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A Gaussian Mixture Copula Model
In this section, we provide the relevant background on mul-
tivariate distributions, copulas and mixture models required
for a self-contained description of GMCM. We state the
main results without proofs that can be found in previous
literature on copulas (Trivedi et al., 2007; Joe, 2014) and
GMCM (Tewari et al., 2011; Bilgrau et al., 2016; Bhat-
tacharya and Rajan, 2014). We also compare GMCM with
related mixture- and copula-based models.

Distributions and Densities
Consider n i.i.d. instances of p-dimensional data, X =
[xij ]n×p = (X1, . . . ,Xp), where Xj denotes the jth dimen-
sion of data, i denotes the observation (i = 1, . . . , n), and
j denotes the dimension (j = 1, . . . , p). We use bold font
for vectors and matrices to distinguish them from scalars.
Single subscript denotes the index along dimension, unless
specified otherwise.

The joint Cumulative Distribution Function (CDF) of X
is defined by

F (x) = P (X ≤ x) = P (X1 ≤ x1, . . . ,Xp ≤ xp).

For continuous-valued X, a non-negative Probability Den-
sity Function (PDF), f , exists, such that

F (x) =

∫ x

−∞
f(u)du and

∫ ∞
−∞

f(u)du = 1

where the integrals are multidimensional, i.e.,∫ x

−∞ f(u)du =
∫ x1

−∞ . . .
∫ xp
−∞ f(u1, . . . , up)du1 . . . dup.

The marginal CDF of Xj , denoted by Fj , is defined by
Fj(x) = P (Xj ≤ x) = F (∞, . . . ,∞,Xj ≤ x,∞, . . . ,∞).

The jth marginal PDF, fj , can be obtained by ‘marginalizing
out’ all other dimensions from the joint PDF:
fj(x) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(u1, . . . , up)du1 . . . , duj−1, duj+1, . . . , dup.

Note that a CDF (including the marginal CDF) maps a
random variable to a scalar that is uniformly distributed in
the interval [0, 1]. Thus, the inverse CDF or quantile function
is well-defined: F−1

j (v) = inf{Xij : Fj(Xij) ≥ v}, where
v ∼ unif(0, 1). This enables a transformation of a scalar,
uniformly distributed between 0 and 1, to a unique value
of the random variable Xij , viz., the minimum amongst all
those values whose marginal CDF value exceeds v.

Copulas
While the marginal CDF values, along each dimension, is
uniformly distributed, the joint distribution of all p marginal
CDFs is not uniform in a p-dimensional hypercube. This dis-
tribution is modeled by a copula. A p–dimensional copula is
a multivariate distribution function C : [0, 1]p → [0, 1], de-
fined on random variables obtained through CDF transfor-
mations, Uj = Fj(Xj).

A theorem by Sklar (1959) shows that copulas can
uniquely characterize continuous joint distributions:
Theorem 1 (Sklar’s Theorem) Let F be a joint distribu-
tion function with marginals F1, . . . , Fp. Then there exists
a copula C : [0, 1]p → [0, 1] such that

F (x) = C(F1(x1), . . . , Fp(xp)).

If the marginal distributions are continuous, then this cop-
ula is unique. Conversely, if C is a copula and F1, . . . , Fp
are univariate distribution functions, then F as defined
above is a multivariate distribution function with marginals
F1, . . . , Fp.

It can be shown that the corresponding joint density is
given by the product of the individual marginal densities fj
and the copula density c:

f(x) = c(F1(x1), . . . , Fp(xp)) Πp
j=1fj(xj). (A.1)

Rearranging the terms above, we note that the copula den-
sity can be expressed in terms of the joint density and the
marginals:

c(U1, . . . ,Up) = c(F1(x1), . . . , Fp(xp))

=
f(x)

Πp
j=1fj(xj)

. (A.2)

Copula densities can be defined by suitable choices of the
joint density f . For instance, the Gaussian copula density,
cφ is defined by choosing the multivariate normal density
φ with normal marginal densities φj in equation A.2: cφ =

φ(x)
Πpj=1φj(xj)

. Note that using the Gaussian copula density, cφ,
we can construct various joint distributions, called Meta-
Gaussian distributions, using different choices of marginal
densities in equation A.1. Meta-Gaussian distributions can
model non-Gaussian data but cannot model asymmetric and
tail dependencies (see fig. 1).



Sklar’s theorem and equation A.1 show how copulas en-
able flexible modeling of multivariate data by decoupling the
specification of marginals and the dependence structure (the
latter modeled by a parametric copula family). The modeler
has the choice of choosing each marginal density and copula
family independently from each other. Copulas are invariant
to monotonic transformations of the random variables, i.e.,
if X is from a multivariate distribution with marginals fj
and copula c, then the dependence structure of monotoni-
cally transformed variable t(X) is also given by c.

Copula-based models can also be viewed as genera-
tive models defined on the CDF-transformed data, Uj =
Fj(Xj). The generative model for the Gaussian copula is
defined through a Gaussian distribution on the latent CDF
transformations (Hoff et al., 2007):

Xj = F−1
j (Uj); Uj = Φj(Yj); Y ∼ Φ(µ,Σ)

where Φj denotes the jth marginal CDF of the multivariate
normal distribution and Φ is the CDF of a multivariate
normal with mean µ and covariance matrix Σ.

Parameter Inference. Standard Maximum Likelihood
(ML) inference requires specifying a parametric family for
each marginal density and inferring the parameters simulta-
neously with the copula parameters which is computation-
ally expensive for even moderate dimensions. The two–step
IFM procedure (Joe, 2014) requires fitting a marginal to each
feature and then using the CDF transformation to obtain the
input data (in the range [0, 1]) for an ML estimation of cop-
ula parameters. In reality, marginals are usually not known
and may be difficult to estimate correctly. Also, we may be
interested solely in the dependence structure, including in
this work, and may want to circumvent marginal parame-
ter estimation. In such cases, a semiparametric approach is
to use rank–transformed scaled empirical marginals to esti-
mate the copula parameters. In the rank transformation, each
data element xij , of the feature vector Xj is transformed
to R(xij) = 1

n

∑n
i=1 1(Xij ≤ xij), the scaled rank of

xij in all the observations of the feature, Xj . The scaled
rank transformed features lie in the range [0, 1] and can be
used directly to estimate the copula parameters. The result-
ing pseudo–likelihood estimator is consistent under the con-
dition that the margins are continuous (Genest et al., 1995).

Finite Mixture Models
The PDF of aG-component finite mixture model is given by

f(x) =

G∑
g=1

πgfg(x; θg) (A.3)

with mixing proportions πg > 0 such that
∑G
g=1 πg = 1 and

component densities fg parameterized by θg .
A common choice of the component density is

the Multivariate Normal, φ, that is parameterized by
component-specific mean vectors, µg , and covariance ma-
trices, Σg . This yields the popular Gaussian Mixture
Model (GMM) that we denote by G(ϑ), where ϑ =
(π1, ...πG,µ1, ...,µG,Σ1, ...,ΣG) denotes the complete set
of parameters.

Model Covariance Parameters
CCC [pq − q(q − 1)/2] + 1
CCU [pq − q(q − 1)/2] + p
CUC [pq − q(q − 1)/2] +G
CUU [pq − q(q − 1)/2] +Gp
UCC G[pq − q(q − 1)/2] + 1
UCU G[pq − q(q − 1)/2] + p
UUC G[pq − q(q − 1)/2] +G
UUU G{pq − q(q − 1)/2}+Gp

Table A.1: Parsimonious Gaussian Mixture Models

Parsimonious Gaussian Mixture Models
With p-dimensional data and with G components in a mix-
ture there are exactly (G − 1) + Gp + Gp(p + 1)/2 free
parameters. Unless p is very small, most of these parame-
ters are in the component covariance matrices Σ1, . . . ,ΣG.
To reduce the computational cost of the estimation, special
families of covariance structures have been introduced that
impose constraints upon the constituent parts of the decom-
position of Σg . The Parsimonious Gaussian Mixture fam-
ily, or PGMM (McNicholas and Murphy, 2008) are a fam-
ily wherein the covariance structure is assumed to be of the
form Σg = ΛgΛ

′
g + Ωg , where Ωg is a diagonal ma-

trix of white noise, Λg is a p x q matrix of factor load-
ings and q is the number of latent factors. Generally q < p.
The loading and noise terms can be constrained to be equal
or unequal across groups to give a collection of eight par-
simonious covariance structures shown in table A.1. The
number of parameters in these eight families range from
pq − q(q − 1)/2 + 1 to G(pq − q(q − 1)/2 + p). See (Mc-
Nicholas and Murphy, 2008) for more details.

GMCM
In GMCM, the dependence is obtained from a Gaussian
Mixture Model. Let Ψj(ϑ) and ψj(ϑ) denote the jth

marginal CDF and PDF respectively, of G(ϑ). Note that
Uj = Fj(Xj). From equation A.2, the GMCM copula den-
sity is given by:

cG(U;ϑ) =
G(Ψ−1

j (U))∏p
j=1 ψj(Ψ

−1
j (Uj))

(A.4)

The generative model of GMCM is specified by, ∀j ∈
{1, . . . , p}:

Xj = F−1
j (Uj); Uj = Ψj(Yj); Y ∼ G(ϑ). (A.5)

Note that Uj = Fj(Xj) = Ψj(Yj) and so, Yj =

Ψ−1
j (Uj). Thus, the likelihood of n i.i.d. samples from

GMCM can be expressed in terms of the latent variable Y :
n∏
i=1

∑G
g=1 πgφ(yi | µg,Σg)∏p
j=1 ψj(yij | µg,Σg))

.

For clustering, GMCM can be used to obtain cluster la-
bels l ∈ 1, . . . , G through a semiparametric MAP estimate
arg maxl P (l = g|ϑ,X), from rank-transformed marginals
in the data as estimates of Uj (Bhattacharya and Rajan,
2014). To find the number of clusters, the BIC-based model
selection criterion was empirically found to be effective.



GMM, GMCM and Mixture of Copulas
The Gaussian Mixture Model (GMM) is a finite mix-
ture model (equation A.3), where each component den-
sity is a multivariate normal distribution, fg = φ. A
mixture of copulas (Kosmidis and Karlis, 2016) is also
a finite mixture model where each component density
is defined using a copula (equation A.1), i.e. fg =
c(F1(x1), . . . , Fp(xp)) Πp

j=1fj(xj). This is a very flexible
model that encompasses all known mixture models and al-
lows construction of new mixture models through the choice
of arbitrary copula density and marginals in each compo-
nent.

GMCM, is a specific copula model, wherein the distribu-
tion of the CDF-transformed data (Uj) is modeled with a
GMM. Like any copula model (including mixture of copu-
las), each marginal density can be independently specified.
The higher modeling flexibility of mixture of copulas comes
at the cost of more difficult parameter inference. The M-
step of the EM algorithm proposed in (Kosmidis and Karlis,
2016) for inference does not use a closed-form expression
and relies on numerical methods that are slow to converge. In
contrast, our inference algorithm, HD-GMCM, uses closed-
form expressions within an AECM algorithm.

The most important difference is with respect to applica-
tion on high-dimensional data. Kosmidis and Karlis (2016)
state that their method cannot be directly applied to high-
dimensional data, since most copula families cannot be used
to fit high-dimensional data. Our method has been specif-
ically designed for high-dimensional data and empirically
performs well for clustering.

B Proof of Equation 5
The CDF of a univariate Gaussian distribution N (µ, σ) for
a point y is given by

u =

∫ y

−∞

1√
2πσ

e−
(y−µ)2

2σ2 dy

u = 0.5 +

∫ y

µ

1√
2πσ

e−
(y−µ)2

2σ2 dy

du

dy
=

1√
2πσ

e−
(y−µ)2

2σ2

d2u

dy2
=

1√
2πσ

(
− (y − µ)

2

2σ2

)
e−

(y−µ)2

2σ2

Expanding u as a Taylor series around y = µ, we get

u = 0.5 +
du

dy

∣∣∣
x=µ

(y − µ) +
1

2

d2u

dy2

∣∣∣
x=µ

(y − µ)
2
+

(higher order terms)
Substituting the derivative terms in the above expansion,

u = 0.5 +
1√

2πσg
(y − µ)+

(the second derivative goes to zero) + (higher order terms)

For a GMM, the above expression becomes

u ≈
G∑
g=1

(
πg

(
0.5 +

1√
2πσ

(y − µg)
))

which yields

y ≈

(
G∑
g=1

πg

σg
√

2π

)−1 [
u− 0.5 +

(
G∑
g=1

πgµg

σg
√

2π

)]
.

C Mean Parameter Estimate in Algorithm 1
Proof The mean parameters are estimated in successive it-
erations. Denote by µ(m) the estimate of of µ after m
iterations. The penalty function Lpen is non-concave and
singular at the origin. We locally approximate the penalty
by a quadratic function by ϕ(µ) ≈ nλn

∑G
g=1 πg

∑pg
j=1[|

µ
(m)
gj − cj + 1

2

sign{µ(m)
gj −cj}

µ
(m)
gj

(µ2
gj − µ(m)2

gj)] as suggested

in Khalili and Chen (2007). Here, cj is the jth marginal of
the mean of all the data points. We can find the derivative of
the penalization term ∂ϕ

∂µgj
= sign(µmgj − cj) So, the mean

estimate in our penalized likelihood case is obtained by set-
ting

Σ̂−1
g

n∑
i=1

ẑig(yi − µg)− nλnπ̂gβg = 0

where βg is a vector with P elements, its jth element being
sign(µmgj − cj). Solving the above equation for µg yields

µg =

∑n
i=1 ẑigyi∑n
i=1 ẑig

− nλnπ̂gΣgβg.

D Proof of Theorem 1
The complete likelihood ϑ(t), given y(t) and z(t) is 1

L(ϑ(t+1)|y(t), z(t)) =

N∏
i=1

G∏
g=1

[
πgt+1Φ

(
y(t)
i

µ
(t+1)
g ,Σ

(t+1)
g

)]z(t)ig
Similarly, we can obtain L(ϑ(t+1)|y(t+1), z(t))
Now,

logL(ϑ(t+1)|y(t+1), z(t))− logL(ϑ(t+1)|y(t), z(t)) =

− 0.5

N∑
i=1

G∑
g=1

(
z

(t)
ig

(
(y(t+1)
i − µ(t+1)

g )
T

Σ(t+1)
g

−1
(y(t+1)
i − µ(t+1)

g )

)
− z(t)

ig

(
(y(t)
i − µ

(t+1)
g )

T
Σ(t+1)
g

−1
(y(t)
i − µ

(t+1)
g )

))
First, note that if A is 1×1, then tr(A) = A. Also, note that
tr(ABC) = tr(BAC). Using these facts, we can simplify
the above expression to

1We have omitted hat on the estimates in this section to avoid
clutter, e.g., we use z(t) instead of ẑ(t).



− 0.5

N∑
i=1

G∑
g=1

(
z

(t)
ig

(
(y(t+1)
i − µ(t+1)

g )
T

Σ(t+1)
g

−1
(y(t+1)
i − µ(t+1)

g )

)
−z(t)

ig

(
(y(t)
i − µ

(t+1)
g )

T
Σ(t+1)
g

−1
(y(t)
i − µ

(t+1)
g )

))
=− 0.5

N∑
i=1

G∑
g=1

(
z

(t)
ig tr

(
Σ(t+1)
g

−1
(y(t+1)
i − µ(t+1)

g )
T

(y(t+1)
i − µ(t+1)

g )

)
− z(t)

ig tr

(
Σ(t+1)
g

−1
(y(t)
i − µ

(t+1)
g )

T
(y(t)
i − µ

(t+1)
g )

))
= −0.5

N∑
i=1

G∑
g=1

(
z

(t)
ig tr

(
Σ(t+1)
g

−1
)

(−2(µ(t+1)
g )

T
(y(t+1)
i − y(t)

i ) + (y(t+1)
i

T
y(t+1)
i − y(t)

i

T
y(t)
i ))︸ ︷︷ ︸

Say A

)

Note that by construction, z(t)
ig is always non-negative.

Also, since Σ
(t+1)
g

−1
is positive definite by construction, so

its trace is always positive. Therefore, for the likelihood to
increase the term A has to be negative.

Note that, for any two real numbers, y2 − x2 =

2 (y − x)x+ (y − x)
2

Now, let min(µjg)
j,g

= κ. Substituting κ in A will make A

independent of g.
Now, A can be written as

A ≤
P∑
j=1

(
−2κ(y

(t+1)
ij − y(t)

ij ) +
(
y

(t+1)
ij

2
− y(t)

ij

2))

=

P∑
j=1

(
−2κ(y

(t+1)
ij − y(t)

ij )+(
2
(
y

(t+1)
ij − y(t)

ij

)
y

(t)
ij +

(
y

(t+1)
ij − y(t)

ij

)2
))

This is a quadratic equation in (y
(t+1)
ij −y(t)

ij ). If the above
expression is ≤ 0, definitely A is ≤ 0. Therefore, upon set-
ting the above expression to ≤ 0, yields

|(y(t+1)
ij − y(t)

ij )| ≤ |2κ− 2y
(t)
ij | (D.1)

Now, the pseudo-loglikelihood L(ϑ(t+1)|y(t), z(t)) also
increases monotonically because

Simulation n p Marginals

A
1 100 100

All Gaussian2 100 500
3 250 500

B
4 100 100

50% Gaussian, 50% F5 100 500
6 250 500

C
7 100 100 50% Gaussian, 50% Gamma

All σ-transformed8 100 500
9 250 500

Table E.1: Simulated Datasets

L(ϑ(t+1)|y(t+1)) =

∫ 1

0

L(ϑ(t+1)|y(t+1), z(t))dz(t)

≥
∫ 1

0

L(ϑ(t+1)|y(t), z(t))dz(t)

= L(ϑ(t+1)|y(t))

E Simulation Studies
Data Generation. We simulated three sets of data, A, B
and C, with different choices of marginals, using a latent
10-component Gaussian mixture. In each set we vary the
number of instances n and dimensions p as shown in table
E.1. For each simulation setting (1 to 9), we simulated 15
different datasets. The mean and standard deviation values
of the Gaussian components were randomly chosen in each
dataset. In set A, i.e., simulations 1,2 and 3, we generated 10
component Gaussian mixtures using GMCM package. In set
B, i.e., simulations 4,5 and 6, we initially generate 10 com-
ponent Gaussian mixtures in a similar manner and then 50%
of the marginals are randomly chosen to be Gaussian and the
remaining are chosen to be from the F distribution with pa-
rameters 10 and 1. In simulations 7, 8 and 9, viz. set C, again
we generate a 10 component Gaussian mixtures and again,
50% of the marginals are randomly chosen to be Gaussian
and the remaining are chosen to be from the Gamma distri-
bution with shape parameter 1 and scale parameter 2. How-
ever, finally, a sigmoid transformation is applied to all the
dimensions. Thus set A has only Gaussian variables, set B
has partially (50%) Gaussian variables and set C has non-
Gaussian variables.

Results. Table E.2 shows the ARI obtained by HD-
GMCM and baseline methods for each simulation, aver-
aged over 15 datasets (with standard deviations in parenthe-
ses). With Gaussian data (set A), VarSelLCM, that assumes
a Gaussian mixture model, performs the best. GMCM is
second-best. At the highest p/n ratio, simulation 2, all three
HD-GMCM, VarSelLCM and HDDC yield comparable re-
sults. HDDC fails for set B. The variance and skewness of
F-distributed marginals are higher than Gaussian marginals.
Some outlying datapoints are assigned a separate cluster that
results in singularity during parameter inference, for HDDC.
VarSelLCM continues to perform well, outperforming other
methods while HD-GMCM is second-best. In set C, HD-



(a) Dataset (b) GMM (c) HDDC (d) HD-GMCM

Figure E.1: Clustering of non-Gaussian data with outliers. From left to right: (a) Data generated from 3 clusters, (b) Four clusters
obtained by GMM, (c) 3 clusters obtained by HDDC (farthest outlier placed in a separate cluster) (d) 3 clusters obtained by
HD-GMCM in data and latent space. Best viewed in color.

Set HD-GMCM K-means VarSelLCM HDDC

A
1 0.92

(0.08)
0.78
(0.12)

1
(0.02)

0.76
(0.25)

2 0.85
(0.08)

0.75
(0.1)

0.99
(0.05)

0.64
(0.34)

3 0.84
(0.09)

0.82
(0.09)

0.99
(0.08)

0.81
(0.14)

B
4 0.57

(0.17)
0.06
(0.03)

0.7
(0.18)

0.0
(0.0)

5 0.59
(0.22)

0.28
(0.16)

0.64
(0.18)

0.0
(0.0)

6 0.53
(0.13)

0.04
(0.02)

0.62
(0.2)

0.0
(0.0)

C
7 0.88

(0.08)
0.79
(0.11)

0.0
(0.0)

0.74
(0.31)

8 0.85
(0.09)

0.74
(0.11)

0.0
(0.0)

0.73
(0.32)

9 0.75
(0.12)

0.74
(0.12)

0.0
(0.0)

0.85
(0.1)

Table E.2: Average ARI and standard deviation on Simu-
lated Datasets (Table E.1). Row-wise best results in bold.

GMCM outperforms all other methods, the difference in per-
formance being the most at the highest p/n ratio, simulation
8. VarSelLCM fails, possibly due to outliers resulting in sin-
gularity during inference. HDDC and K-means give compa-
rable results but remain inferior to HD-GMCM. In all 9 sim-
ulation settings, HD-GMCM outperforms K-means, GMM
and GMCM. GMM and GMCM are not shown since they
fail to run in all these high-dimensional datasets.

These results suggest that the performance of HD-
GMCM is superior to state-of-the-art algorithms for high-
dimensional non-Gaussian data, while being comparable for
high-dimensional Gaussian data.

F Performance with Varying Cluster Signal
We evaluate the performance of HD-GMCM by varying the
clustering signal in the data. To vary the signal, we first cen-
ter the data separately for each cluster and then shift each
cluster’s mean value by a fixed magnitude (t). Centering the
data collapses the clusters into a single group and with each

shift of the mean, the clusters get more separated, thereby
increasing the clustering signal in the data. We use t = 0
for the cluster separation observed in the data. Increasing t
increases cluster separation up to t = 1 that indicates no
overlap in the clusters. Decreasing t decreases cluster sepa-
ration up to t = −1 that indicates complete overlap of the
clusters.

(a) Avg. ARI of K-means

(b) % difference in Avg. ARI between HD-GMCM and K-
means

Figure F.1: Performance of HD-GMCM and K-means on
varying cluster separation.



(a) ARI at varying cluster separation

(b) AMI at varying cluster separation

Figure F.2: ARI (above) and AMI (below) of all baseline
algorithms for a specific run.

We perform this experiment on the Khan500 dataset
(James et al., 2017) using K-means and HD-GMCM for var-
ious values of t. For each t, we test with 10 random initial-
izations of K-means and HD-GMCM, and evaluate cluster-
ing performance using ARI (averaged over 10 runs).

Figure F.1 shows the average ARI values achieved by K-
means (a) and the difference between the average ARI of
HD-GMCM and K-means (b). At t = −1, with complete
overlap, there is almost no difference in performance. When
the clusters are not well separated, i.e. −0.75 ≤ t ≤ 0.25,
HD-GMCM outperforms K-means. When the clusters are
close to being well separated t ≥ 0.5, K-means outperforms
HD-GMCM. At t ≥ 1 as well (not shown), K-means outper-
forms HD-GMCM.

Figure F.2 shows the ARI and AMI over varying values of
t, for a given initialization where HD-GMCM had the best
LASSO-BIC at t = 0. We see that the performance of HD-
GMCM is comparable to baselines EGMCM, HDDC and
VarSelLCM. K-means outperforms all these methods when
the clusters are well separated. MixGlasso is not shown since
it did not run on many values of t.

G Model Selection
Empirically, we find that the LPBIC criterion works well for
selecting the number of components except when the num-
ber of components is high. For instance, for Lusc-Methyl
Dataset, as shown in Figure G.1, LPBIC criterion selects
g = 2 as indicated in Table 1. However, for mixtures with
large number of components, we find that both LPBIC for
HD-GMCM and BIC for PGMM under-estimate the number
of components as shown in figure G.2 for one of the datasets
from simulation A1 (n = 100, g = 10 and p = 100) from
E.1, We suspect this is due to the problem of isolated data
points in the immensity of high-dimensional space: indeed,

we find in our simulations, that some clusters have just five
datapoints. LPBIC has been shown to match or outperform
BIC for mixture model selection in high-dimensional set-
tings (Bhattacharya and McNicholas, 2014). However, the
local approximation of the penalty function results in short-
comings: for shrunken estimators, it stays at 0; it also fails
when the posterior mode is at the boundary or outside of
the initial domain of the estimates (Bhattacharya and McNi-
cholas, 2014). More work is required to design a consistent
model selection criterion using the pseudo-likelihood or a
criterion based on the copula likelihood.

Figure G.1: LPBIC vs Number of components for Lusc
Methyl Dataset

(a) HDGMCM - LPBIC

(b) PGMM - BIC

Figure G.2: BIC vs Number of clusters for simulated 10-
component dataset A1 (see table E.1)

H Monotonic Increase in Likelihood
The AECM algorithm guarantees monotonic increase in
likelihood if in each iteration (1) the input data is not mod-
ified for computing the updates and (2) exact updates are
used for all the parameters. In the GMCM model, param-
eter estimates are inferred using the inverse CDF values



(yij = Ψ−1
j (Ûj ;ϑ)) which changes in each iteration (thus

violating condition 1 above). However, we prove in Theorem
1 that the introduction of our ‘Reset y’ step in HD-GMCM
algorithm preserves the property of monotonic increase in
pseudo-likelihood.

With respect to the second condition, exact updates are
used for estimates of mean and covariance parameters, but
not for the mixing proportions. This inexact update, π̂, has
been reported to work well for closely related LASSO-
penalized models, such as the mixture of regression model
(Khalili and Chen, 2007) and parsimonious Gaussian mix-
ture model (Bhattacharya and McNicholas, 2014). Empiri-
cally we also observe monotonic increase in all the datasets
we ran HD-GMCM on. For instance, in figure H.1, we show
the increase in pseudo-likelihood L monotonically with ev-
ery iteration for the simulated dataset used in Appendix G.

Figure H.1: Monotonic Increase in pseudo-likelihood

I Implementation
Baseline Algorithms
R packages – GMCM, VarSelLCM, HDClassif, MixGlasso,
Mclust and Mixtools - were used for the baseline algorithms.

Feature Selection for Illustration
These features are genes 382 and 562 that are the variables
with highest importance selected after fitting a random for-
est of 50 trees on the dataset (using caret package from
Jed Wing et al. (2019)).
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