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Abstract

1 Construction of W
To construct the isoform functional association network, we downloaded
588 RNA-seq runs (of total 311 samples) of Human from the ENCODE
project (access date: 2017-12-15). These 311 samples are obtained from
different tissues and conditions. We process and control the quality of
original data as follows:

(1) HISAT2(v.2-2.1.0) (Kim et al., 2015; Pertea et al., 2016) is firstly
used to align the short-reads of each RNA-seq dataset of the Human
genome (build GRCh38.90) from Ensemble(Zerbino et al., 2017).

(2) A GTF annotation file of the same build is used with an option of
no-novel-junction. Then, we use Stringtie(v.1.3.3b) (Pertea et al., 2015) to
calculate the relative abundance of the transcript as Fragments Per Kilobase
of exon per Million fragments mapped fragments (FPKM). We separately
compute the FPKM values of a total of 60675 genes with 199184 isoforms
for each sample.

(3) The FPKM values of very short isoforms are exceptionally higher.
Therefore, these isoforms with less than 100 nucleotides are discarded. For
example, the tRNA usually has less than 100 nucleotides. It is important to
have sufficient nonzero values in the expression vector during the network
building step. Therefore, we only keep isoforms with FPKM value larger
than 1 in at least half of all samples.

(4) To further control the quality of isoforms, we used known protein
coding gene names to map those genes obtained in step (3). Finally, we
obtained a total of 8417 genes with 84519 isoforms.

Wgg encodes the hierarchical dependency between GO terms. To
construct the GO term subnetwork, we downloaded the ontology file

from the GO website1. We then directly used the hierarchical relationship
between GO terms stored in this file to construct the subnetwork Wgg as
follows:

Wgg(s, t) =

{
1, if t ∈ child(s)

0, otherwise
(1)

where child(s) includes all the direct child terms of s in the GO hierarchy.
Wgg is asymmetric, and it stores the hierarchical relationship between l
GO terms.

For the gene-level network, we collected the data from BioGrid2, which
is a publicly accessible database of physical and genetic interactions of
genes/proteins with an exhaustive curation (Chatr-Aryamontri et al., 2017).
If an interaction between genes i and j exists, Wpp(i, j) > 0; otherwise
Wpp(i, j) = 0.

2 Evaluation metrics and Comparing methods
The performance of gene function prediction can be evaluated by different
evaluation metrics. To reach a comprehensive comparison, we adopt
three evaluation metrics recommended by CAFA (Jiang et al., 2016),
namely AUROC, Fmax and Smin. Beside, we also use AUPRC and
RankLoss , which is a representative metric in multi-label learning, since
isoform function prediction can also be handled as a multi-label learning
problem(Zhang and Zhou, 2014).

1 http://geneontology.org/page/download-ontology
2 https://thebiogrid.org/download.php
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AUROC firstly calculates the area under Receiver Operating
Characteristic (ROC) curve of each term and then takes the average value
of these areas as a whole to measure the performance. ROC curve plots
the true positive rate (sensitivity) as a function of the false positive rate (1-
specificity) under different classification thresholds. It measures the overall
quality of the ranking induced by the classifier, instead of the quality of a
single value of the threshold in that ranking.

AUPRC calculates the average value of the area under the precision-
recall curve of each term, and then measure the performance with
the average value. The precision of PRC is the percentage of correct
associations among the predicted ones, while recall is the same as
sensitivity in the ROC.

Fmax is the overall maximum harmonic mean of precision and recall
across all possible thresholds on the aggregated gene-term association
matrix. The precision (pr), recall (rc) and the resulting Fmax are defined
as:

pr(η) =
1

m(η)

m(η)∑
i=1

∑
t 1(t ∈ pi(η)) ∧ t ∈ Ti∑

t 1(t ∈ pi(η))
, (2)

rc(η) =
1

ne

ne∑
i=1

∑
t 1(t ∈ pi(η)) ∧ t ∈ Ti∑

t 1(t ∈ Ti)
, (3)

Fmax = max
η∈[0,1]

{
2 · pr(η) · rc(η)

pr(η) + rc(η)
}, (4)

where pi(η) denotes the set of terms that have predicted scores greater
than or equal to η for protein i, Ti denotes the corresponding ground-truth
set of terms for that protein, m(η) is the number of proteins with at least
one predicted score greater than or equal to η, 1(·) is an indicator function,
and ne is the number of targets used in a particular mode of evaluation.

Smin uses information theoretic analogs of remaining uncertainty (ru)
and misinformation (mi) by referring to GO hierarchy to compute the
minimum semantic distance between the predictions and ground-truths
across all possible thresholds. The ru, mi and the resulting Smin are defined
as:

ru(η) =
1

ne

ne∑
i=1

∑
t

ic(t) · 1(t ∈ pi(η) ∧ t ∈ Ti), (5)

mi(η) =
1

ne

ne∑
i=1

∑
t

ic(t) · 1(t ∈ pi(η) ∧ t /∈ Ti), (6)

Smin = min
η∈[0,1]

{
√
ru(η)2 +mi(η2)}, (7)

where ic(t) is the information content of the ontology term t (Clark and
Radivojac, 2013).

RankLoss computes the average fraction of wrongly predicted
annotations ranking ahead of ground-truth annotations of genes, it is
defined as:

RankLoss =
1

N

N∑
i=l

1

|Ti||T̄i|
|{(t1, t2) ∈ (8)

Ti × T̄i|R(i, t1) ≤ R(i, t2)}|

where T̄i is the complement set of Ti; R(i, t) is the predicted likelihood
for the i-th protein annotated with t.

AUROC and AUPRC are GO term-centric metrics, Fmax and Smin,
and RankLoss are gene-centric metrics. We want to remark that, a small
Smin and RankLoss means a better performance, and the other four metrics
are opposite.

To comparatively and quantitatively study the performance of IsoFun,
we take mi-SVM, MI-SVM (Eksi et al., 2013), iMILP (Li et al., 2014),
miFV and miVLAD (Wei et al., 2017) as comparing methods. MI-SVM,
mi-SVM and iMILP were introduced in the Introduction Section. In

identifying the ‘responsible’ isoform(s), mi-SVM selects the top 25%
isoforms as ‘responsible’ isoforms of a gene for a function, whereas MI-
SVM only selects the maximum score isoform as the ‘responsible’ isoform
of a gene for a function. miFV and miVLAD were introduced to solve the
large scale MIL problem, miVLAD is based on the Vector of Locally
Aggregated Descriptors (VLAD) representation, and miFV is based on
the Fisher Vector (FV) representation to map the original MIL bags into
new vector representations. To avoid the misled effect of overwhelming
negative examples, only five times number of negative samples to that of
positive samples were used to generate the new feature vectors for miFV
and miVLAD, for training mi-SVM and MI-SVM.

3 Sensitivity analysis of k
To analyze the sensitivity of k, we use different input values of k to
construct the isoform functional association network, and then follow the
experimental setup in Section 3.2 of the main text to test the performance
of IsoFun. The Fmax values and Smin values of IsoFun under different
values of k are provided in Fig. S1. From Fig. S1, we can see that the
performance of IsoFun increases as k increasing, and remains stable when
k > 30. Therefore, an effective k can be easily selected from a wide range
of values. From this analysis, we adopted k = 100 for experiments.

Fig. S1. Fmax and Smin vs. k.

4 Comparison with iMILP
In this section, we adopted the filtering protocol used by iMILP to filter the
data. For each RNA-seq data set, an isoform is retained for further analysis
if and only if the coefficient of variation (the ratio of standard deviation to
mean) of its expression profile is ≥ 0.3, and it is significantly expressed
with the expression value ≥ 10 FPKM in at least two experiments. After
that, we obtained 7069 genes with 15826 isoforms. The experimental
results of IsoFun and iMILP on this dataset is reported in Fig. S2.

From Fig. S2., we can see that IsoFun still has a better performance
than iMILP across different evaluation metrics. These experiments prove
the effectiveness of IsoFun under different data filtering protocols.

5 Runtime analysis
We also record the runtime costs of these comparing methods and report
the cost in Table S1. All the comparing methods are run on a server
with CentOS 6.5, Intel Xeon E5-2678v3 and 256GB RAM. Both IsoFun
and iMILP run faster than other comparing methods, and IsoFun runs
even faster than iMILP, although they both apply label propagation
on sparse networks to infer GO annotations of isoforms. The cause
is that IsoFun separately propagate label information on subnetworks,
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Fig. S2. IsoFun vs. iMILP on the dataset filtered similar as iMILP did.

simultaneously handle multiple labels, whereas iMILP includes a time-
consuming normalization process and converges slower than IsoFun.
Furthermore, similar as other comparing methods, iMILP also separately
handles each label. For miFV, miVLAD, mi-SVM and MI-SVM, we use
five times of negative genes to positive ones to accelerate training. The
experimental results of reduced negative examples are similar as those of
using all negative genes. miFV and miVLAD take a large portion of time
to learn the vector of Locally Aggregated Descriptors (VLAD) and Fisher
Vector (FV) representation, respectively, so they have larger runtime cost
than iMILP and IsoFun. mi-SVM and MI-SVM separately handles each
label, and thus have much larger runtime cost than others.

Table S1. Statistics of runtime (seconds).

miFV miVLAD mi-SVM MI-SVM iMILP IsoFun

BPO 8178 6643 210703 154576 15518 661
MFO 1474 1393 42463 37844 2675 160
CCO 1508 1378 51653 40162 3200 124
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