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Supplementary Figure 1: Heatmaps of region-specific and CTS expression of marker genes esti-
mated by reversing the role of subject and measure in MIND. The six marker genes correspond
to astrocyte, endothelial cells, microglia, excitatory and inhibitory neurons, and oligodendro-
cyte (oligo), respectively.
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Supplementary Figure 2: Smoothed scatter plots of the observed GTEx brain tissue expression
and MIND predicted expression for 13 GTEx brain regions. Dotted line at y = z. By the
default setting of the smoothScatter function, the first 100 points from those areas of lowest
regional densities are superimposed on the density image.
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Supplementary Figure 3: Correlation between the true and MIND /LS (least squares) estimated
expression for each of the six cell types in simulation. We simulated bulk expression data fol-
lowing equation (2) using the measured CTS expression (Habib et al., 2017) and the estimated
cell type fractions from GTEx brain data. We repeated the measured CTS expression from four
subjects 25 times to simulate data for 100 subjects and then added independent measurement
error to each. The results are based on 100 replications. (a) The impact of error variance. Here
the number of measures is 13. (b) The impact of region-specific CTS expression. We added
region-specific variation to CTS expression in addition to the simulation in (a). The variance
of the region-specific variation is the same as the error variance. (c) The impact of the number
of measures. Here the error variance is set as 0.1, which is what we observed in deconvolving
GTEx brain data. LS is only available when the number of measures is equal to or more than
the number of cell types. (d) The impact of rare cell type. We manipulated the fraction of
microglia by making its mean value vary from 0.001 to 0.05, while keeping all other cell type
fractions proportional to that observed in GTEx brain data.
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Supplementary Figure 4: The estimated cell size in the scRNA-seq data of |Zeisel et al.| (IQOlBD.
Top: neurons (inhibitory/interneurons and excitatory/pyramidal neurons) have larger cell sizes
as compared to non-neurons. Bottom: the average read (left) and gene count with nonzero
read (right) vs. cell size. Both have a correlation of 0.6-0.7. The red line is a smooth curve.
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Supplementary Figure 5: Features of CTS eQTL mapping. (a) QQ-plots for eQTL mapping
p-values for each cell type. (b) Enrichment of eQTLs near gene transcriptional start site (T'SS)
for each cell type. Note the concentration near the TSS except when the frequency of eQTLs
discovered is relatively small for a cell type.
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Supplementary Figure 6: (a) The probability of eQTLs identified in 1-6 cell types (columns)
also being identified in each brain region or whole blood (rows). This is similar to Figure 5b
but with printed probabilities. (b) The number of shared eQTLs for each pair of cell types (in
log10 scale). (c) Venn diagram of eGenes (genes with eQTLs) identified in each cell type.
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Supplementary Figure 7: Smoothed scatter plots comparing log and anti-log transformation in
deconvolution using mixtures of tissue expression in |[Shen-Orr et al.| (2010). There are three
tissue types mixed: liver, brain, and lung. NNLS: non-negative least squares; rmse: root mean
square error; cor: Pearson correlation.




Supplementary Table

Supplementary Table 1: Computation time of MIND for varying numbers of subjects (n) and
measures (7). Through simulations, we vary the number of subjects from 50 to 500, while
keeping the number of measures as 10; we also vary the number of measures from 10 to 50,
while keeping the number of subjects as 100. The memory usage is within 2GB. The testing
is conducted using a single node on a laptop with Intel CORE i7 CPU. Note that MIND has
built-in parallel computation across subjects.

T =10 n = 100
n =50 | 100 | 250 | 500 | T =20 | 30 | 50
time (min) 1.6 3.2 | 82 ]19.0 4.7 6.2 79

Supplementary Table 2: Signature matrix estimated from Darmanis et al.| q2015D in Excel file.

Supplementary Table 3: Average cell type fractions per region for GTEx brain data.

Astrocyte Endothelial Microglia Excitatory Inhibitory Oligo

Putamen 0.31 0.22 0.05 0.09 0.16 0.16
Caudate 0.32 0.21 0.07 0.11 0.19 0.10
Amygdala 0.25 0.18 0.07 0.17 0.20 0.14
Nucleus accumbens 0.30 0.17 0.05 0.16 0.25 0.06
Hippocampus 0.16 0.20 0.08 0.19 0.16 0.20
Substantia nigra 0.21 0.22 0.14 0.03 0.16 0.24
Hypothalamus 0.17 0.20 0.10 0.08 0.33 0.13
Cortex 0.22 0.18 0.03 0.34 0.20 0.03
Frontal Cortex 0.18 0.16 0.03 0.37 0.24 0.03
ACC 0.25 0.17 0.03 0.28 0.24 0.04
Cerebellar Hemis. 0.09 0.17 0.03 0.32 0.33 0.06
Cerebellum 0.15 0.18 0.03 0.30 0.29 0.05
Spinal cord 0.11 0.21 0.25 0.01 0.07 0.35




Supplementary Table 4: The correlation between measured and MIND estimated CTS expres-
sion in marker genes. For each cell type, we calculated the correlation between MIND estimated
and Habib et al| (2017)) measured expression. The maximum correlation in each column is in
boldface. We can see that MIND has specificity to estimate the CTS expression for the targeted
cell type.

CTS expression MIND estimated CTS expression
in [Habib et al.| (2017)) | Astrocyte Endothelial Excitatory Inhibitory Microglia Oligo
~ Astrocyte 0.65 0.24 0.54 0.38 0.00 0.48
Endothelial 0.27 0.57 0.31 0.19 0.08 0.27
Excitatory 0.38 0.24 0.75 0.56 -0.15 0.49
Inhibitory 0.34 0.19 0.65 0.63 -0.20 0.44
Microglia 0.03 0.02 0.04 0.06 0.49 0.16
Oligo 0.39 0.31 0.52 0.40 0.05 0.79

Supplementary Table 5: Analysis of simulated data mimicking bulk gene expression using
MIND. To simulate bulk data, we use cell type fractions estimated in GTEx brain data. The
profile matrix is built from Darmanis et al.| (2015), either the signature matrix for marker

genes or the profile matrix for all genes. For each simulation setting (each row), we vary the

’
true value of variance parameters, Gg, a?, and crfk , which denote the error variance, and the

variance and covariance of CTS expression, respectively. We present the average estimates of
variance parameters and the correlation between the estimated (est.) and true CTS expression.
The correlation is calculated for each cell type: astrocyte (astro), endothelial (endo), excitatory
(excit) and inhibitory (inhit) neurons, microglial, and oligodendrocyte (oligo). The results are
based on 100 replications.

Marker genes

true value parameter estimate | correlation of est. and true CTS expression
T T
2 2 kk ~9 ~9 ~kk . c 1. . . .
o o o, lops fops loph astro endo excit inhib microglia oligo

0.5 |1.00 1.05 048 097 096 098 0.97 0.94 0.97
1.0 1199 193 0.99 095 093 097 095 0.90 0.94
1.5 | 3.00 269 1.52 093 090 095 093 0.86 0.92
2.0 | 400 3.41 205 092 0.87 094 0.92 0.83 0.90
25 | 500 412 259 | 090 085 093 0.90 0.80 0.88

All genes
true value parameter estimate | correlation of est. and true CTS expression
2 o2 afk’ 62 52 6§k’ astro endo excit inhib microglia oligo
0.5 | 1.00 1.04 048 097 095 0.97 0.96 0.95 0.96
1.0 1199 193 099 | 094 090 094 0.93 0.91 0.93
1.5 1 3.00 267 1.52 092 0.87 092 091 0.88 0.90
2.0 | 400 3.38 2.06 0.90 0.84 091 0.89 0.85 0.88
2.5 | 5.00 4.09 2.59 0.88 0.81 0.89 0.87 0.82 0.86
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Supplementary Note

An EM algorithm for the multi-measure deconvolution model

Let A;; = aj + B;j, where B;; ~ N (0,X.). The complete-data log-likelihood is given by

14 (a Ec,ae) = const — fnplog\E | — 1ZZBWZC 'B,;
i=1j=1

1
—fZTlog ~ 25

n p
Z Z (Xl] — Wl-aj — WZB”) (X” — Wl-aj — WlB”) .
i=1j5=1

(SR ]

E-step

The E-step is to calculate the expected value of the above statistics given the observed data
and the current parameter estimates (v = (a®), Egt), 02(”)),

E (f (a Ec,ae> X, ) = const — = ZTlog 2 - %nplogﬁ]c]

=1
o? g; [E (e;J’Xij77(t)) E (eij’Xijv’Y(t)) + tr (Var (eij\Xijﬁ(t)))}
—;2:]2: {Bg)’gc—lBg) 4 tr ( 25121(?)} 7

where
’ / _1
BY) = E (Bij!Xij»’Y(t)) = 0w, (WZE?)W@- + Ug(t)fn) (Xij — Wiay)
=)W (X — Wiay) /020
is the empirical Bayes estimate of B;; and its covariance matrix is
’ 1
) = var (By| Xy, 4") = =0 - sOW, (WsOW, +0201,)  Winl)
’ —1
(w0« (5))

c
-1

For the error term,
-1
E (eij|Xiju’Y(t)) = g2 (Rz(;)) (Xij — Wia;),

var (e X 15,41 = 02017, — 01O ( R(t))*l ’

)

Where RS) = Rgt) W Z(t)W + Q(t)l
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M-step

In the M-step, we derive the estimate of the covariance matrix of random effects as

= ZZ BB +x)].

npll]l

The error variance estimate is
Je(t—H) Z Z [ ( ;j’Xij,’)’(t)) E (eij]Xij,'y(t)) + tr (VaI‘ (eij‘Xij,’y(t)))} .

The average CTS expression for gene j (part of profile matrix) is estimated as
-1 5
1 , -1
= (S ) T w) ()
i=1

The final estimate for CTS expression in subject ¢ and gene j is Aij =a;+ 3U

Discussion on log vs. anti-log transformation

Zhong and Liu (2012) raised a concern about using log-transformed data in deconvolution.
Shen-Orr et al.|(2012)) provided convincing argument about using log-transformation in their
response. In addition, Shannon et al.| (2014) showed more accurate results when using
quantile normalized and log-transformed data to estimate cell type fractions.

Here we further address this issue using the same data as|[Zhong and Liu (2012), i.e., the
mixtures of tissue expression in liver, brain, and lung by [Shen-Orr et al. (2010). There are 33
mixtures of the three tissues with known mixing fractions. We compare the measured and
deconvolved expression, for MIND using log-transformed data and NNLS (non-negative least
squares) using anti-log transformed data (Supplementary Fig. . In MIND, the problem is
formulated as 33 measures from a single subject, and NNLS treats it as 33 samples. The goal
is to estimate the expression for each of the three tissues. The two approaches are comparable
in liver and lung, in terms of root mean square error (rmse) and correlation, but anti-log
transformed data produce much worse results in brain, which is the focus of our paper. The
reason is that NNLS with anti-log transformed data fails to accurately deconvolve some genes
and forces 6% of deconvolved expression exactly as zero.

Remark on cell fraction and cell size

While our estimates of the abundance of neurons, for example, match previous findings, such
estimates can be inconsistent with those from neuroanatomical and other direct studies of cell
representation (Azevedo et al., |2009, [Pelvig et al., [2008). To better understand the estimated
cell type fractions, we studied the relationship between cell size and gene expression using
techniques in [Jia et al.| (2017) and results from Zeisel et al.| (2015]). We find that the
estimated cell size is highly positively correlated with level of gene expression (Supplementary
Fig. , and neurons tend to have a larger cell size than non-neurons, which agrees with
previous findings (Wang et al) 2018)). Thus, while most deconvolution studies present their
results in terms of estimated fractions of cell types, we believe these methods, including
MIND, estimate the fraction of RNA molecules from each cell type instead.
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