
Contents
PyRanges paper supplementaries 1

unary . 2
Sort . 2
Cluster . 4
Genomicrange_to_coverage . 6

binary . 7
Overlap . 7
Intersect . 9
Nearest . 10
Nearest_nonoverlapping . 12
Subtract . 13
Set_intersect . 15
Set_union . 17
Jaccard . 19
Join . 20

rle . 22
Rle_divide . 22
Rle_add . 23
Rle_subtract . 24
Rle_multiply . 25

tree . 26
Tree_build . 26
Tree_overlap . 27

io . 28
Read_bed . 28
Read_bam . 29
Read_gtf . 30

PyRanges paper supplementaries

This document shows the time and memory usage for all non-basic functions
in the ecosystem of PyRanges libraries (PyRanges, PyRles and NCLS). They
are compared against their equivalents in Python and R, respectively. The basic
PyRanges functionality is compared against R Bioconductor’s GenomicRanges
and pybedtools. The PyRles-functionality is compared against R Bioconductor’s
S4Vectors. The NCLS is compared against the intervaltree in the Python bx-
python library. For each function the equivalent code from each library is
shown.

1

unary

PyRanges functionality that operates on a single PyRanges object. These include
functions to sort, cluster and convert ranges into run length encodings (RLE.)

Sort

Figure 1: Sort the intervals on Start and End. Comparison of the running time
and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr . s o r t ()

bioconductor

2

r e s u l t = s o r t S e q l e v e l s (gr)
r e s u l t = s o r t (r e s u l t)

pybedtools
r e s u l t = pb1 . s o r t ()

3

Cluster

Figure 2: Order intervals by position and merge those overlapping. Comparison
of the running time and memory usage for PyRanges versus the equivalent
libraries in R and/or Python. In the top row the results for GTF data, while the
bottom row shows the results for BED data. The left column shows the time
usage, while the right column shows the memory usage. Time is measured in
log10 seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr . c l u s t e r (strand="same ")

bioconductor
r e s u l t = reduce (gr)

pybedtools
i f ex t ens i on == " g t f " :

cols_to_keep = [4 , 5 , 7]

4

e l i f ex t ens i on == " bed " :
cols_to_keep = [4 , 5 , 6]

p lus = pb1 . s o r t () . merge (S="+", c=cols_to_keep , o=" f i r s t ")
minus = pb1 . s o r t () . merge (S="−" , c=cols_to_keep , o=" f i r s t ")
r e s u l t = plus . cat (minus , s=True , c =[4 , 5 , 6] , o=" f i r s t ")

5

Genomicrange_to_coverage

Figure 3: Turn ranges into run length encodings. Comparison of the running
time and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr . coverage (strand="same ")

bioconductor
plus = coverage (gr [gr@strand == " + "])
minus = coverage (gr [gr@strand == " −"])
r e s u l t = c (plus , minus)

6

binary

PyRanges functionality that operates on pairs of PyRanges. These functions
include functions to find the nearest intervals, find the intersecting intervals, join
granges on overlap, set intersect/union and subtract one PyRanges object from
another.

Overlap

Figure 4: Find the intervals in A overlapping at least one of the intervals in B.
Comparison of the running time and memory usage for PyRanges versus the
equivalent libraries in R and/or Python. In the top row the results for GTF
data, while the bottom row shows the results for BED data. The left column
shows the time usage, while the right column shows the memory usage. Time is
measured in log10 seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . over lap (gr , s t randedness ="same ")

7

bioconductor
r e s u l t = f indOver lapPa i r s (gr2 , gr1 , i g n o r e . s t rand = FALSE)
r e s u l t = f i r s t (r e s u l t)

pybedtools
r e s u l t = pb2 . i n t e r s e c t (pb1 , s=True , wa=True)

8

Intersect

Figure 5: Find overlapping intervals in both datasets. Comparison of the running
time and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . i n t e r s e c t (gr , s t randedness ="same ")

bioconductor
p a i r s = f indOver lapPa i r s (gr2 , gr1 , i g n o r e . s t rand = FALSE)
r e s u l t = p i n t e r s e c t (pa i r s , i g n o r e . s trand = FALSE)
r e s u l t = r e s u l t [mcols (r e s u l t) $ h i t == TRUE]

pybedtools
r e s u l t = pb2 . i n t e r s e c t (pb1 , s=True)

9

Nearest

Figure 6: Find the intervals in B closest to those in A. Comparison of the running
time and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr . n e a r e s t (gr2 , s t randedness ="same ")

bioconductor
r e s u l t = distanceToNearest (gr2 , gr1 , i g n o r e . s t rand = FALSE, s e l e c t ="

a r b i t r a r y ")
s u b j e c t = as . data . frame (gr1 [s u b j e c t H i t s (r e s u l t)])
colnames (s u b j e c t) = paste0 (colnames (s u b j e c t) , "_b")
query = as . data . frame (gr2 [queryHits (r e s u l t)])
df = merge (subject , query , by=0)
df = df [, −1]
df = merge (df , mcols (r e s u l t) $d i s tance , by=0)

10

df = df [, −1]
r e s u l t = makeGRangesFromDataFrame (df , keep . ext ra . columns=TRUE)

pybedtools
r e s u l t = pb2 . s o r t () . c l o s e s t (pb1 . s o r t () , s=True , t=" f i r s t " , d=True)

11

Nearest_nonoverlapping

Figure 7: Find the non-overlapping intervals in B closest to those in A. Compar-
ison of the running time and memory usage for PyRanges versus the equivalent
libraries in R and/or Python. In the top row the results for GTF data, while the
bottom row shows the results for BED data. The left column shows the time
usage, while the right column shows the memory usage. Time is measured in
log10 seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr . n e a r e s t (gr2 , s t randedness ="same " , over lap=False)

pybedtools
r e s u l t = pb2 . s o r t () . c l o s e s t (pb1 . s o r t () , s=True , t=" f i r s t " , i o=True , d=

True)

12

Subtract

Figure 8: Remove all intervals in B from those in A. Comparison of the running
time and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . subt rac t (gr , s t randedness ="same ")

bioconductor
h i t s <− f indOver laps (gr2 , gr1 , i g n o r e . s t rand = FALSE)
toSubtract <− reduce (e x t r a c t L i s t (gr1 , as (h i t s , " L i s t ")) ,

i g n o r e . s t rand = FALSE)
ans <− u n l i s t (p s e t d i f f (gr2 , toSubtract , i g n o r e . s trand = FALSE))
r e s u l t <− subset (ans , width (ans) > 0L)

13

pybedtools
r e s u l t = pb2 . subt rac t (pb1 , s=True)

14

Set_intersect

Figure 9: Intersect the set union of the ranges. Comparison of the running time
and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . s e t _ i n t e r s e c t (gr , s t randedness ="same ")

bioconductor
r e s u l t = i n t e r s e c t (gr2 , gr1)

pybedtools
sc = pb1 . s o r t () . merge (s=True , c =[4 , 5 , 6] , o=" f i r s t ")

15

i f ex t ens i on == " g t f " :
cols_to_keep = [4 , 5 , 7]

e l i f ex t ens i on == " bed " :
cols_to_keep = [4 , 5 , 6]

sb = pb2 . s o r t () . merge (s=True , c=cols_to_keep , o=" f i r s t ")
r e s u l t = sc . i n t e r s e c t (sb , s=True)

16

Set_union

Figure 10: Concatenate the datasets and cluster them afterwards. Comparison of
the running time and memory usage for PyRanges versus the equivalent libraries
in R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . set_union (gr , s t randedness ="same ")

bioconductor
r e s u l t = union (gr1 , gr2)

pybedtools
sc = pb1 . s o r t () . merge (s=True , c =[4 , 5 , 6] , o=" f i r s t ")

17

i f ex t ens i on == " g t f " :
cols_to_keep = [4 , 5 , 7]

e l i f ex t ens i on == " bed " :
cols_to_keep = [4 , 5 , 6]

sb = pb2 . s o r t () . merge (s=True , c=cols_to_keep , o=" f i r s t ")
cat ted = sc . cat (sb , s=True , c =[4 , 5 , 6] , o=" f i r s t ") . s o r t ()
r e s u l t = cat ted . merge (s=True , c =[4 , 5 , 6] , o=" f i r s t ")

18

Jaccard

Figure 11: Find similarity between sets based on intersections. Comparison of
the running time and memory usage for PyRanges versus the equivalent libraries
in R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . s t a t s . j a c c a r d (gr)

pybedtools
r e s u l t = pb2 . s o r t () . j a c c a r d (pb1 . s o r t ())

19

Join

Figure 12: Find the overlapping intervals and combine their data. Comparison of
the running time and memory usage for PyRanges versus the equivalent libraries
in R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = gr2 . j o i n (gr , s t randedness ="same ")

pybedtools
r e s u l t = pb2 . i n t e r s e c t (pb1 , wao=True , s=True)

bioconductor
r e s u l t <− f i ndOver lapPa i r s (gr1 , gr2 , i g n o r e . s t rand = FALSE)
df1 = as . data . frame (f i r s t (r e s u l t))

20

df2 = as . data . frame (second (r e s u l t))
colnames (df2) = paste0 (colnames (df2) , "_b")
df = merge (df1 , df2 , by=0)
r e s u l t = makeGRangesFromDataFrame (df , keep . ext ra . columns=TRUE)

21

rle

Arithmetic operations on RLEs. These include add, subtract, divide and multiply.

Rle_divide

Figure 13: Divide one Rle object by another. Comparison of the running time
and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

bioconductor
r e s u l t = c (c1p / c2p , c1m / c2m)

pyranges
r e s u l t = c1 / c2

22

Rle_add

Figure 14: Add two Rle objects. Comparison of the running time and memory
usage for PyRanges versus the equivalent libraries in R and/or Python. In
the top row the results for GTF data, while the bottom row shows the results
for BED data. The left column shows the time usage, while the right column
shows the memory usage. Time is measured in log10 seconds, while memory is
measured in GigaBytes (GB).

Code

bioconductor
r e s u l t = c (c1p + c2p , c1m + c2m)

pyranges
r e s u l t = c1 + c2

23

Rle_subtract

Figure 15: Subtract one Rle object from another. Comparison of the running
time and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

bioconductor
r e s u l t = c (c1p − c2p , c1m − c2m)

pyranges
r e s u l t = c1 − c2

24

Rle_multiply

Figure 16: Multiply two Rle objects. Comparison of the running time and
memory usage for PyRanges versus the equivalent libraries in R and/or Python.
In the top row the results for GTF data, while the bottom row shows the results
for BED data. The left column shows the time usage, while the right column
shows the memory usage. Time is measured in log10 seconds, while memory is
measured in GigaBytes (GB).

Code

bioconductor
r e s u l t = c (c1p ∗ c2p , c1m ∗ c2m)

pyranges
r e s u l t = c1 ∗ c2

25

tree

Operations for building and finding overlaps using a tree.

Tree_build

Figure 17: Create a tree from a collection of intervals. Comparison of the running
time and memory usage for PyRanges versus the equivalent libraries in R and/or
Python. In the top row the results for GTF data, while the bottom row shows
the results for BED data. The left column shows the time usage, while the right
column shows the memory usage. Time is measured in log10 seconds, while
memory is measured in GigaBytes (GB).

Code

ncls
t r e e = NCLS(df2 . S ta r t . va lues , df2 . End . values , df2 . index . va lue s)

bx-python
t r e e = I n t e r v a l T r e e ()
f o r start_ , end_ in z ip (df2 . Start , df2 . End) :

t r e e . add (start_ , end_)

26

Tree_overlap

Figure 18: Search in a tree using a collection of intervals. Comparison of the
running time and memory usage for PyRanges versus the equivalent libraries in
R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

ncls
r e s u l t = t r e e . a l l _ o v e r l a p s _ s e l f (df1 . S ta r t . va lues , df1 . End . values , df1 .

index . va lue s)
r e s u l t = df2 . i l o c [r e s u l t]

bx-python
r e s u l t = []
f o r start_ , end_ in z ip (df1 . Start , df1 . End) :

r e s u l t . append (t r e e . s earch (start_ , end_))

27

io

Functions to read files into PyRanges.

Read_bed

Figure 19: Read a bed file into a GenomicRanges object. Comparison of the
running time and memory usage for PyRanges versus the equivalent libraries in
R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = pr . read_bed (f)

bioconductor
r e s u l t = import (f i l e)

28

Read_bam

Figure 20: Read a bam file into a GenomicRanges object. Comparison of the
running time and memory usage for PyRanges versus the equivalent libraries in
R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = pr . read_bam (f)

bioconductor
r e s u l t = import (f i l e)

29

Read_gtf

Figure 21: Read a gtf file into a GenomicRanges object. Comparison of the
running time and memory usage for PyRanges versus the equivalent libraries in
R and/or Python. In the top row the results for GTF data, while the bottom
row shows the results for BED data. The left column shows the time usage,
while the right column shows the memory usage. Time is measured in log10
seconds, while memory is measured in GigaBytes (GB).

Code

pyranges
r e s u l t = pr . read_gtf (f , annotat ion="ensembl ")

bioconductor
r e s u l t = import (f i l e)

30

	PyRanges paper supplementaries
	unary
	Sort
	Cluster
	Genomicrange_to_coverage

	binary
	Overlap
	Intersect
	Nearest
	Nearest_nonoverlapping
	Subtract
	Set_intersect
	Set_union
	Jaccard
	Join

	rle
	Rle_divide
	Rle_add
	Rle_subtract
	Rle_multiply

	tree
	Tree_build
	Tree_overlap

	io
	Read_bed
	Read_bam
	Read_gtf

