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S1.	Model	Description	
	
The	BIRD	model	(Fig.	1B)	includes	two	alternate	allele	frequencies,	p	(in	the	plasmid	DNA),	and	q	
(in	the	RNA).		The	relationship	between	p	and	q	is	determined	by	the	effect	size	q,	which	is	defined	
as	an	odds	ratio	between	q	and	p:		
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This	effect	size	can	be	thought	of	as	a	fold	change	in	transcriptional	rate	between	alleles.		A	
value	of	q	= 1	indicates	no	allelic	effect.		Solving	for	q	gives:		
	

𝑞 =
𝜃𝑝

1 − 𝑝 + 𝜃𝑝	

	
Variates	p	and	q	are	not	directly	observable,	as	they	pertain	to	the	true	allele	frequencies	in	the	
underlying	 pool	 of	 DNA	 and	 RNA	 molecules	 in	 the	 cell	 and	 cannot	 be	 exactly	 ascertained.		
However,	the	DNA	read	counts	aj	and	bj	provide	evidence	regarding	the	probable	values	of	p.		
Similarly,	the	RNA	read	counts	ki	and	mi	provide	evidence	regarding	the	probable	values	of	q.		
BIRD	also	incorporates	a	replicate-specific	allele	frequency	qi	for	the	ith	RNA	replicate.		Replicates	
are	explicitly	modeled	in	the	RNA	but	not	in	the	DNA,	as	RNA	replicates	are	typically	biological	
replicates,	whereas	in	typical	protocols	DNA	replicates	are	technical	replicates	and	will	have	low	
variability	 in	allele	 frequencies.	 	As	described	below,	we	use	a	sampling	approach	to	perform	
posterior	inference	on	all	of	the	latent	variables,	most	importantly	for	the	effect	size,	q.	

The	generative	process	of	 the	BIRD	model	 can	be	 formally	 specified	 via	 its	 priors	 and	
likelihoods:	
	

p ~ uniform(0, 1) 
 

"j aj | aj + bj, p ~ binomial(aj + bj, p) 
 

s ~ gamma(1.1, 3) 
 

q | s ~ lognormal(0, s) 
 

q = qp/(1-p+qp) 
 

c ~ gamma(1.1, 0.0005) 



 
qi | q, c ~ beta(mode = q, concentration = c) 

 
"i ki | ki + mi, qi ~ binomial(ki + mi, qi) 

	
A	key	feature	of	this	dependency	structure	is	that	it	places	a	mean-1	prior	on	the	effect	size	q,	
thus	shrinking	estimates	toward	1	(no	effect)	absent	strong	evidence	from	data	likelihood.		This	
is	 a	 desirable	 feature,	 as	 we	 expect	 most	 tested	 variants	 genome-wide	 to	 have	 no	 effect.		
However,	when	sequencing	coverage	is	sufficiently	large,	the	model	is	capable	of	predicting	any	
number	 of	 causal	 variants	 as	 dictated	 by	 the	 data	 (i.e.,	 the	 data	 can	 “overwhelm	 the	 prior”;	
Murphy,	2012).		The	resulting	prior	on	q is	shown	in	Suppl.	Fig.	S6A.		The	parameters	of	this	prior	
are	fixed,	eliminating	any	burden	on	end	users	to	specify	the	prior.	 	We	specifically	chose	the	
parameters	of	this	fixed	prior	so	as	to	favor	effects	ranging	from	a	halving	of	transcription	to	a	
doubling	of	transcription,	as	we	and	others	have	seen	in	previous	work	that	a	majority	of	variants	
tend	to	fall	in	that	range	(Vockley	et	al.,	2015;	Patwardhan	et	al.,	2012).	
	 All	 beta	 priors	 in	 the	 full	 BIRD	 model	 were	 parameterized	 by	 their	 mode	 and	
concentration.		Shape	parameters	for	the	beta	distribution	can	be	computed	from	a	given	mode	
m	and	concentration	c	as	follows:	
	

a = m(c-2) + 1 
b = (1-m)(c-2) + 1 

	

S2.	Inference	
	
We	perform	posterior	inference	using	Markov	chain	Monte	Carlo	(MCMC).		Using	the	Metropolis-
Hastings	 algorithm	 (Hastings,	 1970),	 we	 obtain	 a	 chain	 of	 samples	 from	 the	 joint	 posterior	
distribution	of	the	latent	variables	p,	q,	qi,	and	q,	conditional	on	the	observed	data.		We	ignore	
the	sampled	values	of	p,	q,	and	qi,	as	these	serve	only	to	facilitate	inference	on	q.		We	take	2000	
MCMC	samples	and	discard	the	first	1000	as	burn-in	samples.		We	perform	no	thinning.	

The	 posterior	 sample	 values	 of	 q	 are	 used	 for	 both	 estimating	 effect	 sizes	 and	 for	
classifying	variants	as	regulatory	or	neutral.		We	consider	two	mutually	exclusive	alternatives:		
	

H1: q > l, 
H2: q < 1/l. 

	
for	l ≥ 1.		Under	H1,	the	alternate	allele	is	associated	with	higher	expression	than	the	reference	
allele,	and	vice-versa	for	H2.		For	all	of	the	results	in	this	paper,	we	set	l=1.		We	summarize	the	
evidence	 for	 these	 alternate	 possibilities	 via	 the	 posterior	 probabilities	
P(q>l|{aj},{bj},{ki},{mi},c)	 and	P(q<1/l| {aj},{bj},{ki},{mi},c),	 respectively.	 	 These	 posterior	
probabilities	are	estimated	via:		
	

P(H1) = P(q > l | {aj},{bj},{ki},{mi},c) ≈ Nq>l/N, 



P(H2) = P(q < 1/l | {aj},{bj},{ki},{mi},c) ≈ Nq<1/l/N, 
	
for	Nq<1/l	the	number	of	MCMC	samples	for	which	q<1/l,	Nq>l	the	number	of	MCMC	samples	for	
which	q>l,	and	N	the	total	number	of	accepted	MCMC	samples.		Note	that	P(q<1/l|{aj},{bj}, 
{ki},{mi},c) + P(q>l|{aj},{bj},{ki},{mi},c) ≤ 1,	and	that	H1	and	H2	are	mutually	exclusive.		We	
take	the	maximum	of	these	two	posterior	probabilities	as	a	summary	of	the	evidence	that	the	
variant	is	regulatory	(non-neutral):	
	

Preg = max( P(q<1/l|{aj},{bj},{ki},{mi},c) , P(q>l|{aj},{bj},{ki},{mi},c) ) 
	
Given	a	threshold	t,	we	can	perform	classification	by	predicting	variants	for	which	Preg > t	to	be	
regulatory	variants	and	all	others	to	be	neutral.		By	considering	all	possible	thresholds,	we	can	
compute	receiver	operating	characteristic	(ROC)	curves,	which	we	summarize	via	the	area	under	
the	curve	(AUC).	

Estimation	of	effect	sizes	is	performed	by	computing	the	median	of	the	chain	of	MCMC	
samples	for	q.		In	addition	to	this	point	estimate,	we	report	a	95%	symmetric	credible	interval	for	
q,	based	on	the	MCMC	samples,	to	indicate	the	degree	of	uncertainty	in	the	point	estimate.	
	

S3.	Implementation	and	Availability	
	

BIRD	is	implemented	in	the	probabilistic	programming	language	STAN	(Carpenter	et	al.,	2017),	
and	is	distributed	as	STAN	model	files	that	can	be	run	in	R	or	python,	or	compiled	to	C++.		For	the	
experiments	performed	here,	we	used	cmdstan	version	2.17.0	and	GCC	version	7.3.0.	

Sampling	 is	 performed	 using	 Metropolis-Hastings	 with	 the	 Hamiltonian	 Monte	 Carlo	
proposal	(Duane	et	al.,	1987).		Using	a	burn-in	of	1000	samples	followed	by	an	additional	1000	
samples	for	inference,	a	single	variant	can	be	analyzed	in	approximate	2.5	seconds	on	a	single	
CPU	core.	

BIRD	is	available	for	free	download	at:	
	

http://www.geneprediction.org/bird/	
	

A	web	tool	is	also	provided	that	allows	users	to	estimate	the	required	sequencing	depth	
and	number	of	replicates	needed	to	detect	regulatory	variants	at	a	given	sensitivity	and	false	
discovery	 rate,	 over	 a	 range	 of	 different	 allele	 frequencies	 and	 effect	 sizes,	 using	 our	model	
(Suppl.	Fig.	S7).	 	This	tool	 is	 intended	to	aid	 in	the	design	of	experiments	and	the	selection	of	
optimal	sequencing	depths.		The	web	tool	is	available	at:	

	
http://67.159.92.22:8080/	

	
	



S4.	Evaluation	Methods	
	
We	assessed	the	predictive	accuracy	of	BIRD	on	both	real	and	simulated	genetic	variants.		For	
both	real	and	simulated	data,	we	assessed	the	estimation	error	for	q	by	computing	the	root	mean	
squared	error	(RMSE).		RMSE	reflects	the	error	in	an	estimate	of	a	parameter	as	compared	to	the	
true	 value	 of	 that	 parameter.	 	 For	 simulated	 data,	 the	 true	 value	 of	 q	 is	 known	 from	 the	
simulation,	but	for	real	data	the	true	value	of	q	is	unknown.		In	order	to	compute	RMSE	for	real	
data,	 estimates	 of	 q	 from	 downsampled	 read	 counts	 are	 compared	 to	 qtrue,	 where	 qtrue	 is	
estimated	from	large	read	counts	(prior	to	downsampling)	via:	
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where	RNAalt,	RNAref,	DNAalt,	and	DNAref	are	raw	(non-downsampled)	read	counts;	alt	denotes	
the	alternate	allele	and	ref	denotes	the	reference	allele.		No	pseudocounts	are	applied.	

For	 real	 data,	 only	 variants	with	 high	 coverage	 (Suppl.	 Text	 S5)	 and	with	minor	 allele	
frequency	≥	1%	were	considered.	 	Because	only	variants	with	high	coverage	were	considered,	
and	because	qtrue	was	computed	from	large	read	counts	prior	to	downsampling,	we	expect	qtrue	
to	be	close	to	the	true	value	of	q.	

Real	variants	satisfying	the	required	coverage	and	allele	frequency	filters	(Suppl.	Text	S5)	
were	used	 to	 stochastically	 generate	 sets	 of	 50,000	downsampled	 variants	 for	 testing.	 	 Read	
counts	were	downsampled	uniformly	at	random	(i.e.,	no	effort	was	made	to	retain	specific	allele	
ratios	or	effect	sizes)	to	30,	50,	100,	500,	and	1000	reads	per	variant	in	DNA	and	similarly	in	RNA,	
resulting	in	5	test	sets	of	50,000	variants	each.		BIRD	was	then	applied	to	the	downsampled	data	
to	produce	 a	 posterior	median	estimate	of	q.	 	 RMSE	was	 computed	both	 for	BIRD	and	 for	 a	
commonly	used	ad	hoc	estimator	based	on	a	simple	ratio	of	read	counts:	
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where	RNAx	and	DNAx	are	downsampled	read	counts	for	allele	x,	and	a	pseudocount	of	1	was	
added	to	all	downsampled	counts	to	avoid	zero	counts.		The	pseudocount	was	applied	only	for	
the	ad	hoc	estimator	and	was	not	applied	to	the	inputs	to	other	models.		The	ad	hoc	estimator	is	
based	 on	 the	 maximum	 likelihood	 estimates	 of	 p	 (alternate	 allele	 frequency	 in	 DNA)	 and	 q	
(alternate	allele	frequency	in	RNA).		These	maximum	likelihood	estimates	(computed	as	ratios	of	
read	counts)	are	commonly	used	in	allele-specific	expression	analyses	and	for	allelic	analysis	in	
high-throughput	reporter	assays	(for	example,	log2(qad	hoc)	is	identical	to	the	BAB	score	in	Zhang	
et	al.,	2018).	



Note	that	we	expect	the	ad	hoc	estimate	to	be	increasingly	unstable	as	variant	coverage	
decreases.	 	 In	 contrast,	we	 expect	 the	 posterior	 estimate	 under	 the	BIRD	model	 to	 be	more	
robust,	due	to	increased	reliance	on	priors	at	low	read	counts,	as	well	as	the	explicit	modeling	of	
between-replicate	variance.			
	 Note	that	while	the	formulas	given	above	for	qtrue	and	qad	hoc	are	identical,	their	values	will	
not	be	identical	in	general,	because	qtrue	 is	computed	from	high-coverage	read	counts	prior	to	
downsampling,	 whereas	 qad	 hoc	 is	 computed	 from	 randomly	 downsampled	 read	 counts	 and	
incorporates	 pseudocounts.	 	 As	 the	 difference	 between	 downsampled	 counts	 and	 raw	 (non-
downsampled)	counts	diminishes,	the	difference	between	qad	hoc	and	qtrue	should	also	diminish.		
This	may	bias	RMSE	estimates	in	favor	of	qad	hoc	as	compared	to	other	estimators	such	as	our	BIRD	
model,	particularly	when	downsampled	read	counts	are	 large.	 	As	such,	 the	advantage	of	 the	
BIRD	model	over	the	ad	hoc	method	may	be	underestimated	in	our	comparisons.	

In	order	to	assess	which	components	of	BIRD	contribute	most	to	its	predictive	accuracy,	
we	tested	several	handicapped	versions	of	the	model.		In	particular,	we	considered	(1)	ignoring	
replicate	structure	by	pooling	read	counts	across	replicates	(Suppl.	Fig.	S4);	and	(2)	removing	q	
and	its	prior	from	the	model	and	computing	q	directly	from	posterior	estimates	of	p	and	q	(Suppl.	
Fig.	S3).		These	modifications	were	performed	separately.			

We	compared	the	classification	accuracy	of	the	full	BIRD	model	to:	(1)	a	simpler	version	
called	Swift	(Suppl.	Text	S8);	(2)	simpler	versions	of	BIRD	lacking	the	prior	on	effect	size	(Suppl.	
Fig.	S3)	or	lacking	modeling	of	replicates	(Suppl.	Fig.	4A,B);	(3)	the	standard	beta-binomial	test	
(see	below);	 (4)	 the	standard	Fisher’s	exact	 test;	and	(5)	QuASAR-MRPA	(Kalita	et	al.,	2018B),	
which	utilizes	a	likelihood	ratio	test	based	on	beta-binomial	likelihoods.			

The	beta-binomial	test	is	based	on	the	beta-binomial	distribution:	
	

𝑃 𝑘 𝑘 +𝑚, 𝑎, 𝑏 = 𝑃 𝑝 𝑎, 𝑏 𝑃 𝑘 𝑘 +𝑚, 𝑝 𝑑𝑝
I

J
	

	
where	k	and	m	are	the	alternate	and	reference	allele	read	counts	in	RNA,	respectively,	and	a	and	
b	 are	 the	alternate	and	 reference	allele	 read	counts	 in	DNA,	 respectively.	 	The	beta-binomial	
utilizes	 a	 beta	 prior	𝑃 𝑝 𝑎, 𝑏 	 on	 the	 alternate	 allele	 frequency,	p,	 and	 a	 binomial	 likelihood	
𝑃 𝑘 𝑘 +𝑚, 𝑝 	on	the	RNA	read	counts.		The	alternate	allele	frequency,	p,	is	integrated	out	to	
produce	a	posterior	predictive	distribution	of	new	data	(k,	m)	given	previous	data	(a,	b),	under	
the	assumption	that	the	new	and	old	data	come	from	the	same	distribution.		That	is,	we	use	the	
beta-binomial	to	model	the	null	hypothesis	that	the	alternate	allele	frequency	in	the	underlying	
population	is	the	same	in	the	RNA	and	the	DNA;	violation	of	this	assumption	will	be	indicative	of	
a	regulatory	effect.		In	order	to	use	the	beta-binomial	as	a	null	hypothesis	test,	we	compute	the	
tail	probability	of	the	distribution	to	arrive	at	a	p-value.	

	

S5.	Generation	of	Human	Data	
	
Two	sets	of	human	variants	were	tested.		The	first	set	consisted	of	variants	in	a	GWAS	locus	for	
fetal	adiposity.		We	assayed	these	variants	using	Population	STARR-seq	(“Pop-STARR”:	Vockley	et	



al.,	2015)	in	human	HepG2	cells,	human	adipocytes,	and	human	pre-adipocytes.		The	second	set	
were	previously	synthesized	and	assayed	using	a	massively	parallel	reporter	assay	by	Tewhey	et	
al.	 (2016).	 	For	the	Tewhey	data,	we	used	only	data	 from	LCLs	 from	individuals	NA12878	and	
NA19239.	

For	the	fetal	adiposity	data	set,	only	variants	with	high	coverage	(at	least	1000	DNA	reads	
and	1000	RNA	reads	per	variant,	and	having	at	least	10	reads	for	both	the	reference	and	alternate	
alleles	in	both	DNA	and	RNA)	and	with	minor	allele	frequency	≥	1%	were	considered,	to	ensure	
accurate	estimation	of	qtrue.		For	the	Tewhey	et	al.	(2016)	data,	the	same	thresholds	were	applied,	
except	that	at	least	10,000	RNA	reads	and	10,000	DNA	reads	per	variant	were	required.		Note	
that	these	thresholds	were	not	applied	to	the	model	inputs;	they	were	only	used	to	choose	the	
variants	 for	which	 a	 “true”	 effect	 size	 (qtrue)	 could	be	 reliably	 estimated	 (based	on	high	 read	
counts),	for	testing	the	models	after	downsampling.	 	After	downsampling,	read	counts	can	be	
arbitrarily	small	(including	zero),	so	that	models	were	not	tested	only	at	high	coverage.	

The	following	table	gives	the	numbers	of	variants	retained	after	filtering:	
	

Data	 Total	 Retained	
Tewhey	et	al.	 30667	 9014	
Adipocytes	 372	 372	
Preadipocytes	 407	 407	
HepG2	 861	 173	

Suppl.	Table	T5:	Numbers	of	variants	before	and	after	filtering.	
	
Experimental	 methods	 for	 the	 fetal	 adiposity	 locus	 in	 HepG2	 cells	 were	 described	

previously	 (Guo	 et	 al.,	 2017).	 	 Experimental	 methods	 for	 the	 fetal	 adiposity	 locus	 in	 pre-
adipocytes	 and	 adipocytes	 were	 as	 follows.	 	 36	 million	 subcutaneous	 human	 white	 pre-
adipocytes	were	 obtained	 from	 Promocell	 (C-12731)	 and	 electroporated	with	 the	 STARR-seq	
library	using	a	Biorad	Electroporator	(170	volts,	950	µF,	2	µM,	infinite	capacitance)	using	8	µg	of	
plasmid	split	across	8	electroporations.		The	electroporations	were	then	pooled	and	split	across	
eight	T-75	plates.		The	cells	were	then	grown	in	pre-adipocyte	growth	medium	(C-27410)	for	48	
hours	as	per	manufacturer’s	protocol.	 	After	48	hours,	5	plates	were	washed	twice	with	PBS,	
incubated	in	12	ml	of	PBS	+	400	µL	of	DNAse	each	at	37°C	for	4	minutes,	washed	with	PBS	once	
again,	and	harvested	for	RNA	using	a	Qiagen	RNeasy	Midi	kit	as	per	manufacturer’s	protocol.		The	
media	on	the	remaining	3	plates	was	changed	to	pre-adipocyte	differentiation	media	(C-27436)	
according	 to	 the	 manufacturer’s	 protocol.	 	 After	 48	 hours	 the	 RNA	 from	 the	 3	 plates	 was	
harvested	 using	 the	 same	method	 used	 on	 the	 5	 plates	 48	 hr	 prior.	 	 Libraries	 for	 the	 eight	
experimental	samples	and	pooled	plasmid	controls	(8	separate	PCRs)	were	then	prepared	per	
the	methods	outlined	by	Vockley	et	al.	(2015).	
	

S6.	Simulations	
	
In	 addition	 to	 the	 human	 variants,	 we	 simulated	 a	 large	 number	 of	 data	 sets	 consisting	 of	
simulated	regulatory	variants	(q	<	1)	and	neutral	variants	(q	=	1),	at	a	variety	of	simulated	effect	



sizes,	 allele	 frequencies,	 and	 sequencing	 depths,	 and	 with	 a	 variety	 of	 replicate	 structures.		
Simulating	different	combinations	of	these	parameters	allowed	us	to	both	assess	the	robustness	
of	our	model	across	a	range	of	scenarios,	and	to	identify	tradeoffs	between	different	parameters	
such	as	variant	coverage	and	number	of	replicates.	 	For	each	simulated	data	set,	we	assessed	
classification	 accuracy	 (the	 ability	 to	 correctly	 classify	 variants	 as	 regulatory	 or	 neutral)	 via	
receiver	operating	characteristics	(ROC)	curves,	which	we	summarize	via	the	area	under	the	ROC	
curve	(AUC).	

Our	simulator	closely	emulates	the	data	generation	process	for	real	genetic	variants,	so	
that	we	expect	simulated	data	sets	to	be	similar	in	all	numerical	aspects	to	real	genomic	variant	
data	from	a	reporter	assay.		For	each	variant,	we	first	simulate	the	generation	of	plasmid	DNA	by	
drawing	a	plasmid	allele	frequency	from	a	beta	distribution:	

	
p ~ beta(mode=v, concentration=c2), 

	
where	v	 is	 set	 to	 a	 fixed,	 chosen	 value	 for	 each	 simulation,	 and	c2	was	 estimated	 from	data	
published	by	Tewhey	et	al.	(2016)	(Suppl.	Text	S7).	 	Values	of	p=0	or	p=1	are	rejected	and	re-
sampled.		The	effect	size,	q,	is	set	to	a	fixed,	chosen	value	for	each	simulation.		We	then	compute	
q	deterministically	from	p	and	q,	via:	
	

𝑞 =
𝜃𝑝

1 − 𝑝 + 𝜃𝑝	

	
The	 total	 per-variant	 sequencing	 depths	NDNA	 for	 DNA	 and	NRNA	 for	 RNA	 are	 fixed	 for	 each	
simulation	to	a	chosen	value.		Alternate	(Dalt)	and	reference	(Dref)	allele	counts	for	plasmid	DNA	
are	sampled	from	a	binomial	distribution	parameterized	by	the	sampled	plasmid	allele	frequency	
p	and	the	DNA	sequencing	depth	NDNA:	
	

Dalt | NDNA, p ~ binomial(NDNA, p) 
Dref = NDNA - Dalt 

	
For	RNA	reads,	we	first	simulate	stochasticity	in	allele	frequencies	between	replicates,	to	reflect	
randomness	introduced	during	library	preparation	as	well	as	natural	biological	variability	in	gene	
expression:	
	

Fi | q, c1 ~ beta(mode = q, concentration = c1). 
	
where	q	was	computed	previously	from	q	and	p,	and	c1	was	estimated	from	data	published	by	
Tewhey	et	al.	(2016)	(Suppl.	Text	S7).		Fi	is	taken	to	be	the	alternate	allele	frequency	in	the	ith	
RNA	replicate.	

We	then	generate	unevenness	in	coverage	between	replicates	using	a	linear	model.		We	
observed	in	the	Tewhey	et	al.	(2016)	data	that	the	mean	read	count	in	the	smallest	replicate	is	
typically	not	less	than	~62%	of	the	mean	read	count	in	the	largest	replicate	(Suppl.	Text	S9.1).	
Letting	R	denote	the	number	of	RNA	replicates,	we	solve	for	b	and	Mi	(for	1 ≤ i ≤ R)	such	that:	
	



	
M1 = 0.62MR 
Mi = M1+ib 

	
subject	to	åi	Mi = NRNA.		Mi	is	taken	to	be	the	total	read	count	per	variant	for	the	ith	replicate.	

We	then	simulate	read	counts	for	alternate	and	reference	alleles	in	the	RNA:	
	

Ralt,i | Mi, Fi ~ binomial(Mi, Fi) 
Rref,i = Mi - Ralt,i 

	
We	 simulated	 a	 range	 of	 effect	 sizes	 (0.50,	 0.75,	 0.90,	 1),	 a	 range	 of	 minor	 allele	

frequencies	(0.0001	to	0.5),	a	range	of	variant	read	coverages	per	variant	(30,	50,	100,	500,	1000,	
5000,	10000,	and	1000000	reads	per	variant),	and	different	numbers	of	replicates	(1,	2,	5,	10,	25,	
100).			

We	used	these	simulated	data	sets	to	compare	the	classification	accuracy	and	estimation	
error	of	the	full	BIRD	model,	handicapped	versions	of	the	BIRD	model,	the	Fisher’s	exact	test,	the	
beta-binomial	test,	and	a	recently	published	method	called	QuASAR-MPRA	(Kalita	et	al.,	2018B).			
	

S7.	Estimation	of	Concentration	Parameters	
	
To	 ensure	 that	 our	 simulated	 data	 sets	 were	 statistically	 similar	 to	 real	 data,	 we	 estimated	
dispersion	parameters	 from	 real	data	 sets	and	 then	used	 those	dispersion	parameters	 in	our	
simulator	(Suppl.	Text	S6).		To	estimate	the	dispersion	parameters,	we	implemented	the	multi-
variant	(multi-site)	model	depicted	 in	Suppl.	Fig.	S2.	 	This	model	 is	similar	to	the	BIRD	model,	
except	that	it	generates	multiple	variants	(sites)	simultaneously.		The	different	variants	generated	
by	the	model	share	common	dispersion	parameters	s,	c1,	and	c2.			

We	separately	applied	the	multi-variant	model	to	1000	variants	from	the	Tewhey	et	al.	
(2016)	LCL	data,	372	variants	from	the	adipocyte	data,	407	variants	from	the	pre-adipocyte	data,	
and	173	variants	from	the	Guo	et	al.	(2017)	HepG2	data.		MCMC	was	used	to	produce	dispersion	
estimates	via	the	posterior	median;	separate	estimates	were	produced	for	each	of	the	four	data	
sets.	

Parameter	estimates	for	the	four	data	sets	are	provided	in	the	following	table:	
	
	

Data	 c1	 c2	 s	
Tewhey	et	al.	(2016)	 124.6	 71.9	 0.12	
adipocytes	 20.7	 23.2	 1.41	
preadipocytes	 28.1	 24.1	 1.19	
HepG2	(Guo	et	al.,	2017)	 22.9	 21.5	 1.38	

Suppl.	Table	T7:	Parameter	estimates	for	different	data	sets.	
	

Estimates	 from	the	Tewhey	et	al.	 (2016)	LCL	data	were	used	 in	 the	simulator	as	described	 in	
Suppl.	Text	S6,	for	all	simulations	except	those	supporting	Suppl.	Fig.	S20.		Simulations	based	on	



parameters	estimated	from	the	Guo	et	al.	(2017)	HepG2	data	were	used	For	Suppl.	Fig.	S20,	for	
comparison.	
	

S8.	Optimized	Version	of	the	Model	(“Swift”)	
	
Because	 the	 full	 BIRD	 model	 requires	 MCMC	 and	 is	 therefore	 costly	 to	 apply	 to	 data	 sets	
consisting	of	millions	of	variants,	we	also	implemented	a	simplified	model	that	facilitates	much	
faster	inference.		The	model,	called	Swift	(Suppl.	Fig.	S5),	has	a	simplified	structure	that	enables	
sampling	directly	 from	 the	 joint	 posterior	 distribution,	without	need	 for	MCMC.	 	As	 a	 result,	
inference	with	the	Swift	model	is	approximately	5000	times	faster	than	MCMC-based	inference	
with	the	full	BIRD	model	(Suppl.	Text	S9.5).	
	 In	order	to	allow	direct	sampling	from	the	posterior,	we	decompose	the	joint	distribution	
of	p	and	q	as:	
	

P(p,q|a,b,k,m,c) = P(p|a,b) × P(q|p,k,m,c) 
	
where	read	counts	are	pooled	across	replicates,	so	that	a = åi ai, b = åi bi, k = åi ki, and m = åi 
mi.	 	 The	above	decomposition	makes	 the	conditional	 independence	assumptions	 that	 (1)	p	 is	
independent	of	the	RNA	(and	of	c)	given	the	DNA,	and	(2)	that	q	is	independent	of	the	DNA	given	
the	RNA	(and	given	p).		Assuming	a	uniform	prior	on	p,	the	two	terms	on	the	right	in	the	equation	
above	can	be	written:	
	

P(p|a,b) µ binomial(a|a+b,p) × beta(1,1) µ beta(a+1,b+1) 
 
P(q|p,k,m,c) µ binomial(k|k+m,q) × beta(mean=p,conc=c) µ beta(k+a,m+b) 

	
for	a = p(c-2)	and	b = (1-p)(c-2),	for	concentration	parameter	c;	this	parameterization	results	
in	a	beta	prior	on	q	having	mean	p,	 resulting	 in	shrinkage	of	q	 toward	p.	 	That	shrinkage	of	q	
toward	P	results	in	shrinkage	of	effect	sizes	toward	1	as	in	the	full	BIRD	model.	

We	draw	each	sample	(pi,qi)	by	first	drawing	pi	from	P(p|a,b)	and	then	drawing	qi	from	
P(q|pi,k,m,c),	rejecting	any	sample	of	0	or	1	for	either	pi	or	qi.		Note	that	the	index	i	here	denotes	
the	MCMC	sample	number	(not	replicate).		We	selected	a	fixed	concentration	of	c=100	based	on	
visual	inspection	of	the	resulting	prior	on	q	(see	below).		We	assessed	classification	accuracy	and	
estimation	error	for	several	values	of	c	(Suppl.	Text.	S9.5).		

Given	a	sample	(pi,qi),	we	compute	qi	via:	
	

𝜃K =

𝑞K
𝑝K

1 − 𝑞K
1 − 𝑝K

	

	
Parameterizing	the	beta	prior	on	q	with	c=100	as	described	above	induces	an	implicit	prior	on	q	
that	shrinks	log2q	toward	0	and	contains	a	majority	of	its	mass	between	a	halving	and	a	doubling	



of	transcription	(Suppl.	Fig.	S6B),	similarly	to	the	gamma-lognormal	prior	used	in	the	full	BIRD	
model	(Suppl.	Fig.	S6A).	

We	draw	1000	samples	for	each	variant.		Summaries	based	on	the	posterior	median	and	
95%	credible	interval	are	reported	as	with	the	full	BIRD	model.	
	

S9.	Supplementary	Results	
	
S9.1	Results	on	Human	Data	
	
S9.1.1	Fetal	Adiposity	Data	
	
174	regions	from	chromosome	3	were	captured	from	760	human	donors	as	described	previously	
(Vockley	et	al.,	2016),	totaling	70940	bases.		A	total	of	173,	407,	and	372	variants	having	at	least	
1000	 reads	 were	 tested	 in	 HepG2	 cells,	 pre-adipocytes,	 and	 adipocytes,	 respectively.	 	 One	
replicate	of	DNA	and	three,	five,	and	three	replicates	of	RNA	were	sequenced	in	HepG2	cells,	pre-
adipocytes,	and	adipocytes,	respectively.		Distributions	of	read	coverages	in	HepG2	cells	for	DNA	
(median	=	15731,	std.	dev.	=	26482.1)	and	RNA	(median	=	35235;	std.	dev.	=	95318.0)	are	shown	
in	Suppl.	Fig.	S13A,B.	

To	quantify	the	unevenness	in	coverage	between	RNA	replicates,	for	use	in	generating	
uneven	coverage	in	our	simulator,	we	define	the	statistic	Umean	as	follows.		For	a	single	site,	let	
Nmin	denote	the	smallest	read	count	for	that	site	across	all	replicates,	and	let	Nmax	denote	the	
largest	read	count	for	that	site	across	replicates.	 	Define	Umean	to	be	the	mean	ratio	Nmin/Nmax	
across	all	sites.		For	the	HepG2	data	set,	Umean	=	0.59.	

When	comparing	variants	with	weak	effects	(|log2(q)|<0.5)	to	those	with	stronger	effects	
(|log2(q)|>0.5),	and	also	comparing	uncommon	(MAF<0.1)	to	common	(MAF>0.1)	variants,	those	
with	stronger	effects	were	enriched	for	being	uncommon	in	the	general	population	(Suppl.	Fig.	
S21C;	Fisher’s	exact:	p	=	0.0003	in	preadipocytes,	p	=	0.04	in	adipocytes,	p	=	1	in	HepG2),	which	
would	be	consistent	with	natural	selection	reducing	allele	frequencies	of	deleterious	variants	in	
open	chromatin	regions	in	the	GWAS	locus.		Of	523	tested	variants	in	the	GWAS	locus	(the	union	
across	the	three	cell	types),	96	were	identified	by	BIRD	as	regulatory	variants	with	high	posterior	
probability	(P(regulatory)>0.99)	in	at	least	one	cell	type,	a	proportion	of	18.3%,	which	is	a	1.45-
fold	enrichment	over	the	proportion	(12.6%	=	3878/30667)	in	the	genome-wide	Tewhey	et	al.	
data	(Suppl.	Text	S9.1.2).	

The	 GWAS	 variants	 were	 also	 enriched	 for	 variants	 having	 a	 negative	 effect	 on	
transcription	(Suppl.	Fig.	S21A),	which	would	be	consistent	with	disruption	of	binding	sites	for	
transcriptional	 activators;	 a	 similar	 enrichment	 of	 negative	 effects	 has	 been	 documented	 by	
previous	studies	(e.g.,	Kwasnieski	et	al.,	2012;	Patwardhan	et	al.,	2012).		QuASAR-MPRA	(Suppl.	
Text	S9.6)	estimates	were	also	shifted	toward	negative	effects	in	the	GWAS	locus	as	compared	
to	the	Tewhey	et	al.	data	(Suppl.	Fig.	S21B).		Comparing	medians	of	BIRD’s	estimates	between	
the	GWAS	 locus	and	the	Tewhey	et	al.	data,	 the	difference	was	highly	significant	 (median	for	
GWAS	 variants	 =	 0.866;	 median	 for	 Tewhey	 et	 al.	 data	 =	 1.00;	 Wilcoxon	 W=4965800,	
p=7.182771e-51).		The	medians	of	QuASAR-MPRA’s	estimates	were	very	similar	to	BIRD’s,	and	



were	also	significantly	different	between	the	two	data	sets	(median	for	GWAS	variants	=	0.848;	
median	for	Tewhey	et	al.	data	=	0.989;	Wilcoxon	W=5986000,	p=1.150879e-23).	
	
S9.1.2	Tewhey	et	al.	(2016)	Data	
	
A	total	of	30673	variants	were	synthesized	and	assayed	by	Tewhey	et	al.	(2016)	using	a	massively	
parallel	reporter	assay	(MPRA).		Five	DNA	replicates	and	thirteen	RNA	replicates	were	sequenced;	
we	used	only	data	from	LCLs	from	individuals	NA12878	and	NA19239.		For	this	data	Umean	=	0.62.		
Distributions	of	read	coverages	for	DNA	(median	=	7750.3;	std.	dev.	=	4922.2)	and	RNA	(median	
=	17712.8;	std.	dev.	=	30276.9)	are	shown	in	Suppl.	Fig.	S13C,D.			
	
S9.2	Impacts	of	Removing	Effect	Prior	from	the	Model	
	
A	modified	version	of	BIRD	was	created	that	lacks	q and	its	prior	(Suppl.	Fig.	S3).		Because	the	
model	lacks	q,	paired	samples	were	drawn	for	p	and	q	from	their	joint	posterior	distribution	under	
the	model,	using	MCMC,	and	a	value	of	q was	computed	for	each	of	these	samples	via:	
	

𝜃 =

𝑞
1 − 𝑞
𝑝

1 − 𝑝
	

	
These	values	of	q	were	 then	used	 to	compute	posterior	median	estimates	as	 in	 the	 full	BIRD	
model.		
	
S9.3	Impacts	of	Pooling	Replicates	
	
Two	modified	versions	of	BIRD	were	created	that	lacked	explicit	replicates	(Suppl.	Fig.	S4A,B).		In	
these	models,	counts	are	pooled	(summed)	across	replicates,	and	a	single	binomial	is	used	for	
the	summed	DNA	read	counts:	
	

åjaj | åjaj + bj, p ~ binomial(åjaj + bj, p) 
	
In	model	NR1	(Suppl.	Fig.	S4A),	a	single	binomial	is	also	used	for	the	summed	RNA	read	counts:	
	

åjkj | åjkj + mj, q ~ binomial(åjkj + mj, q) 
	
In	comparison,	model	NR2	(Suppl.	Fig.	S4B)	incorporates	an	additional	latent	variable,	d,	to	allow	
for	 greater	 variance	 in	 estimates	 of	 q	 (effectively	 capturing	 some	 of	 the	 variability	 between	
replicates):	
	

åjkj | åjkj + mj, q ~ binomial(åjkj + mj, d) 
d ~ beta(mode = q, concentration = c) 

	



Despite	not	modeling	replicates,	the	accuracy	of	these	models	increased	as	larger	numbers	of	
replicates	were	used	in	simulated	data	sets	with	fixed	read	coverage	(Fig.	4A,B,	dashed	lines).		
This	is	due	to	the	fact	that	sums	of	binomial	variables	with	different	probabilities	of	success	are	
distributed	 according	 to	 a	 Poisson-binomial	 distribution	 with	 a	 variance	 that	 decreases	 with	
increasing	 heterogeneity	 between	 probabilities	 of	 success	 (i.e.,	N	 and	 𝑞	 are	 fixed,	 and	𝜎57MN 	
increases):	
	

𝑉𝑎𝑟(𝑋) = 𝑞K(1 − 𝑞K)
S

KTI

= 𝑁𝑞 1 − 𝑞 − 𝑁𝜎57MN 	

	
(Poisson,	1837),	where	X	is	the	alternate	allele	read	count,	𝑞	is	the	mean	of	the	parameters	qi,	
and	𝜎57MN 	is	the	between-replicate	variance	in	the	binomial	parameters	qi.		Here,	qi	represents	the	
alternate	 allele	 frequency	 in	 the	 ith	 RNA	 replicate,	 and	 for	 this	 analysis	we	 fix	N	 at	 the	 total	
number	of	reads	for	the	variant.		Note	that	𝜎57MN 	is	not	to	be	confused	with	the	parameters	of	a	
model	 (such	 as	 a	 concentration	 parameter);	 rather,	 it	 is	 a	 property	 of	 the	 data,	 not	 of	 any	
particular	model.			

For	a	series	of	simulated	data	sets	in	which	the	total	reads	per	variant	was	fixed	(e.g.,	fix	
N=1000)	and	the	number	of	replicates	was	increased	from	1	to	10,	the	sample	variance	in	read	
counts	 for	 the	 alternate	 allele	 decreased	 almost	 monotonically	 with	 increasing	 numbers	 of	
replicates,	as	predicted	by	the	above	formula	(Suppl.	Fig.	S11A).	 	Nearly	monotonic	decreases	
were	also	seen	in	the	sample	variance	of	the	maximum	likelihood	estimate	of	q	(Suppl.	Fig.	S11B),	
the	sample	variance	of	the	ad	hoc	estimate	of	q	(Suppl.	Fig	S11C),	and	the	RMSE	of	the	ad	hoc	
estimate	of	q	(Suppl.	Fig.	S11D).	

These	observations	indicate	that,	for	allelic	assays,	merely	generating	more	experimental	
replicates	can	potentially	produce	more	accurate	inferences,	for	any	model,	even	if	that	model	
does	 not	 distinguish	 counts	 from	different	 replicates.	 	 That	was	 the	 case	 for	 classification	 of	
simulated	variants	(Figs.	4A,B,	dashed	lines).		However,	distinguishing	counts	between	replicates	
produced	 additional	 increases	 in	 classification	 accuracy,	 as	 demonstrated	 by	 the	 comparison	
between	the	full	BIRD	model	and	the	models	in	which	reads	are	pooled	across	replicates	(Figs.	
4A,B	solid	lines	versus	dashed	lines).		The	full	model	with	replicates	had	lower	Type	I	error	on	
simulated	data	than	model	NR1	that	pools	read	counts	across	replicates,	and	lower	Type	II	error	
than	 model	 NR2	 that	 also	 pools	 read	 counts	 but	 includes	 an	 additional	 latent	 variable	 to	
accommodate	greater	variance	in	estimates	of	q	(Suppl.	Fig.	S9).		The	full	model	also	produced	
credible	 intervals	 and	 point	 estimates	 that	 for	many	 simulation	 parameters	 had	 lower	 RMSE	
and/or	higher	coverage	of	95%	credible	intervals	(Suppl.	Fig.	S10).	
	
S9.4	Coverage	of	Credible	Intervals	
	
BIRD	 computes	 a	 95%	 credible	 interval	 (a,b)	 for	q	 by	 drawing	N	 samples	 from	 the	 posterior	
distribution via	MCMC	and	then	identifying	the	largest	value	a	such	that	Nq<a / N ≤ 0.025	and	the	
smallest	value	b	such	that	Nq>b / N ≤ 0.025,	where	Nq<a	is	the	number	of	samples	for	which	q < a,	
and	Nq>b	is	the	number	of	samples	for	which	q	> b.			



On	 variants	 simulated	 to	 have	 an	 effect	 size	 of	 0.5,	 a	 version	 of	 BIRD	 in	 which	 the	
simulated	dispersion	parameters	are	substituted	into	the	model	produced	95%	credible	intervals	
that	 contained	 the	 true	q in	 94.1%	of	 cases	 at	 high	 read	depth	 (Suppl.	 Fig.	 S8,	 red	bars).	 	 In	
practice,	 true	 dispersions	 are	 unknown,	 and	 the	 BIRD	 model	 places	 a	 hyperprior	 on	 the	
dispersions,	resulting	 in	credible	 intervals	that	have	somewhat	 lower	coverage	(Suppl.	Fig.	S8,	
blue	bars).	
	
	
	
	
S9.5	Performance	of	the	Swift	Model	
	
Our	optimized	model,	Swift,	is	approximately	5000	times	faster	than	the	full	BIRD	model,	due	to	
the	fact	that	BIRD	requires	MCMC	whereas	Swift	enables	direct	i.i.d.	sampling	from	the	posterior.		
Timing	for	a	single	run	of	BIRD	and	Swift	on	1000	variants	on	a	single	CPU	is	given	in	Table	S9.5:	
	
	

	 Elapsed	time	
BIRD	 41.5	min	
Swift	 0.5	sec	

Suppl.	Table	T9.5:	Timing	of	BIRD	and	Swift	on	1000	variants	on	a	single	CPU.	
	

Because	Swift	has	a	simplified	structure	that	 ignores	replicates,	 in	some	cases	it	 is	 less	
accurate	than	BIRD,	particularly	at	 low	allele	frequencies	(Suppl.	Figs.	S16,	S17,	S18B,C).	 	As	a	
result,	for	users	with	relatively	small	numbers	of	variants	to	test,	or	for	variants	with	low	allele	
frequency	 in	 the	 sample,	we	 recommend	 using	 the	 full	 BIRD	model	 for	 increased	 prediction	
accuracy.		
	
S9.6	Results	for	a	Competing	Model	
	
We	also	ran	the	QuASAR-MPRA	model	(Kalita	et	al.,	2018B)	on	simulated	data	at	a	range	of	allele	
frequencies	(0.005	to	0.5)	and	variant	read	coverages	(10	to	5000),	and	found	that	accuracy	was	
very	high	for	variants	with	large	allele	frequencies,	but	that	BIRD	produced	higher	classification	
accuracy	overall	(median	BIRD	AUC=0.708	versus	median	QuASAR-MPRA	AUC=0.549;	two-sided	
Wilcoxon	V	=	 627,	 p-value	 =	 2.91e-10),	 as	 did	 Swift	 (median	 Swift	AUC=0.636	 versus	median	
QuASAR-MPRA	 AUC=0.549;	 two-sided	Wilcoxon	 V	 =	 595,	 p-value	 =	 3.821e-07),	 and	 that	 the	
differences	were	 particularly	 evident	 for	 rare	 and	 uncommon	 variants	 at	 high	 read	 coverage	
(MAF≤0.05,	read	coverage=5000)	 (Suppl.	Fig.	S16,	S17,	S18;	Suppl.	Table	S1,	S2).	 	The	highest	
minor	allele	frequency	for	which	BIRD	significantly	outperformed	QuASAR-MPRA	(p-value	<	0.01	
and	AUC	difference	>	5%)	was	MAF=0.1	(p-value=0.0008;	AUC	difference=5.3%).		In	contrast,	we	
did	not	detect	a	difference	in	predictive	accuracy	between	QuASAR-MPRA	and	the	standard	beta-
binomial	test	(median	beta-binomial	AUC=0.547	versus	median	QuASAR-MPRA	AUC=0.549;	two-



sided	Wilcoxon	V	=	349,	p-value	=	0.3833),	 finding	 instead	 that	 they	 correlated	very	 strongly	
(Spearman	rho=0.995;	Suppl.	Fig.	S18A).			
	 The	 same	 general	 trends	 were	 seen	 when	 the	 simulator	 was	 modified	 to	 use	
concentration	parameters	estimated	 from	STARR-seq	experiments	 in	HepG2	cells	 (Guo	et	al.,	
2017)	instead	of	from	MPRA	LCL	data	(Tewhey	et	al.,	2016),	as	shown	in	Suppl.	Fig.	S20	and	Suppl.	
Tables	S3,	S4.		Differences	were	again	significant	for	BIRD	versus	QuASAR-MPRA	(median	BIRD	
AUC=0.875	versus	median	QuASAR-MPRA	AUC=0.522;	Wilcoxon	 two-sided	V	=	150,	p-value	=	
7.629e-05).	 	 The	 highest	MAF	 for	which	 BIRD	 significantly	 outperformed	QuASAR-MPRA	was	
MAF=0.25	(p-value=3.4765e-07;	AUC	difference=7.4%).		Though	differences	were	significant	for	
Swift	versus	QuASAR-MPRA	(median	Swift	AUC=0.571	versus	median	QuASAR-MPRA	AUC=0.522;	
Wilcoxon	two-sided	V	=	140,	p-value	=	0.001343),	we	consider	those	differences	to	be	modest.	
	 It	should	be	noted	that	QuASAR-MPRA	makes	use	of	less	information	than	the	other	three	
methods.	 	BIRD,	Swift,	and	the	beta-binomial	 test	all	make	use	of	 four	pieces	of	 information:	
allele	frequency	and	read	coverage	in	DNA,	and	allele	frequency	and	read	coverage	in	RNA.		The	
read	coverage	provides	 information	regarding	dispersion.	 	While	QuASAR-MPRA	models	allele	
frequency	 and	 coverage	 in	 RNA,	 for	DNA	 it	 has	 access	 only	 to	 the	 allele	 frequency,	which	 is	
provided	by	the	end	user	as	a	fixed-point	estimate;	DNA	read	coverage	is	not	provided	to	the	
program.	 	 Instead	 of	 estimating	 DNA	 dispersion	 from	 DNA	 read	 coverage,	 QuASAR-MPRA	
estimates	its	DNA	concentration	parameter	from	the	RNA,	under	the	assumption	that	DNA	and	
RNA	counts	(meaning	total	counts	per	variant)	are	approximately	equal.		In	contrast,	BIRD,	Swift,	
and	the	standard	beta-binomial	test	all	make	explicit	use	of	read	coverage	in	both	DNA	and	RNA	
to	obtain	separate	estimates	of	dispersion	for	DNA	and	RNA.	

Because	QuASAR-MPRA	performs	substantially	better	on	strongly	 imbalanced	test	sets	
than	under	balanced	test	sets	 (Suppl.	Fig.	S19),	we	tested	QuASAR-MPRA	only	on	 imbalanced	
data,	and	omitted	it	from	all	other	analyses	that	used	balanced	data.		(Balanced	data	sets	were	
used	in	all	other	simulations,	as	balanced	test	data	produces	smoother	ROC	curves	and	therefore	
more	accurate	AUC	estimates.)	

For	 variants	 captured	 from	 individuals	 and	 assayed	 directly	 via	 STARR-seq,	 allele	
frequencies	are	expected	to	be	skewed	toward	0	rather	than	0.5,	as	in	our	fetal	adiposity	data	
(Suppl.	Fig.	S12A).		As	such,	for	data	with	skewed	allele	frequencies,	BIRD	is	recommended,	due	
to	its	better	performance	on	rare	variants.	


