1, Calculate a
A pre-specified number of studies K

Goal: Calculate the AW-Fisher test statistic given:
Test Statistic ]

+ A pre-specified targeted p-value c;
[ Goal: Half of simulated samples contribute to the calculation
[ 1.a, Determinen ]-' « Ifg20.01,n=1

] —+ If¢;<0.01, n = ®'(c,), Pis defined in Eq (4).

] [~ Goal: Determine the test statistic Sy, given Kand c;

A

* Syt =ty tis the ordered AW-Fisher statistic

—+ mq<c¢ <My, 4, mis defined in Eq (5)

1.b, ﬁnportance
Sampling

[~ Goal: Calculate a grid of AW-Fisher test statistics
2, Select Targets « K=2,3,...,100
—+ ¢=1,0.99 ...,0.02 0.01, 103, 104, ..., 10100

[ 3, Spline

] [~ Goal: Calculate AW-Fisher p-value p,s for any test statistic S,

Interpolation * log(cy) = f«(Sky), fis monotone Hermite spline

= * 10g(Pops) = fi(Saps)

Figure S1: Summary flowchart of the AW-Fisher p-value calculation procedure based
on importance sampling and spline interpolation.



Table S1: AW-Fisher p-value accuracy in terms of root mean squared error (rMSE)
comparing interpolation approach, permutation-based approach, and Monte Carlo
approach with closed form solution as benchmark. Two studies (sample size N; = 20,
Ny = 20) are included as input. B is number of permutations/samplings, and the
closed form solution and the interpolation approach don’t require any permutation.
The range of the resulting AW-Fisher p-values are displayed in the first column. The
computing time for each method is displayed in the last row. The computing time
for the closed form solution is 0.03 seconds.

. Permutation Monte Carlo
p-value range | Interpolation B-10° B—10" B-10° B- 10
(0.01,1] 0.0002 0.0027 0.0008 0.0014 0.0002
(0.001,0.01] 0.0003 0.06 0.02 0.042 0.0047
(0.0001,0.001] 0.0007 0.32 0.1 0.29 0.045
(1e-10,0.0001] 0.0006 3.4 2.6 3.4 2.6
(1e-50,1e-10] 0.0026 20.5 19.7 20.5 19.7
(1e-100,1e-50] 0.0063 61.2 60.2 61.2 60.2
(0,1e-100] 0.72 118.0 117.0 118.0 117.0
time 0.0036 secs 11.6 mins 2.0 hours &.2 mins 1.4 hours

Table S2: AW-Fisher p-value accuracy in terms of root mean squared error (rMSE)
comparing interpolation approach, permutation-based approach, and Monte Carlo
approach with closed form solution as benchmark. Two studies (sample size N; = 20,
Ny = 20) are included as input. B is number of permutations/samplings, and the
closed form solution and the interpolation approach don’t require any permutation.
The range of the resulting AW-Fisher p-values are displayed in the first column. The
computing time for each method is displayed in the last row. The computing time
for the closed form solution is 0.03 seconds.

. Permutation Monte Carlo
p-value range | Interpolation B-10° B—10" B-—10° B— 10
(0.01,1] 0.0002 0.0027 0.0003 0.0014 0.0002
(0.001,0.01] 0.0003 0.063 0.013 0.051 0.0058
(0.0001,0.001] 0.0007 0.32 0.072 0.31 0.049
(1e-10,0.0001] 0.0006 3.5 2.7 3.5 2.7
(1e-50,1e-10] 0.0027 22.4 21.5 22.4 21.5
(1e-100,1e-50] 0.0066 63.8 62.9 63.8 62.9
(0,1e-100] 0.9 126.3 125.3 126.3 125.3
time 0.0042 secs 12.4 mins 2.0 hours 9.8 mins 1.7 hours




Table S3: Type I error rate performance evaluation of the interpolation method via
simulation studies. We simulated K = 2,5, 10 studies with sample sizes (1) N = 20
in all studies; (2) N = 50 in all studies; and (3) sample sizes alternate between
N; = 20 and N, = 50 in each study. 10% null genes (with zero effect size) were
simulated in each study. The nominal « levels were pre-specified at 5.00 x 1072,
1.00 x 1072, 1.00 x 1073, 1.00 x 107%, and 2.50 x 1076.

(1) Sample size N = 20 in each study

nominal « level actual o level
K=2 K=5 K =10
5.00 x 1072 501 x 1072 499 x 1072 4.98 x 102
1.00 x 102 998 x 1073  9.97x 1072 9.96 x 1073
1.00 x 1073 1.00 x 10*  9.96 x 107* 9.91 x 10~*
1.00 x 1074 1.00 x 107*  9.71 x 10°® 1.01 x 10~
2.50 x 1076 238 x 1076 214 x107% 237x107°°

(2) Sample size N = 50 in each study

nominal « level

actual o level

K =2 K =5 K =10
5.00 x 1072 5.00 x 1072 4.99 x 1072 4.98 x 1072
1.00 x 102 9.96 x 107%  9.97 x 107%  9.96 x 1073
1.00 x 1073 9.93 x107*  9.93x10™* 9.91 x 10~*
1.00 x 1074 9.85 x 107 9.90 x 107°  9.88 x 1077
2.50 x 107¢ 248 x 107 237 x107% 246 x 1076

(3) Sample sizes alternate between Ny = 20 and Ny = 50 in each study
nominal a level actual a level

K =2 K =5 K =10
5.00 x 102 5.01 x 1072 4.99 x 1072  4.98 x 102
1.00 x 1072 9.98 x107%  9.99 x 107%  9.97 x 1073
1.00 x 1073 1.00 x 107* 997 x 107*  9.91 x 10~
1.00 x 1074 1.00 x 107*  1.00 x 107*  9.98 x 107
2.50 x 107¢ 2.45x107% 237 x107% 249 x 1076
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Figure S2: QQplot of the interpolation method via simulation studies. We simulated
K = 2,5,10 studies with sample sizes N = 20 in all studies. 10® null genes were
simulated in each study. The genomic inflation factor A is marked on the plot.
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Figure S3: QQplot of the interpolation method via simulation studies. We simulated
K = 2,5,10 studies with sample sizes N = 50 in all studies. 10® null genes were
simulated in each study. The genomic inflation factor A is marked on the plot.
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Figure S4: QQplot of the interpolation method via simulation studies. We simulated
K = 2,5,10 studies with sample sizes alternating between N; = 20 and Ny = 50

in each study. 10® null genes were simulated in each study. The genomic inflation
factor A is marked on the plot.
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Figure S5: Comparison table of variability index for different scenarios (combinations
of sample sizes (N = 20,50,80) and noise levels ¢ = 1,1.5,2). Only differential
expressed genes counting from each individual studies are considered. Height of each

bar indicates the mean level of variability index and error bar indicates the standard
error.
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Figure S7: Scattered plot of p-value (x-axis, in — log;, scale) vs variability index (y-
axis) for the declared DE genes (AW-Fisher g-value < 0.05) for different combinations
of sample sizes (N = 20,50, 80) and noise levels o = 1, 1.5, 2).



Figure S8: Six meta-pattern modules of biomarkers from the simulation study. Each
gene module (Module I, 11, ..., VI) shows a set of detected biomarkers with similar
meta-pattern of differential signals. (A) Heatmaps of detected genes (on the rows)
and samples (on the columns) for each study. In the heatmap, red color represents
higher expression level, and the green color represents lower expression level. Black
color bar on top represents control subjects and orange color bar on top represents
case subjects. Number of genes is shown on the left under each module number. (B)
Variability index (genes on the rows and studies on the columns). Variability index
is described in Section 2.1 Gray heatmap range from 0 (black) to 1 (white), which is
the maximum of the variability index. Genes of each module are sorted based on the
mean variability index. (C) Signed AW-Fisher weights 0, for gene ¢g and study k.
Light blue represents vy = 1, yellow corresponds to 04, = —1 and black for 9, = 0.
Representative signed AW-Fisher weights for each module are shown on the right.
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Figure S9: Scattered plot of p-value (x-axis, in — log,, scale) vs variability index (y-
axis) for the declared DE genes (AW-Fisher g-value < 0.05) of the mouse metabolism
data.

Table S4: Contingency table of 794 detected DE genes with simulation underlying
truth (on the columns) and the hierarchical clustering result with 7 target modules
(on the rows). 0 represents the scattered gene group. 1 ~ 6 represent 6 detected
modules. Bolded numbers are genes with correct assignment.

Module | homo— homo+ sspl— sspl4+ ssp2— ssp2+ nonDE
1 0 160 0 0 0 0 0
2 22 41 20 1 0 2 22
3 175 0 0 0 0 0 0
4 0 0 0 0 0 105 4
5t 0 0 0 0 91 0 4
6 0 0 0 84 0 0 4
0 0 0 59 0 0 0 0




Table S5: Contingency table of 794 detected DE genes with simulation underlying
truth (on the columns) and K-means clustering result with 7 target modules (on the
rows). 1 ~ 7 represent 7 detected modules. Bolded numbers are genes with correct
assignment.

Module | homo— homo+ sspl— sspl4+ ssp2— ssp2+ nonDE
1 0 0 0 0 87 0 3
2 20 35 4 5 4 6 22
3 0 166 0 0 0 0 0
4 0 0 0 0 0 101 2
5 0 0 75 0 0 0 4
6 177 0 0 0 0 0 0
0 0 0 0 80 0 0 3

Table S6: Sample size summary for two real data examples. For multi-tissue mi-
croarray studies using metabolism related knockout mice, there are three tissues to
be meta-analyzed comparing wild type versus VLCAD-deficient. For multi-brain-
region RNA-seq studies using HIV-1 transgenic rats, there are three brain regions to
be meta-analyzed comparing F334 rats versus HIV infected rats. The number in the
parentheses is the number of samples actually after removing potential outliers.

(a) sample size of mouse metabolism microarray (b) sample size of RNA-seq in brains of

RNA expression HIV-1 transgenic rat
Tissue  wild type VLCAD-deficient Brain Region F334 HIV
Brown 4 4 HIP 12 12(11)
Heart 3 4 PFC 12 12(10)
Liver 4 4 STR 12 12
Skeleton 3 3




(A) B) (C)
[ 1 [ c | [=]
c 'g c %
Brown Heart Liver Skeleton §§§%§ ?,E'«;a
—- 22X = 02 X
| - - - . é :_(1,1’1,1)
f. _
T T T e
= 0 L=
q 1 I 1 F 15 Qe
| =
= _§0,1,-1,0
1 - I 1 1 FEas
VI, I I(OJ,0,0)
e
»
(1,1,0,0)
= I I 1 1.
1 L I Bl
x e I e e =5 B§ 010

Figure S10: Ten meta-pattern modules of biomarkers from mouse metabolism ex-
ample. Each gene module (Module I, II, ..., X) shows a set of detected biomarkers
with similar meta-pattern of differential signals. (A) Heatmaps of detected genes (on
the rows) and samples (on the columns) for each tissue (brown fat, heart, liver and
skeleton), where each tissue represents a study. In the heatmap, red color represents
higher expression level, and the green color represents lower expression level. Black
color bar on top represents wild type (control) and orange color bar on top represents
VLCAD -/- mice (case). Number of genes is shown on the left under each module
number. (B) Variability index (genes on the rows and studies on the columns). Gray
heatmap range from 0 (black) to 1 (white), which is the maximum of the variability
index. Genes of each module are sorted based on the mean variability index. (C)
Signed AW-Fisher weights 04, for gene g and study k. Light blue represents vy, = 1,
yellow corresponds to 04, = —1 and black for 9y, = 0. Representative signed AW-
Fisher weights for each module are shown on the right. Note Brown represents brown
fat tissue.
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Figure S11: Correlation heatmap before and after removing the outliers.
blocks are three brain region: hippocampus (HIP), prefrontal cortex (PFC) and
striatum (STR) respectively.

Three

Table S7: Unstable AW weight estimates and their variability indexes. The first row
represents the Affymetrix probe names. The p-values from the three tissues (brown
fat, heart and liver) are listed in column 2 — 4. The AW weight estimates for the
three tissues are listed in column 5 — 7. and the variability of AW weight are listed
in column 8 — 10.

p-value weight variability

Probe Brown  Heart Liver | Brown Heart Liver | Brown Heart Liver
1419484 _a_at | 3.9e-04 9.6e-02 2.1e-03 1 1 1 0.00 0.93 0.00
1421163_a_at | 2.3e-06 1.1e-01 8.8e-03 1 0 1 0.00 0.84 0.77
1421704 _a_at | 1.7e-02 7.5e-02 8.9e-05 1 1 1 0.11 0.76 0.00
1424007_at | 2.7e-02 8.8e-02 2.2e-03 1 1 1 0.50 0.97 0.00
1425567_a_at | 3.6e-04 1.0e-01 2.1e-03 1 0 1 0.00 0.94 0.00
1425806 a_at | 1.4e-02 1.0e-01 9.9¢-04 1 1 1 0.48 0.98 0.00
1429054 _at | 2.8e-02 1.0e-01 7.4e-04 1 1 1 0.39 0.77 0.00
1437103_at | 3.8e-03 1.0e-01 1.0e-03 1 1 1 0.03 0.99 0.00
1448028 at | 5.7e-05 1.1e-01 5.1e-03 1 0 1 0.00 1.00 0.26
1449518_at | 1.8e-02 1.0e-01 1.2e-03 1 1 1 0.30 0.99 0.00
1452418 at | 6.5e-07 1.1e-01  3.5e-03 1 0 1 0.00 0.93 0.03

11
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Figure S12: Three meta-pattern modules of biomarkers from HIV transgenic rats
example. Each gene module (Module I, IT and IIT) shows a set of detected biomarkers
with similar meta-pattern of differential signals. (A) Heatmaps of detected genes (on
the rows) and samples (on the columns) for each brain region (HIP, PFC or STR).
where each brain region represents a study k. In the heatmap, red color represents
higher expression level, and the green color represents lower expression level. Black
color bar on top represents F334 rats (control) and orange color bar on top represents
HIV transgenic rats (case). Number of genes is shown on the left under each module
number. (B) Variability index (genes on the rows and studies on the columns).
Variability index is described in Section 2.1, Gene modules, gray heatmap range
from 0 (black) to 1 (white), which is the maximum of the variability index. Genes of
each module are sorted based on the mean variability index. (C) AW weight result.
Light blue color represents AW weight 1 and up-regulation. Yellow color represents
AW weight 1 and down-regulation. Black color represents AW weight 0. Genes are
shown on the rows and studies are shown on the columns Number of genes is shown
on right of each module.
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I closed-form solution for AW-Fisher K=2 and
K=3

I.1 K=2

Recall that S = ming L(T(w; P)) and the observed AW-Fisher statistics is sops =
$(Pops)- Let t; = exp(—XQ_jQ(sObs)/Q) and T; = []]_, P, where X;ﬁ(t) is the 100(1 —
t)% quantile of ng and P;’s are order p-values, then

P(S < sops) = P(UIL{T < 1;}). (1)

Since the joint distribution of Py, i = 1,..., K is f(p1,...,px) = K!, 0 < Py <
Poy < -+ < Py < 1, it is possible to estimate P(S < sq,) analytically. Without
loss of generality, let’s denote by A; the event {7 < ¢;}, then P(S < sqs) can be
rewritten as

P(S < sobs) = P(Uj21 A7) = P(Ar) + i]P(Ak N (U2 49)), (2)

k=2

where Af is the complementary event of A;. The above formula provides an analytical
way to compute the p-value P(S < s45). For example, when K = 2,

P(S < sops) = (U {Ty < ;}) = 1 = P(Ty > t,, Ty > 1)
1 1
=1 _/ / L(py < pa2)dpadpy =1 —/ / 2dpodp,
t2/p1 t1 Jmax{tz/p1,p1}

/2

2
=1- / 2(1 — py)dpy — / 2(1 —ta/p1)dp
max(t1,t5/%) min(t1,t5/?)
172

=1+ (1 — ) | 1/2) —2(p1 — 19 log(p1)) | ‘2 in(ty t1/2)

max(t1,t

In the case t; > t1/2,
P(S < spps) =1 — (1 — 1) = 2t; — 3

If ¢, <t/

1/2

t
P(S < o) = 1= (1= 157°)° = 215" = 11) + 2tz log (=)
1

= tylog(ty/t]) + 2t — to

Therefore, for K = 2, the p-value P(S < s4) for given observed test statistic — log(t)
can be computed analytically by

2t — 2 12 >ty
tolog(ta/12) + 2t) —to, 3 <ty

P(S < sops) = { (3)
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.2 K=3
When K = 3,

]P(S S Sobs)
= P(Uizl{Tj <t;}) =1-DP(T1 > t1,T5 > t5,T5 > t3)

1,1 1
—1- / / / 6 - 1(p1 < pa2 < p3)dpsdpadpy
t1 t2/p1 t3/p1p2

1 1 1
=1- 6/ / / dpzdpadp,
t1 Jmax(te/p1,p1) < max(ts/p1p2,p1)

1 1 1 pmax((ts/p1)'/%,t2/p1,p1)
—1— 6/ / (1 — po)dpadpy — 6/ / (1 — t3/p1p2)dpadp:
t1 Jmax((t3/p1)'/?,t2/p1,p1) t1 Jmax(t2/p1,p1)

1 1
max( (¢ I/Q,t R
=1+ 3/ (1 - p2)2 1102=max((t3/p1)1/27t2/p1,Pl) dpy — 6/ (p2 o (t?’/pl) 10gp2) |p2=r(rgai</(f21}p1,p12)/pl ) dpr

t1

1 min(ts/2 2 /t3)
—1- 3/ (1= p1)*dp, — 3/ (1 —ta/p1)*dp:

max(t1,t;/2,té/3) max(thmin(té/z,t%/tg))

t1

min(t3,max(t1,t2/t3))

min(té/Q,té/S)
6 / (ts/p1) Y2 — ta/pr — (ts/2p1) log(tsp /£2)dpy
min(t1,ty’ % ,t3/%)
ta/3
o (ta/p1)"2 = p1 — (t/2p1) o(ts/2!)
. /3 1/2
min(t;" ", max(t1,t;' 7))

The above formula can be further simplified based on the magnitude relationship
among (t1, té/ 2, t;,/ %). There will be 5 conditional formula. We omit the mathematical
details. In general, when we have K studies, there will be O(K!) conditional formula
according the magnitude relationship among (¢, t;/ 2. ,t%K).

II Simulation

The main simulation setting mimics the reality of a transcriptomic study by consid-
ering generative process of DE genes and correlation structures between genes. Note
that this simulation also applies to Section 3.1.1 and Section 3.1.3. Below are the
details for the simulation.

1. Simulate K = 2 studies, G = 10,000 genes and 2N subjects (N = 20) with N
cases and N controls.

2. Firstly, we simulated correlated gene structure and assumed no effect size for
any gene or any study.

(a) For the first 4,000 genes, simulate 200 gene modules with 20 genes in
each module and the remaining 6,000 genes are uncorrelated. Denote by

15



C, € {0,1,...,200} the cluster membership indicator for gene ¢ (e.g.,
Cy, = 1 indicates gene g is in module 1 while C; = 0 indicates gene g is
not in any gene module).

For module ¢ and study k, simulate A’, ~ W~1(®,60), where 1 < ¢ < 200,
® = 0.5159x20 + 0.5J59x20, W1 denotes the inverse Wishart distribution,
I is the identity matrix and J is the matrix with all elements equal to 1.
A, is calculated by standardizing A/, such that the diagonal elements are
all 1’s. The covariance matrix for gene module ¢ in study k is calculated
as Y = Ak

Denote by ge1, . - ., geoo the indices of the 20 genes in module ¢ (i.e., Cy,, =

¢, where 1 < ¢ < 200 and 1 < j < 20). Simulate expression levels
of genes in module ¢ for sample n in study k as (Xj .- X)0pm) ~
MVN(0, X.5), where 1 < n < 2N and 1 < k < K. For any uncorrelated
gene g with Cy = 0, simulate the expression level for sample n in study &

as X/, ~N(0,0%), where 1 <n < 2N and 1 <k < K.

3. Simulate effect sizes and their DE directions for differentially expressed (DE)
genes.

(a)

(c)

Assume that the first G; genes are DE in at least one of the combined
studies, where G; = 30% x G. For each 1 < g < Gy, simulate v, from
discrete uniform distribution v, ~ UNIF(1,...,K) and then randomly
simulate subset v, C {1,..., K'} such that |v,| = v,. Here v, is the set of
studies in which gene ¢ is DE.

For any DE gene g(1 < g < Gy), simulate gene-level effect size 6, ~
Nos+(1,1), where N, denotes the truncated Gaussian distribution within
interval (a,00). Also simulate study-specific random effect size 6y, ~
N(f,,0.22).

Simulate d, ~ BIN(1,0.5), where 1 < g < ;. Here d, is the DE direction
for gene g for majority of studies.

4. Add the directed effect sizes to the gene expression levels simulated in Step ?77.

For control subjects (1 < n < N), set the expression levels as Xy, = X/

gkn*

For case subjects (N +1 <n < 2N),if 1 < g < G; and k € v,, we set the
expression levels as Xgp, = X/, + (—1)% 0.
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