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1. Supporting Knowledge Graphs
Knowledge graph embeddings are known to provide
state-of-the-art results in link prediction on knowledge
graphs (NICKEL ET AL.; LACROIX ET AL. 2016a; 2018).
They operate by learning low rank representations of knowl-
edge graphs’ entities and relation, then they use these rep-
resentation to assess the factuality of relation associations
between entities. They encode knowledge of different types
of association for each entity and relation in its embeddings,
then they can efficiently learn their unknown link.

In the task of drug target prediction, a knowledge graph
embedding model can be efficiently trained to predict drug
target associations between drug and target entities in a a
biological knowledge graph by learning efficient vector rep-
resentations of both drugs and target in a knowledge graph
context. Therefore, we train our knowledge graph embed-
ding model, the TriModel model, on a knowledge graph that
contains training drug target interactions along with other
associations of drugs and targets as show in Table 1. For
example, when training the TriModel model on the Yaman-
ishi 08 and our KEGG MED dataset (YAMANISHI ET AL.
2008), we include drug and target information from the
KEGG (KANEHISA ET AL. 2017) and UniProt (CONSOR-
TIUM 2017) knowledge bases. Information we include are
for instance ATC codes of drugs, BRITE identifiers, classes,
associated diseases, groups and associated pathways from
the KEGG knowledge base. Similarly, we use the target’s
active sites, binding sites, conserved sites, domains, associ-
ated pathways, family, and protein-protein interactions and
different gene ontology annotations from the UniProt (CON-
SORTIUM 2017) and InterPro (MITCHELL ET AL. 2019)
databases.

For example, Aspirin has multiple ATC codes such as
B01AC06 and C07FX04. These codes are transformed
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into assertions in the knowledge graph, where each code is
transformed into five assertions as follows:

1- (Aspirin, ATC-C1, B)
2- (Aspirin, ATC-C2, B01) Aspirin
3- (Aspirin, ATC-C3, B01A) ATC
4- (Aspirin, ATC-C4, B01AC B01AC6
5- (Aspirin, ATC-C5, B01AC6

1- (Aspirin, ATC-C1, C)
2- (Aspirin, ATC-C2, C07) Aspirin
3- (Aspirin, ATC-C3, C07F) ATC
4- (Aspirin, ATC-C4, C07FX) C07FX04
5- (Aspirin, ATC-C5, C07FX04)

Similarly, the enzyme classes of protein enzymes are also
transformed into four assertions. For example the LATS1
protein has enzyme class number EC:2.7.11.1, this is trans-
formed into four assertions as follows:

1- (LATS1, EC-C1, EC:2. . . )
2- (LATS1, EC-C2, EC:2.7. . ) Aspirin
3- (LATS1, EC-C3, EC:2.7.11. ) EC
4- (LATS1, EC-C4, EC:2.7.11.1) EC:2.7.11.1

These generated assertions for both ATC and EC codes allow
for grouping drugs and proteins with similar class levels by
connecting them to the same nodes in the knowledge graph.

In the case of the DrugBank FDA benchmark
dataset (WISHART ET AL. 2008), the TriModel model
uses information about drugs and targets from both the
UniProt (CONSORTIUM 2017) and DrugBank (WISHART
ET AL.; WISHART ET AL. 2006; 2008) knowledge bases.
We use drugs’ ATC codes, categories, associated pathways
and the categories of these pathways. We also use the
same protein information as for the Yamanishi 08 and
KEGG MED datasets. Table 1 contains a summary and
statistics of the relation instances of each knowledge base.
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KEGG UniProt DrugBank

Relation Count Relation Count Relation Count

Drug ATC 902 Protein active site 281 Drug ATC 2541
Drug BRITE 3354 Protein binding site 153 Drug Category 21041
Drug Class 703 Protein conserved site 334 Drug Pathway 2013
Drug Disease 1696 Protein domain 2204 Pathway Category 4670
Drug Group 2714 Protein Pathway 3189
Drug Pathway 1340 Protein Family 1584
Protein BRITE 2572 PPI 7276
Protein Disease 709 Protein GO: M.F. 6958
Protein EC No. 753 Protein GO: C.C. 7588
Protein Motif 4374 Protein GO: B.P 17639
Protein Pathway 5551 Protein EC No. 840

Table 1. Summary and statistics of a sample of relations extracted from supporting knowledge bases M.F, C.C and B.F refer to molecular
function, cellular component and biological process respectively.

2. Model Training and Evaluation Pipeline
The TriModel model uses a standard knowledge graph em-
beddings training procedure that consumes a set of graph
assertions and initial embeddings (NICKEL ET AL. 2016b).
The outcome of the training procedure is the update version
of the embeddings, where these embeddings are used to
provide scores for any given set of assertions. Fig. 2 shows
a diagram of the training evaluation procedure of the Tri-
Model model on the drug target interactions data. First, the
model combines both the training drug target interactions
and their corresponding supporting knowledge graph asser-
tions to model the input knowledge graph i.e. triplets. These
assertions are fed to the model along with an initial values
for the embeddings for all the entities and relations in the
graph. The learning process (training) involves updating the
initial embeddings such that the updates embeddings values
provide efficient scoring for all the input assertions.

3. Partial Knowledge Assessment
In this section, we explore the importance of different parts
of the supporting knowledge graphs and their effect of the
outcome accuracy on the TriModel model. We have evalu-
ated the TriModel model on the Yamanishi 08 dataset while
we remove parts of the supporting knowledge graphs for
each group of drug target interactions. Our evaluation is
performed in six configurations: (1) none: where the model
do not use any supporting knowledge graph information
during the training, (2) C1: the ATC codes of drugs are
excluded (3) C2: the protein sequence related assertions
such as motifs, domain, etc. (4) C3: the pathway related
assertions for both drugs and proteins are excluded (5) C4:
the disease related assertions are excluded. (6) full: the full

supporting knowledge graph is used.

Table 2 shows a summary of the outcome results of the
evaluation of the previously mentioned configurations. The
results show that excluding parts of the knowledge graph
have an effect on the outcome accuracy of the model. The
results show that the best predictive accuracy is achieved
on two configurations: full and C1. The full configuration
denotes the use of the full knowledge graph as a supporting
evidence, while the C1 configuration represents the knowl-
edge graph without the information related to the ATC codes.
On the other hand, the worst results are achieved with the
none configuration, where no supporting knowledge graph
is used.

4. Experiments Setup Configurations
We learn the best parameters for the TriModel model using
the grid search described in the experimental setup section.
Table 3 shows the best parameters found using the grid
search for each parameter, where the grid search is per-
formed only on the supporting knowledge graphs of each
of the investigated datasets with no drug target interactions.
The grid search is then assessed as a classical link prediction
task on knowledge graphs. We report the runtime of the
TriModel model per each cross-validation iteration for each
of the investigated benchmarking datasets in Fig. 1.

5. Novel Drug Target Interactions
We generated all possible unknown drug target combination
for each of the investigated datasets, and we have used the
TriModel model to predict scores for these combination.
We have then ranked these combinations according to the
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Figure 1. The runtime in minutes of the TriModel model for one cross-validation iteration (10-folds) on each of the investigated
benchmarking datasets. The normalised runtime (tdn) of the dataset d is computed such that tdn = td/Nd ∗ 1000, where nd is the full
runtime on the dataset d and Nd is the number of DTIs instances in the d dataset. DB full runtime = 867 minutes.
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Figure 2. A diagram of the training pipeline of the TriModel model. Both drug target interactions and supporting knowledge graph
assertions are combined and used as input to the model along with initial random embeddings for both entities and relations. The outcome
of the training procedure is learnt embeddings which is used to score any drug target interaction data of drugs and proteins processed
during the training processes.

Model Config. Metric E IC GPCR NR

TriModel

Sd St Sp Sd St Sp Sd St Sp Sd St Sp

None

AUC-ROC

0.83 0.89 0.99 0.86 0.92 0.99 0.71 0.68 0.97 0.68 0.72 0.94
C1 0.94 0.96 0.99 0.93 0.98 0.99 0.92 0.89 0.99 0.86 0.85 0.99
C2 0.94 0.95 0.99 0.93 0.98 0.99 0.92 0.85 0.99 0.87 0.83 0.99
C3 0.92 0.94 0.99 0.93 0.96 0.99 0.91 0.80 0.98 0.83 0.70 0.96
C4 0.93 0.96 0.99 0.93 0.98 0.99 0.91 0.88 0.99 0.85 0.84 0.99
Full 0.95 0.96 0.99 0.93 0.98 0.99 0.92 0.86 0.99 0.89 0.85 0.99

None

AUC-PR

0.27 0.30 0.94 0.32 0.53 0.93 0.26 0.38 0.79 0.46 0.61 0.69
C1 0.75 0.83 0.95 0.76 0.89 0.95 0.79 0.75 0.81 0.84 0.78 0.84
C2 0.76 0.82 0.95 0.79 0.83 0.94 0.81 0.66 0.80 0.87 0.70 0.74
C3 0.73 0.79 0.95 0.74 0.84 0.95 0.78 0.60 0.79 0.81 0.64 0.72
C4 0.73 0.83 0.95 0.77 0.87 0.95 0.78 0.72 0.80 0.83 0.69 0.79
Full 0.78 0.83 0.96 0.76 0.87 0.95 0.81 0.73 0.80 0.87 0.77 0.84

Table 2. Summary of evaluation results for experimenting the TriModel model on different benchmarking datasets with different excluded
subsets of the supporting knowledge graph. The experiments have six different configurations: (1) None: where no supporting knowledge
graphs are used (2) C1: excluded the ATC codes for drugs (3) C2: excluded protein sequence related assertions (4) C3: excluded pathway
related assertions for both drugs and proteins (5) C4: excluded disease related assertions. (6) Full: using the full supporting knowledge
graph.
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Dataset Best parameters

Batch size Lambda Dropout Embedding size Learning rate

Enzymes (E) 4000 0.03 0.2 150 0.01
Ion Channels (IC) 512 0.03 0.2 150 0.01
G-Protein Coupled Receptors (GPCR) 256 0.03 0.2 150 0.01
Nuclear Receptors (NR) 128 0.03 0.2 150 0.01
DrugBank FDA (DB) 4000 0.3 0.2 200 0.01
KEGG MEDICUS (KM) 4000 0.3 0.2 200 0.01

Table 3. The best parameters of the TriModel model on each of the investigated benchmarking datasets.

p2
p3

o1
o2
o3

s1
r1
o3

s2
p2
o2

s3
p3
o1

+

+

*

*

*

i1
i2
i3

+ c score

Aspirin

Drug

COX1

Embedding lookup

A vectorA scalar

An entity or a relation

embedding interactions sum of interactions

p1

Target

s3
s2
s1

Figure 3. Flow diagram of the scoring function of TriModel. The subject, the relation, and the object are represented using three embedding
vectors of size k. The score of a triple (s, p, o) is defined as f(s, p, o) =

∑
k ck, where c = i1+i2+i3, i1 = s1 ·r1 ·o3, i2 = s2 ·r2 ·o2,

and i3 = s3 · r3 · o1.

predicted scores and used the top 10 scored combinations
of each datasets to asses the model’s capabilities for pre-
dicting unknown drug target interactions. A domain expert
annotated each of the top 10 combinations with three labels
YES, NO and UNKNOWN which represent known valid drug
target interactions, proven invalid drug target interactions
and unknown interactions, respectively. Table 4 presents
the top 10 predictions for each dataset along with the expert
annotation and literature evidence (via PubMed ID).
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Dataset # Drug Name Drug Id Target Name Target ID Score Valid Evidence

E

1 Halothane D00542 CYP2E1 hsa:1571 8.820 YES PubMed:19442086
2 Aminocaproic acid D00160 PROC hsa:5624 8.601 Unknown -
3 Imatinib mesylate D01441 MAPK1 hsa:5594 8.355 YES PubMed: 22089930
4 Methoxsalen D00139 CYP1A1 hsa:1543 8.323 YES PubMed: 7702611
5 Isoflurophate D00043 ELANE hsa:1991 8.311 Unknown -
6 Imatinib mesylate D01441 MAPK3 hsa:5595 8.295 YES PubMed: 15100154
7 Metyrapone D00410 CYP1A1 hsa:1543 8.275 YES PubMed: 9512490
8 Salicylic acid D00097 PTGS2 hsa:5743 8.184 No -
9 Nifedipine D00437 CYP2C9 hsa:1559 8.140 YES PubMed: 9929518
10 Aminoglutethimide D00574 CYP21A2 hsa:1589 8.132 YES PubMed: 8201961

IC

1 Nicotine D03365 CHRNA4 hsa:1137 6.486 YES PubMed:17590520
2 Zonisamide D00538 SCN5A hsa:6331 6.468 YES PubMed:20025128
3 Benzocaine D00552 SCN5A hsa:6331 6.380 YES PubMed:19661462
4 Nimodipine D00438 CACNA1S hsa:779 6.297 YES PubMed:16675661
5 Metoclopramide D00726 CHRNA5 hsa:1138 6.285 Unknown -
6 Isoflurane D00545 GLRA2 hsa:2742 6.262 Unknown -
7 Diazoxide D00294 ABCC9 hsa:10060 6.198 YES PubMed: 21428460
8 Prilocaine D00553 SCN10A hsa:6336 5.992 YES PubMed:17139284
9 Verapamil hydrochloride D00619 CACNA1F hsa:778 5.961 YES PubMed:19125880
10 Nimodipine D00438 CACNA2D1 hsa:781 5.940 Unknown PubMed: 29176626

GPCR

1 Isoetharine D04625 ADRB2 hsa:154 7.148 YES PubMed:21948594
2 Octreotide acetate D02250 SSTR1 hsa:6751 6.752 YES PubMed:16438887
3 Clonidine hydrochloride D00604 ADRA1B hsa:147 6.650 YES PubMed: 17584443
4 Metoprolol D02358 ADRB2 hsa:154 6.499 YES PubMed:19637941
5 Epinephrine D00095 ADRA1D hsa:146 6.489 YES PubMed:20954794
6 Theophylline D00371 ADORA2A hsa:135 6.407 YES PubMed:16357952
7 Denopamine D02614 ADRB2 hsa:154 6.388 NO PubMed: 22505670
8 Risperidone D00426 DRD2 hsa:1813 6.386 YES PubMed:17059881]
9 Bosentan D01227 AGTR1 hsa:185 6.347 Unknown -
10 Epinephrine D00095 ADRA1B hsa:147 6.306 YES PubMed:20954794

NR

1 Medroxyprogesterone acetate D00951 ESR1 hsa:2099 6.314 YES PubMed:17094978
2 Mometasone furoate D00690 NR3C1 hsa:2908 6.066 YES PubMed:8439518
3 Ethinyl estradiol D00554 ESR2 hsa:2100 6.038 NO PubMed: 15878629
4 Dydrogesterone D01217 ESR1 hsa:2099 5.968 YES PubMed: 22878119
5 Norethindrone D00182 ESR1 hsa:2099 5.893 YES PubMed: 27245768
6 Etretinate D00316 RORB hsa:6096 5.848 Unknown -
7 Mifepristone D00585 ESR1 hsa:2099 5.841 YES PubMed: 15001543
8 Tretinoin D00094 RORA hsa:6095 5.679 YES CheMBL
9 Tazarotene D01132 RORC hsa:6097 5.463 Unknown -
10 Testosterone D00075 ESR1 hsa:2099 5.453 YES PubMed:12676605

DB

1 Methysergide DB00247 HTR1D P28221 6.421 YES PubMed: 7984267
2 Phenoxymethylpenicillin DB00417 SLC15A2 Q16348 6.295 Unknown -
3 L-Valine DB00161 BCAT2 O15382 6.263 YES PubMed: 6933702
4 Corticorelin ovine triflutate DB09067 GHRHR Q02643 6.237 Unknown -
5 Acarbose DB00284 GANC Q8TET4 6.232 YES KEGG
6 Halothane DB01159 GRIA1 P42261 6.226 YES PubMed: 14739810
7 Hydroxocobalamin DB00200 GIF P27352 6.226 Unknown -
8 Quazepam DB01589 GABRB2 P47870 6.215 YES PubMed:6738302
9 Nintedanib DB09079 KIT P10721 6.202 Unknown -
10 Miglitol DB00491 SI P14410 6.201 YES CheMBL

Table 4. Validation of the top 10 scored combination for each of the investigated datasets. The DrugBank, CheMBL and KEGG DTIs are
used as evidence the different interactions, where the PubMed ID is listed when possible.
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