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S1. Selection of tuning parameters

As with all penalisation methods, selecting the "right" tuning parameters is vital in the performance of
the algorithm. In sCCA methods, it is necessary to select the optimal choices for the parameters (τw) of
all input data-sets, which are likely to differ from each other and influence one another.
To achieve this, k-fold cross-validation is performed on different values for those parameters. The aim
of sCCA methods is to maximise the canonical correlation and thus the selection of tuning parameters is
based on that. Suppose we have X1 and X2, then the following measure is taken for every choice of τw1

and τw2 , usually within a range of values in (0,0.3):

∆cor =
1
k

k

∑
l=1
|cor(X1l ŵ

(1)−l
,X2l ŵ

(2)−l
)| (1)

where X1l and Y2l represents the testing sets of X1 and X2 for fold l, respectively, and ŵ(1)−l
, ŵ(2)−l

the
estimated canonical variate pair based on the training sets.
In order to determine the optimal tuning parameters at each run of the algorithms, one must first compute
∆cor for all choices of τw1,τw2 for all k folds. The values of τw1,τw2 that maximise ∆cor are then taken as
optimal.
Due to the iterative nature of the algorithms, the choice of τw1 will influence the final outcome of X2 as
well. Hence, selecting the optimal tuning parameters in a multiple-data setting is more complicated and
computationally heavy. With two data-sets, |cor(X1l ŵ

(1)−l
,X2l ŵ

(2)−l
)|= |cor(X2l ŵ

(2)−l
,X1l ŵ

(1)−l
)|, and so we

can compute ∆cor once for every combination of τw1,τw2 in each fold. With M data-sets, ∆cor is computed
M times. In multiple sCCA, eq. 1, is replaced by:

∆cor =
1

Mk

k

∑
l=1

M

∑
m=1
|cor(Xml ŵ

(m)−l
, ∑

j 6=m
X jl ŵ

( j)−l
)| (2)

The time complexity of selecting tuning parameter in multiple data-sets is notably high. To reduce it, a
threshold in the correlation values was used. Even though the optimal selection may not be guaranteed,
well-performed tuning parameters are selected based on the threshold.
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S2. Computing the additional canonical vectors

In computing the additional canonical vectors, we argued (see eq. 14 from the main body of the paper)

that by fixing w(2) and letting X̃ =

 X1

W T
1 XT

1 X1

W T
2 XT

2 X1

, and Ỹ =

 Y
W T

2 XT
2 X2

W T
1 XT

1 X2

 we have that

−w(1)T
XT
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1 X̃2w(2) (3)

This is true since the the constraints W T
1 XT

1 X1w(1) = 0r−1 and W T
2 XT

2 X2w(2) = 0r−1 hold and:
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We can use the respective algorithms for RelPMDCCA on X̃1 and X̃2 to obtain the remaining canonical
variate pairs.

S3. Evaluation measures and Simulation Scenarios

The closer the estimated canonical variate pairs are to the true pairs, the better the performance of sCCA
methods. We took similar measures as Bonner and Beyene [2017] used in evaluating sparse PCA ap-
proaches.
The primary criteria in the evaluation will be the classification of zero-valued and non-zero-valued el-
ements of the canonical vectors, since these would signify the grouping structure. In addition to the
structure of the estimated ŵ(1) and ŵ(2), it is important to estimate values close to the true ones. Hence,
we also measured numerical differences between true and estimated values of the canonical vectors.
In particular, we examined the performance of the simulations based on the following measures:

1. NZ: The number of non-zero values remaining in the estimated pairs. Expecting a sparse represen-
tation

2. TRUENZ: The number of correctly classified non-zero values

3. TRUEZ: The number of correctly classified zero values

4. ANGLE: A measure of the distance between true and estimated canonical variate pairs. A value be-
tween 0 (perfect) and 1(worst) It is calculated for each w(i), separately as follows: ANGLE(ŵ,w)=

dist(ŵ,w) =
√

1− (wT ŵ)2, where w is the true canonical variate and ŵ is the estimated one.
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5. LOSS (X. Suo et al., 2017): A loss value between the true and the estimated canonical correlation
pairs. For each element of the pair, w, the loss is computed as follows:

LOSS(ŵ,w) = min(||ŵ−w||22, ||ŵ+w||22) (9)

6. CORR: The estimated canonical correlation Cor(X1ŵ(1),X2ŵ(2))

Note that all measures except CORR, were computed separately for all ŵ(i), i = 1,2.
The measures TRUENZ and TRUEZ are not very intuitive on their own, especially since simulations
were conducted with different parameters. That is, a different true number of non-zero values are to be
identified, depending on the scenario performed. Hence, a confusion matrix of the zero and non-zero
elements found, against the simulated truth, was computed. True Positive Rate (TPR), False Positive
Rate (FPR), Positive Predictive Value (PPV), Negative Predictive Value (NPV) and Accuracy (ACC)
were then obtained.
Overall, the evaluation measures cover the entire performance of the methods: the correct identification
of non-zero (and zero) values, the exact values of the canonical vectors (through ANGLE and LOSS)
and the correlation within the canonical pairs.
The covariance-based data generating model, used in the simulation studies to generate two datasets is as
follows. Suppose, X1 ∈ Rn×p1 and X2 ∈ Rn×p2 with data being generated by:

(
x1

x2

)
∼ N

[(
0
0

)
,

(
ΣX1X1 ΣX1X2

ΣX2X1 ΣX2X2

)]

where ΣX1X2 = ρΣX1X1w(1)w(2)T
ΣX2X2 , with w(1) and w(2) being the true canonical vectors and ρ the true

canonical correlation. The covariance matrices ΣX1X1 and ΣX2X2 are explicitly defined based on the type
of data generating model.
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S4. Algorithms

Data: M datasets, Xm ∈ Rn×pm , ∀m ∈ {1, · · · ,M}
Tuning parameters: τwm, ∀m ∈ {1, · · · ,M}
Result: Canonical vectors, w(m), ∀m ∈ {1, · · · ,M}
begin

Select tuning parameters τwm , ∀m ∈ {1, · · · ,M} via cross-validation
Initialise canonical vector (w(m))0, ∀m ∈ {1, · · · ,M} and set k = 0
while not converged do

for m=1 to M do

Compute Km j = Σ
− 1

2
XmXm

ΣXmX jΣ
− 1

2
X jX j

, ∀ j 6= m

(w(m))k+1← ∑ j 6=m Km j(w(m))k

Normalise (w(m))k+1 = (w(m))k+1

||(w(m))k+1||

Apply soft-thresholding: (w(m)
l )k+1 = S((w(m)

l )k+1, 1
2τwm), l = 1, · · · , pm

Normalise (w(m))k+1 = (w(m))k+1

||(w(m))k+1||
end
k← k+1

end
end

Algorithm 1: Multiple ConvCCA

Data: X1 ∈ Rn×p1 , X2 ∈ Rn×p2

Result: R canonical vectors combined in matrices W1 ∈ Rn×R, W2 ∈ Rn×R

begin
Compute first canonical vector via an sCCA method
for r=2 to R do

Let X̃ =

 X1

W T
1 XT

1 X1

W T
2 XT

2 X1

, and Ỹ =

 Y
W T

2 XT
2 X2

W T
1 XT

1 X2


Compute the rth canonical vector by applying an sCCA method on X̃ and Ỹ to obtain
w( j)

r , j = 1,2
Update Wj←

[
Wj,w

( j)
r

]
, j = 1,2

end
end

Algorithm 2: Computing the additional canonical vectors

S5. Additional Null Simulation Model

In the main body of the paper, a null simulation model is described in which a low true canonical cor-
relation was assumed, ρ = 0.1. An additional null model was implemented where two independent and
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uncorrelated datasets were simulated. Two independent normally distributed multivariate datasets with
80 and 60 features respectively were generated (X1 ∼N (0,I80) and X2 ∼N (0,I60)). The results of
this simulation study were in agreement with the results presented in Section 3.2.2. Here, we present the
canonical correlations obtained in this study.

Canonical correlation on Null simulation model
PMDCCA ConvCCA ConvCCA RelPMDCCA RelPMDCCA

Sample size LASSO LASSO SCAD LASSO SCAD
n = 100 0.51 (0.08) 0.88 (0.05) 0.87 (0.07) 0.98 (0.02) 0.98 (0.02)
n = 1000 0.22 (0.08) 0.47 (0.08) 0.48 (0.07) 0.51 (0.03) 0.49 (0.02)
n = 10000 0.07 (0.06) 0.13 (0.05) 0.15 (0.07) 0.16 (0.03) 0.20 (0.04)

Table 1: Null Simulation Model. Canonical correlations of PMDCCA, ConvCCA and RelPMDCCA
averaged across 100 runs on the null scenarios.

As in the simulation model with low true canonical correlation, the correlation obtained by the three
methods decreases as the sample size increases.

S6. Computation Time

Computation Time (minutes)
PMDCCA ConvCCA ConvCCA RelPMDCCA RelPMDCCA

LASSO LASSO SCAD LASSO SCAD
Null, n = 100 0.02 0.08 0.08 1.19 2.43
Null, n = 1000 0.34 1.89 2.14 8.23 9.46
Null, n = 10000 2.02 5.23 5.67 15.65 17.43
Scenario 1 0.02 0.09 0.08 1.64 2.96
Scenario 2 0.37 1.08 3.03 10.05 10.61
Scenario 3 0.41 3.03 3.35 12.45 13.45
Scenario 4 1.23 3.26 2.79 14.56 13.76
Scenario 5 0.55 2.19 2.13 6.57 6.28
Scenario 6 0.44 1.12 2.12 6.89 5.29

Table 2: Computation time. Averaged time (in minutes) taken to run a single iteration for each simula-
tion scenario.
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S7. Supplementary Figures

Figure 1: The single latent variable model simulation

.
Figure 2: sCCA performance on Null scenario with low true canonical correlation. ROC
curves of the second canonical vector by all sCCA methods on Null scenario with sample sizes
n = 100,1000,10000
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Figure 3: ROC curve plots, showing averaged results (over the models) for each scenario on X2w(2).
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Figure 4: (a) Angle evaluation measure on the first canonical vector. (b) Angle on the second canonical
vector (c) Loss on the second canonical vector
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Figure 5: ROC curve plots, showing averaged (over scenarios) results for each model on X2w(2).

Figure 6: (a) Recall and (b) precision measures in nutriMouse study in predicting the genotype of mice.
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Figure 7: Accuracy of all learning models in predicting the genotype of mice in the nutriMouse study.
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Figure 8: Accuracy measures on SpRegLasso, SpRegScad and k-NN with X1, X2 and Xboth acting as
predictors, with the response being the mice genotype from the nutriMouse study.
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Figure 9: Correlation plots of (a) gene expression, and (b) lipid measurements in nutriMouse study. (c)
Cross-correlation of the two data-sets.
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