
Supplementary Methods

Detailed Description of the BBKNN Method

BBKNN is designed to use the network representation of scRNA-Seq data as
the primary representation of the data. To this end, the aim of the BBKNN
method is to construct the network in such a way that cells of the same type or
state are connected across batches (Supplementary Figure 1). Let the number
of UMIs observed for a gene g in cell c be given by xgc. Data preparation for
BBKNN first normalises each cell for depth of sequencing and applies a vari-
ance stabilising transformation to produce a normalised measure of expres-
sion, ygc, given by

ygc = log(1 + f
xgc∑
g xgc

) (1)

where f is a scaling factor with a default value of 10000.
The next step of the method is to identify neighbours both within and be-

tween batches. In theory this can be performed directly on the normalised data
ygc using any valid distance metric. In practice, we follow what has emerged
as the standard practice in the field [5, 16] and calculate the principal com-
ponent transformation of ygc∀c and g ∈ Ω, where Ω is a set of genes chosen
to have high variability. Finally, we consider only the first N principal compo-
nents to represent the data, which we represent as zpc for component p, cell
c. Transforming and truncating the data in this way helps alleviate the curse of
dimensionality [1, 4] and ignores variability that is likely due to random noise.

Given some normalised representation of the expression data for each cell
c, such as zpc, and a distance metric d, we then calculate the k nearest neigh-
bours for each cell within each batch. That is, for each cell c and batch b we
find the set of cells,

Sbc = {a ∈ Cb|d(zc, zb) ≤ δbc} (2)

where Cb is the set of cells belonging to batch b, d(zc, zb) gives the distance
between cells b and c and δbc is the distance to the kth furthest cell in Cb from
cell c. That is, Sbc is the set of k cells in batch b that are closest to cell c. The
complete set of neighbours for a cell c, which we denote Sc, is given by

Sc = Sb0c ∪ Sb1c ∪ · · ·Sbnc (3)

We use angular distance as the default when computing approximate neigh-
bours as it is the preferred metric of annoy [3], and Euclidean distance as the
default when computing exact neighbours. Other metrics are supported, often
at a performance loss. In addition to returning a list of neighbours, the KNN al-
gorithms also provide pairwise distances between neighbours, which we then
use in calculating the weights for network edges as described below.

Calculating Sc∀c ∈ C provides a connected graph representation of the
data with each cell connected to its k nearest neighbours within and between
batches. However, a number of these connections will be undesirable in the
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sense that they connect unrelated cell types. To account for this, we use the
approach taken by the UMAP method [11] and calculate a connectivity score
for each pair of connected points. Specifically, for each cell c, we calculate,

αca = exp

(
− (d(zc, za)− ρc)

σc

)
(4)

where ρc = min(d(zc, za), a ∈ Sc) and σc is chosen to satisfy,∑
a∈Sc

αca = λ log2(|Sc|) (5)

where λ is a bandwidth parameter (set to 1 by default) that controls how quickly
the connectivity values decay to 0 with distance.

The connectivity score αca is then made symmetric to give,

wca = wac = αac + αca − αacαca (6)

Each connection between cells is given the corresponding weight, wca, produc-
ing a weighted network representation of the data.

k is a free parameter that must be specified with lower values emphasising
local structure and larger values emphasising global structure. As a general
rule of thumb, we set k such that k∗Nb ≈ 30 where Nb is the number of batches
in the experiment. An exception to this heuristic rule is whenNb becomes large.
In such circumstances it is desirable to prevent k falling below 3 so that the
within batch neighbour structure is adequately sampled. To prevent the global
neighbour number, k ∗ Nb, becoming too large in these situations we globally
trim the neighbour network by calculating

Tc = {a ∈ Sc|wca ≥ εc} (7)

where εc is the tth largest connectivity score in the set Sc. That is, Tc is a
reduced set of the t nearest neighbours of cell c, where nearest is defined
using the connectivity scores. Tc is then used instead of Sc to construct the
weighted graph representation of the data.

This trimming allows the local batch structure of each cell to be adequately
sampled without compromising the locality of the neighbour network constructed
from combining batch specific neighbours. Under certain well justified assump-
tions, this weighted network representation of the data strongly connects cells
of the same type that have been separated by batch, while leaving unrelated
cell types separate. Furthermore, under the same assumptions the trimming
process outlined in equation 7 will preferentially remove connections between
unrelated cell types connected across batches (see the following section).

Finally, while this weighted network can be used as input for many down-
stream analyses, certain methods require an unweighted network. In such sit-
uations the trimmed network defined by Tc can simply be used without weights.
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Theoretical Justification for the BBKNN Algorithm

The core assumption made by BBKNN is that differences between cell types
are greater than differences between batch. This is an assumption that is also
made by other batch correction methods, most notably mnnCorrect [6]. To
make this more precise, consider two cells α and β. There are four possible
situations for these cells, specifically:

1. d1 - α and β are the same cell type and from the same batch.

2. d2 - α and β are the same cell type and from different batches.

3. d3 - α and β are different cell types and from the same batch.

4. d4 - α and β are different cell types and from different batches.

the assumption that batch-to-batch variation is less than cell type to cell type
variation implies that on average, d1 < d2 < d3 < d4. As such, the nearest
neighbour of a cell within another batch will always be of the same cell type (as
d2 < d4), provided the cell type is present in both batches.

Therefore, if the same cell type is present in multiple batches, BBKNN will
always create a connection between these cells. However, there will be situa-
tions in which a cell type is present in only a subset of batches. In this case, the
requirement to include neighbours from all batches will force BBKNN to con-
nect different cell types across batches. For example, consider a cell type that
exists in only one batch. BBKNN will then connect a cell of this type to whatever
cell of another type happens to be closest in other batches in the experiment.

However, such connections are automatically de-emphasised by the weight-
ing step of BBKNN for two reasons. Firstly, the cell connectivity scores αac

decay exponential with distance, with the scale of this decay set by equation
5. Equation 5 is calculated using all neighbours for cell c across all batches.
As such, it will be calculated using distances to cells of the same type in the
same batch (case 1 above) as well as the erroneous cross batch, cross cell
type distances (case 4). The assumption that d1 < d4 implies that σc must be
small and the connectivity values to cells of different types in different batches
must be small as well.

The second reason cross cell type, cross batch connections are automati-
cally de-emphasised by BBKNN is due to the symmetrised connectivity scores
wac given by equation 6. As cells connected across type and batch are unlikely
to be mutual neighbours [6], the symmetrised values wac used as weights will
be little greater than their asymmetric components. That is, one of αac and αca

is likely to be zero when c and a are not of the same cell type.
The global trimming of the neighbour network described in equation 7 pro-

vides a final level of protection against connections between unrelated cells
across batches. As this procedure preferentially removes neighbours based on
their connectivity scores, it will tend to remove connections from case 4 to case
1 above. That is, d4 > d2 ⇒ w4 < w2 and so the cells with the lowest connectiv-
ity scores, that are removed first by the trimming procedure, will be those that
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connect cells of different type across (and within) batches. By default, BBKNN
trims the graph to allow a number of top connectivities equal to ten times the
total number of neighbours computed for each cell, but this can be controlled
by an input parameter. More stringent trimming helps increase population in-
dependence at the potential cost of quality of batch mixing, emphasising local
structure over the global one.

In short, BBKNN creates connections between cells of different types when
batch specific cell types are present. However, these connections are not a
problem for the method for the same reason that connections between differ-
ent cell types are not a problem for the UMAP method. Specifically, as the
distance between cell types is greater than the distance within cell types, the
calculation of weights for the neighbour graph automatically de-emphasises
these connections.

BBKNN Implementation

BBKNN is implemented in Python, and is designed to slot into the spot oc-
cupied by neighbourhood graph inference in the typical SCANPY workflow,
making use of PCA coordinates stored within the AnnData object. For non-
SCANPY users, a second function taking a PCA matrix and batch assignment
vector on input is provided. The neighbour identification itself is performed via
annoy [3]. Exact neighbours can be identified at a performance loss via faiss
[7] for the Euclidean metric. cKDTree [10] from the spatial module of scipy [8] is
provided as a slower backup due to faiss’s demanding setup requirements. Ad-
ditional exact neighbour metrics are supported by KDTree from the neighbors
module of sklearn [13] at further reduced performance.

Seurat-Inspired SCANPY Workflow

All analysis scenarios were evaluated using a common analysis core, which
shall be henceforth referred to as the Seurat-inspired SCANPY workflow. The
steps of the analysis are normalising the data to 10,000 counts per cell, identi-
fying highly variable genes, limiting the datasets to those genes only, log trans-
forming the data, scaling it to unit variance and zero mean followed by PCA.
At this stage, the established analysis identifies a regular KNN graph, but we
also apply BBKNN in parallel. Both resulting AnnData objects are subsequently
dimensionality-reduced with UMAP and are subjected to graph-based cluster-
ing.

Ground Truth Batch Simulation

BBKNN’s ability to merge cell types from matching populations, along with the
impact of trimming on the distinctness of unrelated cell groups, was assessed
using Splatter [17] simulated data. The dataset was created with three 500
cell batches, each formed of three equally common cell types. 5000 genes
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were simulated, and both batch effect control parameters were increased to
0.5 to increase the severity of the effect. The data was processed using the
Seurat-inspired SCANPY workflow. Supplementary Figure 2 demonstrates the
heavy batch effect present when processing the data with the standard KNN
procedure, with BBKNN successfully recovering the buried cell types.

The impact of graph trimming on unrelated cell populations is examined in
Supplementary Figure 3, with two of the original simulation batches kept and
one of them having a cell type removed. This creates a setup with two popula-
tions present in both batches, and one cell type being specific to a single batch.
Initially, BBKNN places the isolated population near an unrelated cell type, and
this effect persists with the default trimming value. Trimming the graph to a
narrower set of top connectivities for each cell restores the autonomy of the
population, illustrating the need to inspect the proposed manifold for any erro-
neously merged populations and adjust the trimming parameter accordingly.

Pancreatic Data

The impact of the trimming parameter was further inspected on real data in
Supplementary Figure 4, using four pancreatic datasets [2, 12, 14, 15] col-
lated and uniformly annotated as part of the scmap resource [9]. The data
was processed with the Seurat-inspired SCANPY workflow, revealing a ma-
jor batch effect in the uncorrected manifold which gets rectified by BBKNN.
However, when no trimming is performed, the endothelial population becomes
erroneously connected to the main cell manifold. This effect is milder than in
the simulated case, and is removed by the default level of trimming. When
performing more stringent trimming matching that necessary to isolate the un-
related populations in the simulated data, the cell types remain separated to a
similar standard. However, the quality of the batch integration suffers due to
the prioritising of local structure.

Murine Atlases

Both the droplet and plate data from Tabula Muris was downloaded from figshare,
while all the other atlases were obtained from GEO. The dataset was then anal-
ysed with the Seurat-inspired SCANPY workflow (Supplementary Figure 5). To
avoid cell type over-representation biases, in particular due to a disproportion-
ately large hematopoietic stem cell population, the dataset was downsampled
based on organ annotations provided within each atlas coupled with Louvain
clustering of the complete object with a regular KNN graph – if a given at-
las featured over 2,000 cells of a given organ, the cluster memberships of
all of those cells were extracted. If any cluster featured over 500 cells from
that organ in that atlas, those cells would be randomly sub-sampled to remove
the excess. The Seurat-inspired SCANPY workflow was repeated after down-
sampling (Supplementary Figure 6). Cell populations were annotated based
on canonical markers (Supplementary Figure 7). Harmony was ran on the
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same PCA space as BBKNN (Supplementary Figure 8). The quality of BBKNN
and Harmony correction in UMAP space was assessed with kBET on a per-
population level, with lower scores implying a better degree of batch correction
(Supplementary Figure 9). The methods perform to a similar standard, with
BBKNN having a minor advantage in average score (0.9468 to 0.9646, lower
being better). A notable population is muscle, with the kBET scores differing by
0.2 in BBKNN’s favour.

Simulated Data Benchmarking

The run time of BBKNN was compared to mnnCorrect, Seurat 2 and 3’s CCA-
based batch correction approaches, Conos, Scanorama and Harmony using
Splatter simulated data (Supplementary Figure 10). Both approximate and ex-
act BBKNN neighbour detection algorithms were included in the benchmark.
The total dataset size increased in powers of two from 211 (∼ 2, 000) to 219

(∼ 500, 000) cells, with the formal simulation design being 5000 gene datasets
of two equally sized batches, each with two cell types. mnnCorrect, the Seu-
rat methods, Conos and Scanorama were ran on the resulting count matrix,
while BBKNN and Harmony used a PCA representation on input. Scanorama
ran into resource constraints when processing the 216 (∼ 65, 000) cell dataset.
From that point onward, only BBKNN and Harmony were ran, and the simu-
lated gene pool was shrank to 500 on account of both methods operating on
PCA coordinates. As such, the simulated gene total has no impact on the run
time of these algorithms. The benchmarking was performed on a four-core i7
MacBook Pro with 16GB RAM.
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[14] Åsa Segerstolpe, Athanasia Palasantza, Pernilla Eliasson, Eva-Marie An-
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Supplementary Figure 1: A conceptual schematic of BBKNN’s operation.
Identifying a cell’s k nearest neighbours for the purpose of constructing a KNN
graph compared to the batch balanced counterpart in BBKNN (A). The neigh-
bour distance collection is then converted to exponentially related connectiv-
ities, which BBKNN trims to weed out any erroneous connections between
unrelated cell populations (B). This connectivity graph can serve as the basis
for a number of downstream analysis options.
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Uncorrected BBKNN
A B

Supplementary Figure 2: Assessing BBKNN’s functionality on simulated
data. Three batches of three cell types were generated using Splatter, and
analysing them without batch correction leads to the visualisation being dis-
torted by the technical effect (A). Applying BBKNN manages to correctly re-
connect the cell types across the batches (B).
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BBKNN (no trimming) BBKNN (trim=10) BBKNN (trim=100)A B C

Supplementary Figure 3: Applying BBKNN trimming to simulated data. A
simulation scenario purposefully confuses BBKNN by including a cell type in
only one of the batches, with the algorithm placing it near an unrelated popula-
tion (A). Trimming the neighbourhood graph to a narrow set of top connectivi-
ties for each cell correctly recovers this cell type (B). BBKNN’s default trimming
threshold is too lenient to separate the populations as the effect is severe (C).
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A B C D
Uncorrected BBKNN (no trim) BBKNN (trim=20) BBKNN (trim=200)

Supplementary Figure 4: A collection of four experimentally diverse pancre-
atic datasets with a shared biology, confounded by a severe batch effect (A).
BBKNN is able to successfully reconnect matching cell types, but the endothe-
lial population is connected to the main manifold when no trimming is performed
(B). Performing trimming matching the stringent (C) and lenient (D) thresholds
from the simulated analysis successfully disconnects the population, with the
stringent threshold’s emphasis on local structure leading to more conserved
batch effect.
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Supplementary Figure 5: Analysing the complete 267,690 cell murine atlas
collection. Merging all of the data sources leads to a clear divide based on the
study of origin (A), which is successfully amended by BBKNN (B,C).
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Supplementary Figure 6: Repeating the murine atlas collection analysis after
down-sampling to ensure more balanced population sizes. The clear tech-
nical effect (A) is removed by BBKNN (B), and the final manifold captures a
biological trajectory from embryonic cells to fully mature immune/non-immune
populations.
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Supplementary Figure 7: The expression of a collection of known canoni-
cal markers in the merged murine atlas manifold. These genes were used to
annotate the featured cell populations.
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Supplementary Figure 8: Harmony batch correction of the murine atlases.
The datasets are well mixed (A), and the cell types are successfully recon-
nected (B) in most cases. However, the resulting manifold is considerably more
fragmented than the one proposed by BBKNN, with the purified hematopoetic
stem cell population from the HSC dataset split across the whole space instead
of forming a centralised hub (C).
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Supplementary Figure 9: Assessing the quality of BBKNN and Harmony’s
correction of the murine atlases by running kBET on UMAP space. The scores
are computed on a per-population level, with lower values implying better batch
correction. On average, BBKNN slightly outperforms Harmony.
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Supplementary Figure 10: Benchmarking the run time of BBKNN and a num-
ber of established batch correction methods using simulated data. BBKNN’s
run time compares favourably to that of established methods, with the algo-
rithm being consistently one to two orders of magnitude faster over a wide
range of input dataset sizes.
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