝑑𝑑4𝑡𝑡+1 , … ,𝑑𝑑4𝑡𝑡+𝑟𝑟]T, (𝑟𝑟<L-t)  (3) 

Each feature dm was defined as: 
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  (4) 

where 𝑓𝑓𝑖𝑖
𝑡𝑡−tuple  is the normalized occurrence frequency of the ith nucleotide t-tuple in the 

given DNA sequence, and the weight a may tune how much the pseudo nucleotide component 

contributes to the overall features. 

In addition to the above sample formulation process, this study also calculated the probabilities 

of converting from one nucleotide to another. For example, the probability of the A to T 

conversion was calculated as: 

 𝑃𝑃A to T = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(AT)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(A)

      (5) 

where count(AT) is the number of the subsequence “AT”, and count(A) is the number of the 

subsequence “A”. So we got 16 more features in this way. 

Our final sample formulation consisted of six groups of features from PseKNC(t=3) with 

different values of r as well as the probabilities of nucleotide conversion. The total number of 

features was 550 for a given DNA sequence, as shown in Supplementary Table S1. 

Supplementary Table S1 

Seven groups of features calculated from a given DNA sequence. 

Name PseKNC,
m=0 

PseKNC,
m=10 

PseKNC,
m=20 

PseKNC,m=
30 

FeatureN
um 

64 74 84 94 

Name PseKNC,
m=40 

PseKNC,
m=50 

NU 
conversio
n 

Total 

FeatureN
um 

64 74 84 94 



The group of features “PseKNC,m=i” was the PseKNC features calculated for t=3 and m=i. 

Row “FeatureNum” gave the number of features calculated for each group of features . 

DNA physicochemical properties 

DNA physicochemical properties were essential functional elements in various biomolecular 

processes, e.g., protein-DNA interactions (Lyubchenko, et al., 2009; Rachofsky, et al., 2001), 

transcriptional regulation (Ponomarenko, et al., 1999), and nucleosome occupancy (Chen, et al., 

2012), etc. Moreover, the relatively constrained DNA physicochemical properties have been 

proved to correlate with functional noncoding regions like enhancers. This study utilized two 

types of DNA physicochemical properties to predict the DNA replication origins, i.e., MW-

daltons (MW) and Nucleosome (NU). These features were calculated using the C++ 

programming language based on the .NET framework and Python version 3.6. 

Selecting features to improve the predictions 

Feature selection algorithms may not only improve the model prediction accuracy (Chatterjee, 

et al., 2018; Deshpande, et al., 2019), but also find the biologically essential genes for a better 

understanding of the investigated biological process (Guo, et al., 2014). This study calculated 

550 features from each given DNA sequence. In order to avoid the overfitting problem, the 

feature selection step was utilized in order to eliminate the redundant or weakly correlated 

features. Four feature selection algorithms were evaluated for their feature screening 

capabilities on predicting DNA replication origins, i.e., chi-squared test (Chi2) (Jin, et al., 2006), 

McTwo (Ge, et al., 2016), random-forest based recursive feature elimination (RF-RFE) 

(Granitto, et al., 2006) and support vector machine based recursive feature elimination (SVM-

RFE) (Duan, et al., 2005).  

Two more popular feature selection algorithms were evaluated. T-test based feature ranking 

algorithm was widely used to evaluate the phenotype-association of each feature, and usually 

the incremental feature selection (IFS) was utilized to find the best number of top-ranked 

features (Gharbali, et al., 2018; Ye, et al., 2017). The Lasso algorithm evaluated the features by 

minimizing the L1-penalty and assigned a weight to each feature (Deshpande, et al., 2019; 

Kumar, et al., 2017). 



Classification of DNA replication origins 

Classification algorithms were used to separate the positive samples from the negative ones in 

each of the four datasets {D(Sc), D(Sp), D(Kl), D(Pp)}. This study utilized five classification 

algorithms to evaluate their capabilities of predicting DNA replication origins, i.e., support 

vector machine (SVM) (Weston, et al., 2001), random forest (RF) (Jang, et al., 2018; Li, et al., 

2018), multinomial naïve Bayes (MNB) classifier (Pan, et al., 2018), gradient boosting decision 

tree (GBDT) (Liang, et al., 2018; Wang, et al., 2019), and back propagation neural network 

(BPNN) (Rumelhart, et al., 1986). 

Another two popular classifiers were used for further validation. Xgboost was a gradient-

boosting-based classification algorithm and generated quite a few successful applications 

(Deng, et al., 2019; Qiang, et al., 2018; Turki and Wei, 2018). It has been widely used for the 

diagnosis of cancers based on transcriptomic datasets (Turki and Wei, 2018). Xgboost 

outperformed the existing algorithms on both the RNA modification residues and protein-RNA 

binding (Deng, et al., 2019; Qiang, et al., 2018), etc. Extreme learning machine (ELM) was 

proposed by Prof. Guangbing Huang to solve the challenge of the slow training process of feed-

forward neural networks (Huang, et al., 2006). ELM significantly speeds up the learning speed 

of the generalized feed-forward network and allows the single hidden layer in this network to 

be un-tuned (Huang, et al., 2011). ELM has been widely utilized to predict various 

bioinformatics questions, e.g., protein complex (Li, et al., 2019) and biomedical imaging data 

(Zhang, et al., 2019), etc. 

 

Evaluation Method of Performance 

This study used six performance metrics to evaluate how a classification algorithm performed 

on the investigated binary classification problem. Five metrics were sensitivity (Sn), specificity 

(Sp), overall accuracy (Acc), balanced accuracy (bAcc), and Matthews correlation coefficient 

(MCC) (Feng, et al., 2018; Xu, et al., 2018). These five performance metrics were defined as: 

⎩
⎪
⎨

⎪
⎧
𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑃𝑃/𝑃𝑃,   𝑎𝑎𝑆𝑆𝑑𝑑 0 ≤ 𝑆𝑆𝑆𝑆 ≤ 1
𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇/𝑇𝑇,   𝑎𝑎𝑆𝑆𝑑𝑑 0 ≤ 𝑆𝑆𝑆𝑆 ≤ 1
𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇)/(𝑃𝑃 + 𝑇𝑇),   𝑎𝑎𝑆𝑆𝑑𝑑 0 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 1
𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆)/2,   𝑎𝑎𝑆𝑆𝑑𝑑 0 ≤ 𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 1
𝑀𝑀𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑁𝑁×𝑇𝑇𝑇𝑇−𝐹𝐹𝑁𝑁×𝐹𝐹𝑇𝑇

�(𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇)×(𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇)×(𝐹𝐹𝑇𝑇+𝑇𝑇𝑁𝑁)×(𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁)
,𝑎𝑎𝑆𝑆𝑑𝑑 − 1 ≤ 𝑀𝑀𝐶𝐶𝐶𝐶 ≤ 1

  (6) 



The numbers of positive samples with correct and incorrect predictions were True Positive (TP) 

and False Negative (FN), respectively. While True Negative (TN) and False Positive (FP) were 

the numbers of negative samples with and without correct predictions, respectively. So the 

number of positive samples was P=TP+FN, and the number of negative samples was N=TN+FP. 

The area under the ROC curve (AUC) may be calculated by the integral calculus (Nguyen and 

Rebello, 2011).  

A classifier was evaluated for optimizing its parameters by the 5-fold cross-validation strategy, 

and its classification performance was calculated by the leave-one-out validation strategy for 

the comparison with the existing studies. The k-fold cross validation strategy randomly split 

both the positive and negative datasets into k equally-sized bins and iteratively tested each pair 

of one positive and one negative bin with the model trained over the other samples (Wang, et 

al., 2018; Wang, et al., 2016; Zhao, et al., 2018). The final performance metrics were averaged 

over all the samples. This strategy ensured that each sample was tested for once. So the model 

parameters were tuned to optimize the performance metrics of the 5-fold cross validation 

strategy. The existing studies provided their performance metrics by the leave-one-out (LOO) 

validation, and a comparative analysis was carried out using LOO in this study. 

 

Comparison with other PseKNC features 

A further investigation was carried out to evaluate whether the other PseKNC feature groups 

may improve our models, as shown in Supplementary Figure S1. There are 12 feature groups 

for each of the types 1 and 2 of PseKNC. This study utilized the feature groups MW and NU of 

type 1, defined as Type1-2. These two feature groups under type 2 were defined as Type2-2. 

The sets of all the 12 feature groups of types 1 and 2 were defined as Type1-12 and Type2-12.  

The same feature selection procedure was applied to the four datasets, i.e., Type1-2, Type1-12, 

Type2-2, and Type2-12. Unfortunately, no features were selected from the dataset Type2-12. 

So we selected 50 features top-ranked by SVM-RFE from Type2-12, which is the same feature 

number compared to that of Type1-2. A subset of top-ranked 200 features was also selected 

from Type2-12, which is in proportion to the 50 features in Type1-2.  

The experimental data demonstrated that our model performed the best compared with all the 

other PseKNC feature sets, as shown in Supplementary Figure S1. Although BPNN was the 

best classifier in this study, its learning speed was very slow compared with the other classifiers 



(Gu, et al., 2016). So only the feature subsets selected from the original features were evaluated 

for their BPNN-based classification performances. If all the 12 feature groups were utilized, 

BPNN achieved at least 0.05 in the accuracy improvement. The prediction accuracy of the 37 

features selected from Type2-2 was 0.6969, which was improved by 0.0316 compared with the 

50 features selected from Type1-2.  

So the two feature groups MW-daltons (MW) and Nucleosome (NU) from type 1 generated the 

best prediction accuracy of the DNA replication origins. 

Supplementary Figure S1 

Performances of different PseKNC features on the species Schizosaccharo mycres pombe. 

 

Type1-2 and Tpe2-2 are the MW and NU feature groups of type 1 and 2, respectively. Type1-

12 and Type2-12 are the collections of all the 12 feature groups of type 1 and 2, respectively. A 

feature subset was selected from each feature set, and the feature number was given on the top 

of each column. All the prediction accuracies were calculated by the five-fold cross-validation 

strategy of the classifier BPNN.  

An easy-to-use GUI-based prediction software 

The prediction models for the four yeast genomes were developed as an easy-to-use software, 

sefOri version 1.0, as shown in Supplementary Figure S2. The user may choose to use one of 

the four prediction models for the four yeast genomes in the dropbox. The DNA sequences in 

the FASTA format may be input in the top textbox by copying-pasting from a text editor or 

clicking the button “Load file” to load the sequences from a FASTA file. Two example 

sequences may be loaded in the top textbox by clicking the button “Load example”. Click the 

button “Predict” will start the prediction procedure, and the final results will be given in a popup 

window. The prediction procedure will be illustrated by the progress bar in the bottom. The 
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bottom textbox gives the features calculated from the query DNA sequences, and these features 

may be output as a CSV file by clicking the button “Export”. The user may carry out further 

model improvements by using these features. 

Supplementary Figure S2 

Graphical User Interface (GUI) of the software sefOri version 1.0.  The top textbox is to 

load the DNA sequences in FASTA format. The bottom textbox gives the features calculated 

from the query DNA sequences in the top textbox. 

 

Biological implications of the chosen features 

The two feature groups Molecular Weight (MW) and Nucleosome Occupancy (NO) 

demonstrated the best prediction performances. The feature group Molecular Weight (MW) 

described the molecular weight in daltons of the raw DNA sequences. Different short DNA 

motifs represented by the PseKNC algorithm usually have varied molecular weight (Iguchi-

Ariga, et al., 1993). So MW was considered as a representative feature group for predicting the 

DNA replication origins of the yeast genomes. 

The other feature group NO described the status of the nucleosome occupancy and was also 

known to be associated with DNA replication origin sites (Yin, et al., 2009). For example, both 

yeast and human genome tend to deploy the DNA replication origins in the nucleosome 

depletion regions (Yin, et al., 2009). The DNA replication origins were also frequently observed 

in the nucleosome position enriched regions (Eaton, et al., 2010). So there exists a molecular 

machinery that can recognize the DNA replication origins. 



The type 1 feature groups MW and NO demonstrated a very good prediction performance. The 

experimental data in the above sections supported that these two feature groups were 

significantly associated with the class labels “DNA replication origin”. We took the list of 50 

features chosen from the dataset of Schizosaccharomycres pombe as an example and discussed 

the biological implications of these 50 chosen features. The type 1 PseKNC features consist of 

4k composite features and  λ correlation features, where k=3 and λ has multiple values. 

The 50 chosen features consist of 38 composite features and 12 correlated features for 

Schizosaccharo mycres pombe, as shown in Supplementary Table S1. We evaluated the 

statistical significance of each chosen feature with the phenotype DNA replication origin using 

t-test. 

Four tri-mers (AAA, AAT, TTA, and TTT) were chosen in at least two choices of λ values and 

were statistically differentially represented (Pvalue<1e-5) between the DNA replication origins 

and the controls, as shown in Supplementary Table S1. Multiple consensus sequences were 

observed in the DNA replication origin regions and the 11-bp sequence 

[5/(A/T)TTTA(T/C)(A/G)TTT(A/T)-3] supports all the known cases in S. cerevisiae (Linskens 

and Huberman, 1988). Another shorter sequence motif A/TTA/T was found to be conserved in 

six Saccharomyces species (Chang, et al., 2008). Both studies suggested that the tri-mer TTA 

may be an essential element in the DNA replication origins (Leonard and Mechali, 2013). The 

DNA replication origins were also known to be AT-rich and these four tri-mer features (AAA, 

AAT, TTA, and TTT) suggested that a prediction model also relies on these AT-rich tri-mers for 

achieving accurate predictions (Lee, et al., 2001; Segurado, et al., 2003). 

 

Supplementary Table S2 

Features chosen for Schizosaccharomyces pombe. 
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