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1. Supplementary Experimental Illustration 

SI1. Feature selection 

Sophisticated features extracted from multiple different aspects may help improve the performance 

of the model compared to simpler features; however, the improvement may not always be significant 

(Guyon and Elisseeff, 2002). They may lead to a negative effect on the model training, such as the 

puzzle of dimensionality, decrease of performance and possible deviations in the model prediction 

(Guyon and Elisseeff, 2002; Wang, et al., 2017; Wen, et al., 2016; Zhang, et al., 2018). In order to 

identify the most contributing feature subsets and exclude the redundant features, the GainRatio 

method was used to perform feature selection by applying the Weka package (Frank, et al., 2004), 

which is a well-established feature selection method based on information theory (Frank, et al., 2004; 

Khatun, et al., 2019; Wang, et al., 2017). For the binary classification problem, the information 

entropy 𝐻(𝑋) can be defined as: 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log2(𝑃(𝑥𝑖))

𝑖

  𝑖 = 1,2 

where 𝑥𝑖 is a set of values of 𝑋 (two possible classes, e.g. positive or negative) and 𝑃(𝑥𝑖) denotes 

the prior probability of 𝑥𝑖. The entropy of the feature 𝐹𝑗 can be defined as: 

𝐻(𝑋|𝐹𝑗) = ∑ 𝑃𝐹𝑗=𝐹𝑘
𝐻(𝑋|𝐹𝑗 = 𝐹𝑘)

𝑚

𝑘=1

 

where m is the total number of features. Therefore, the gain ratio can be defined as: 

𝐺𝑅(𝐹𝑗) =
𝐻(𝑋) − 𝐻(𝑋|𝐹𝑗)

𝐻(𝑋)
 

 

 

 

 

 

 

 



SI2. Commonly used machine learning algorithms 

I K-nearest neighbor (KNN) 

K-nearest neighbor (KNN) is a simple and commonly employed machine learning algorithm that can 

be used to solve classification and regression problems (Wang, et al., 2017; Zhang, et al., 2018). KNN 

predicts new samples by evaluating their similarities/distances to the k nearest known neighbors. It 

has been successfully applied in many bioinformatics studies (Chen, et al., 2018; Liang, et al., 2013; 

Shen and Chou, 2005; Zhang, et al., 2018). The choice of the parameter k plays a vital role in 

determining the performance of the KNN algorithm. In our study, we optimized the parameter k to 

minimize the classification error for values 𝑘 = 1, 2, 3, … , ⌊max {√𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑁𝑢𝑚, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑁𝑢𝑚/

2}⌋, where featureNum is the number of features used for model training. 

 

II Support vector machine (SVM) 

Support vector machine (SVM) is an efficient machine learning algorithm and is suitable for solving 

binary classification, multiple classification or regression problems (Saini, et al., 2015; Song, et al., 

2018). SVM has been widely applied to deal with many classification tasks in the fields of the 

bioinformatics and computational biology (An, et al., 2018; Wang, et al., 2017; Zhang, et al., 2018). 

In this study, we adopted the Gaussian radial basis kernel for training the SVM models using the 

software package e1071 (Meyer, et al., 2015) implemented in the R language. We used the grid search 

to optimize the two essential parameters of SVM: CostC ∈ {2−10, 2−9, … , 1, 29, 210} and Gamma 

γ ∈ {2−10, 2−9, … , 1, 29, 210}. 

 

III Random forest (RF) 

Random forest (RF) is a well-established and widely used machine learning algorithm developed by 

Leo Breiman (Breiman, 2001). In principle, RF is an ensemble classifier composed of multiple 

decision trees (Chen, et al., 2018; Song, et al., 2017; Wang, et al., 2017; Zhang, et al., 2018). RF has 

been successfully applied to solve different classification and regression tasks (Song, et al., 2018; 

Wang, et al., 2017; Xue, et al., 2018). In the RF, there are two key parameters that need to be specified: 

the number of the decision trees (M) and the number of randomly selected features (mtry). Here, we 

selected M=1000, and optimized the parameter mtry by its built-in function to train RF model using 

the randomForest package implemented in R (Liaw and Wiener, 2002). 



 

IV Multi-Layer perceptron (MLP) 

Multi-Layer perceptron (MLP) is one of the most widely used artificial neural network models 

(Dehzangi, et al., 2010; Mirjalili, et al., 2014). MLP has been widely applied to solve various 

classification problems in bioinformatics (Wang, et al., 2017; Wang, et al., 2006). In this study, we 

trained the MLP model using the Keras package implemented in R. Specifically, three hidden layers 

were added to the model, and the number of nodes in each hidden layer was set to 64, with a dropout 

rate of 0.05. The parameter epochs was set to 40 during model training. 

  



2. Supplementary Tables and Figures 

 

Table S1. Statistics of the species-specific data used by PeNGaRoo, including the initially collected data and 

the data after the sequence redundancy removal. 

Species Initially collected data 
Data after sequence 

redundancy removal 

Bacillus subtilis 13 12 

Bacillus licheniformis 21 11 

Bacillus anthracis 20 14 

Bacillus cereus 6 0 

Listeria monocytogenes 23 20 

Listeria innocua 23 7 

Staphylococcus aureus 20 18 

Streptococcus pyogenes 20 13 

Streptococcus pneumoniae 20 8 

Streptococcus agalactiae 14 4 

Mycobacterium tuberculosis 24 11 

Mycobacterium smegmatis 21 16 

Lactobacillus plantarum 15 15 

Lactococcus lactis 13 8 

Total 253 157 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Classification of amino acids based on the dipoles and volumes of their side chains. 

No. Dipole Scale11 Volume Scale2 Class 

1 — — Ala, Gly, Val 

2 — + Ile, Leu, Phe, Pro 

3 + + Tyr, Met, Thr, Ser 

4 + + + His, Asn, Gln, Tpr 

5 + + + + Arg, Lys 

6 +’ +’ +’ + Asp, Glu 

7 +3 + Cys 

Note: 1Dipole Scale (Debye): −, Dipole < 1.0; +, 1.0 < Dipole < 2.0; ++, 2.0 < Dipole < 3.0; +++, 

Dipole >3.0; +’ +’ +’, Dipole > 3.0 with an opposite orientation. 
2Volume Scale (Ȧ3): −, Volume < 50; +, Volume > 50. 
3Cys is separated from the Class 3 due to its unique ability to form disulfide bonds. 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3. Classification of 20 standard amino acid types according to seven specific types of 

physicochemical properties. 

Categorization Class 1 Class 2 Class 3 

Hydrophobicity Polar 

R, K, E, D, Q, N 

Neutral 

G, A, S, T, P, H, Y 

Hydrophobicity 

C, L, V, I, M, F, W 

Normalized van der 
Waals volume 

0-2.78 

G, A, S, T, P, D, C 

2.95-4.0 

N, V, E, Q, I, L 

4.03-8.08 

M, H, K, F, R, Y, W 

Polarity 4.9-6.2 

L, I, F, W, C, M, V, Y 

8.0-9.2 

P, A, T, G, S 

10.4-13.0 

H, Q, R, K, N, E, D 

Polarizability 0-0.108 

G, A, S, D, T 

0.128-0.186 

C, P, N, V, E, Q, I, 
L 

0.219-0.409 

K, M, H, F, R, Y, W 

Charge Positive 

K, R 

Neutral 

A, N, C, Q, G, H, I, 
L, M, F, P, S, T, W, 
Y, V 

Negative 

D, E 

Secondary 
Structure 

Helix 

E, A, L, M, Q, K, R, H 

Strand 

V, I, Y, C, W, F, T 

Coil 

G, N, P, S, D 

Solvent 
Accessibility 

Buried 

A, L, F, C, G, I, V, W 

Exposed 

R, K, Q, E, N, D 

Intermediate 

M, S, P, T, H, Y 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4. Description of the 11 parameters required by LightGBM. 

Parameters Description1 Parameter tuning range 

learning_rate shrinkage rate [2^(-10), 0.9] 

num_leaves number of leaves in one tree [20, 800] 

max_depth max depth of the tree [5, 10] 

min_data_in_leaf minimal number of data in one 

leaf 

[2, 32] 

max_bin max number of bins in which 

feature values will be bucketed 

[32, 1024] 

feature_fraction percentage of features selected 

prior to the training of each tree 

[0.5, 1] 

min_sum_hessian minimal sum hessian in one leaf [0, 0.02] 

lambda_l1 L1 regularization [0, 0.01] 

lambda_l2 L2 regularization [0, 0.01] 

drop_rate only used in dart [0, 1] 

max_drop max number of dropped trees at 

one iteration 

[1, 100] 

Note: 1The description of the above parameters was retrieved from the official LightGBM document 

(http://lightgbm.readthedocs.io/en/latest/index.html). 
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Table S5. Predictive performance of models using different feature encoding methods based on the PSO 

parameter optimization strategy compared with those based on the initial parameter setting, One-by-one 

parameter optimization, and GA-based two-step parameter optimization. The performance was evaluated 

using the 5-fold cross-validation test. The values were expressed as mean±standard deviation. 

Model PAAC QSO TPC Pse-PSSM AATP CTriad CTDT 

Default 0.638±0.036 0.610±0.057 0.688±0.033 0.666±0.039 0.719±0.043 0.609±0.035 0.654±0.039 

One-by-one 0.663±0.034 0.646±0.045 0.721±0.030 0.691±0.047 0.712±0.037 0.671±0.035 0.632±0.043 

GA-based two-step 0.669±0.045 0.648±0.047 0.728±0.029 0.718±0.035 0.739±0.029 0.676±0.030 0.638±0.029 

PSO-based 0.688±0.036 0.673±0.035 0.744±0.027 0.728±0.039 0.747±0.033 0.700±0.030 0.666±0.034 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S1: Performance comparison between models trained using different sequence encoding methods on the 

5-fold cross-validation test. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S6. Comparison of the predictive performance between models trained using the original features and 

the features combined with the GainRatio method. 

Encoding Dim SN SP ACC F-value  MCC 

PAAC 50 0.870±0.016 0.819±0.033 0.842±0.020 0.844±0.017 0.688±0.036 

QSO 50 0.842±0.014 0.810±0.016 0.826±0.014 0.827±0.011 0.653±0.026 

 100 0.862±0.018 0.808±0.030 0.836±0.019 0.838±0.017 0.673±0.035 

TPC 50 0.892±0.016 0.807±0.024 0.850±0.013 0.853±0.012 0.701±0.025 

 100 0.930±0.018 0.807±0.025 0.868±0.016 0.874±0.014 0.741±0.032 

 150 0.916±0.021 0.816±0.023 0.866±0.017 0.870±0.016 0.737±0.034 

 200 0.913±0.028 0.805±0.019 0.860±0.020 0.865±0.019 0.723±0.039 

 250 0.916±0.026 0.805±0.021 0.860±0.017 0.865±0.018 0.726±0.036 

 300 0.912±0.021 0.809±0.030 0.860±0.019 0.865±0.017 0.726±0.036 

 350 0.912±0.032 0.801±0.019 0.856±0.018 0.861±0.019 0.718±0.037 

 400 0.927±0.017 0.813±0.026 0.870±0.015 0.875±0.013 0.744±0.027 

Pse-PSSM 40 0.913±0.030 0.811±0.020 0.862±0.020 0.868±0.020 0.728±0.039 

AATP 50 0.904±0.024 0.802±0.023 0.853±0.017 0.857±0.017 0.710±0.034 

 100 0.929±0.014 0.808±0.025 0.868±0.017 0.874±0.014 0.742±0.031 

 150 0.923±0.030 0.806±0.020 0.864±0.020 0.869±0.019 0.734±0.040 

 200 0.913±0.030 0.811±0.020 0.862±0.020 0.868±0.020 0.728±0.039 

 250 0.913±0.030 0.811±0.020 0.862±0.020 0.868±0.020 0.728±0.039 

 300 0.917±0.024 0.809±0.021 0.864±0.020 0.868±0.019 0.731±0.040 

 350 0.914±0.030 0.811±0.023 0.862±0.018 0.867±0.017 0.729±0.036 

 400 0.927±0.021 0.809±0.033 0.867±0.023 0.873±0.021 0.741±0.045 

 420 0.933±0.021 0.808±0.022 0.877±0.017 0.871±0.017 0.747±0.033 

CTriad 50 0.814±0.038 0.798±0.023 0.805±0.025 0.804±0.029 0.611±0.052 

 100 0.846±0.030 0.796±0.026 0.820±0.025 0.823±0.025 0.642±0.048 

 150 0.845±0.022 0.807±0.025 0.826±0.019 0.826±0.018 0.652±0.036 

 200 0.849±0.030 0.812±0.033 0.829±0.023 0.830±0.023 0.661±0.044 

 250 0.860±0.030 0.808±0.020 0.833±0.020 0.835±0.021 0.668±0.039 

 300 0.865±0.040 0.811±0.025 0.837±0.030 0.839±0.031 0.676±0.059 

 343 0.884±0.022 0.815±0.028 0.848±0.016 0.852±0.014 0.700±0.030 

CTDT 21 0.838±0.021 0.827±0.033 0.833±0.017 0.831±0.016 0.666±0.034 



 

Fig. S2: Performance comparison between single feature-based models, group-based one-layer ensemble 

models and the final two-layer ensemble model on the benchmark training dataset. 

 

 

 



 

Fig. S3: Performance comparison in terms of the MCC value between single feature-based models, group-

based one-layer ensemble models and the final two-layer ensemble models on the benchmark training 

dataset. 

 

 

 

 

 

 

 

 

 

 

 



Table S7. Performance comparison of different LightGBM classifiers using the leave-one-out cross-

validation test. 

Model  Encoding SN SP ACC F-value MCC 

Sequence-derived 

features 

PAAC 0.870±0.024 0.820±0.022 0.845±0.017 0.848±0.017 0.691±0.034 

QSO 0.850±0.024 0.804±0.017 0.827±0.013 0.831±0.014 0.655±0.026 

Group 1 0.880±0.019 0.830±0.015 0.855±0.010 0.859±0.010 0.712±0.020 

Evolutionary 

information-based 

features 

TPC 0.935±0.018 0.817±0.029 0.876±0.018 0.883±0.017 0.758±0.036 

Pse-PSSM 0.904±0.013 0.831±0.028 0.867±0.017 0.872±0.015 0.737±0.032 

AATP 0.936±0.018 0.819±0.030 0.878±0.021 0.885±0.019 0.761±0.040 

Group 2 0.946±0.017 0.821±0.031 0.883±0.018 0.890±0.016 0.773±0.034 

Physicochemical 

property-based features 

CTRIAD 0.890±0.018 0.821±0.036 0.855±0.024 0.860±0.022 0.713±0.047 

CTDT 0.838±0.019 0.814±0.016 0.826±0.013 0.828±0.014 0.652±0.027 

Group 3 0.896±0.015 0.829±0.019 0.863±0.016 0.867±0.015 0.727±0.032 

Final model All features 0.938±0.012 0.851±0.022 0.895±0.015 0.899±0.014 0.792±0.030 

Note: Performance was expressed as mean ± standard deviation. The best performance value within each groups of feature-based models is 

highlighted in bold. 

 

Fig. S4 ROC curves of the models trained using different sequence encoding methods evaluated using the 

leave-one-out cross-validation test. The AUC values were calculated and shown in the inset. 



Table S8. Performance comparison between the models trained using different types of single features, the 

ensemble models based on groups of features, and our proposed final method PeNGaRoo using the 

independent test set. 

Model  Encoding SN SP ACC F-value MCC 

Sequence-derived features 

PAAC 0.824 0.588 0.706 0.737 0.424 

QSO 0.794 0.588 0.691 0.720 0.391 

Group 1 0.824 0.618 0.721 0.747 0.451 

Evolutionary information-

based features 

TPC 0.794 0.559 0.676 0.711 0.363 

Pse-PSSM 0.706 0.529 0.618 0.649 0.239 

AATP 0.765 0.618 0.691 0.712 0.387 

Group 2 0.765 0.559 0.662 0.693 0.331 

Physicochemical property-

based features 

CTRIAD 0.676 0.676 0.676 0.676 0.353 

CTDT 0.853 0.676 0.765 0.784 0.538 

Group 3 0.794 0.735 0.765 0.771 0.530 

Final model All features 0.824 0.735 0.779 0.789 0.561 

Note: Performance was expressed as mean ± standard deviation. The best performance value within each groups of feature-based models is 

highlighted in bold. 

 

 

 

 

 

 

 

 



Table S9. Performance comparison of different classifiers (single feature-based models and ensemble 

models) based on four machine learning algorithms on the independent test set. 

Machine learning 

algorithms 
Encoding SN SP ACC F-value  MCC 

KNN 

PAAC 0.765 0.559 0.662 0.693 0.331 

QSO 0.853 0.500 0.676 0.725 0.377 

Group 1 0.824 0.588 0.706 0.737 0.424 

TPC 0.706 0.618 0.662 0.676 0.325 

Pse-PSSM 0.794 0.618 0.706 0.730 0.418 

AATP 0.706 0.559 0.632 0.658 0.268 

Group 2 0.735 0.676 0.706 0.714 0.412 

CTriad 0.853 0.176 0.515 0.637 0.040 

CTDT 0.824 0.588 0.706 0.737 0.424 

Group 3 0.853 0.294 0.574 0.667 0.177 

All features 0.853 0.588 0.721 0.753 0.457 

SVM 

PAAC 0.735 0.647 0.691 0.704 0.384 

QSO 0.735 0.735 0.735 0.735 0.471 

Group 1 0.735 0.676 0.706 0.714 0.412 

TPC 0.529 0.765 0.647 0.600 0.303 

Pse-PSSM 0.500 0.794 0.647 0.586 0.308 

AATP 0.500 0.794 0.647 0.586 0.308 

Group 2 0.471 0.824 0.647 0.571 0.314 

CTriad 0.647 0.735 0.691 0.677 0.384 

CTDT 0.735 0.676 0.706 0.714 0.412 

Group 3 0.676 0.706 0.691 0.687 0.383 

All features 0.676 0.824 0.750 0.730 0.505 

RF 

PAAC 0.765 0.647 0.706 0.722 0.415 

QSO 0.735 0.559 0.647 0.676 0.299 

Group 1 0.794 0.676 0.735 0.75 0.474 



TPC 0.706 0.5 0.603 0.64 0.21 

Pse-PSSM 0.735 0.5 0.618 0.658 0.242 

AATP 0.706 0.471 0.588 0.632 0.182 

Group 2 0.735 0.471 0.603 0.649 0.213 

CTriad 0.765 0.647 0.706 0.722 0.415 

CTDT 0.853 0.559 0.706 0.744 0.431 

Group 3 0.824 0.676 0.750 0.767 0.505 

All features 0.824 0.676 0.750 0.767 0.505 

MLP 

PAAC 0.824 0.559 0.691 0.727 0.396 

QSO 0.676 0.824 0.750 0.730 0.505 

Group 1 0.765 0.794 0.779 0.776 0.559 

TPC 0.676 0.559 0.618 0.639 0.237 

Pse-PSSM 0.853 0.441 0.647 0.707 0.323 

AATP 0.676 0.647 0.662 0.667 0.324 

Group 2 0.794 0.529 0.662 0.701 0.335 

CTriad 0.676 0.676 0.676 0.676 0.353 

CTDT 0.794 0.647 0.721 0.740 0.446 

Group 3 0.706 0.765 0.735 0.727 0.471 

All features 0.824 0.706 0.765 0.778 0.533 

Note: For each of machine learning models, the best performance value for each metric across different 

encoding methods-based models and ensemble models is shown in bold font. 

 

 

 

 

 

 

 

 



Table S10. Performance comparison of two-layer ensemble models based on five machine learning 

algorithms on the independent test set. 

 SN SP ACC F-value  MCC 

two-layer ensemble 

LightGBM models 

0.824 0.735 0.779 0.789 0.561 

two-layer KNN ensemble 

models 

0.853 0.588 0.721 0.753 0.457 

two-layer SVM ensemble 

models 
0.676 0.824 0.750 0.730 0.505 

two-layer ensemble RF 

models 
0.824 0.676 0.750 0.767 0.505 

two-layer ensemble MLP 

models 
0.824 0.706 0.765 0.778 0.533 

Note: The best performance value for each metric across different machine learning algorithms is shown in 

bold font. 

 

Table S11. The key differences between the proposed PeNGaRoo method and SecretomeP. 

 PeNGaRoo SecretomeP 

Positive samples for model training Experimentally validated non-

classical secreted effectors 

Secreted proteins after removing 

signal peptides 

Training dataset Positive: 141; Negative: 446 Positive: 152; Negative: 140 

Independent dataset Positive: 34; Negative: 34 None 

Imbalanced problem solving Yes No 

Feature extraction PAAC, QSO, TPC, Pse-PSSM, 

AATP, CTriad, CTDT 

 

Threonine contents, amino acid 

composition (AAC), 

Transmembrane helices, Gravy, 

Protein disorder, Secondary structure 

Machine learning algorithm  LightGBM with optimized 

parameters 

Neural networks 

Ensemble strategy Two-layer ensemble method None 

Maximum allowed number of 

sequences per submission on the 

server 

500 100  



Table S12. Performance comparison between PeNGaRoo and the state-of-the-art method SecretomeP for 

predicting non-classical secreted Gram-positive bacterial proteins on the independent test dataset. 

 Classifier SN SP ACC F-value  MCC 

Independent test  
SecretomeP 0.353 0.824 0.588 0.462 0.2 

PeNGaRoo 0.824 0.735 0.779 0.789 0.561 

 

Table S13. Performance comparison between PeNGaRoo, SecretomeP and SecretP based on the dataset of 

non-classical secretory proteins previously compiled by (Bendtsen et al., 2005)1. 

UniProt ID SecretP2 SecretomeP3 PeNGaRoo 

Score4 Result Score Result Score Result 

P49814 0 N 0.059 N 0.824 Y 

Q06320 1 Y 0.725 Y 0.758 Y 

P0DJM2 2 N 0.377 N 0.963 Y 

P80868 2 N 0.082 N 0.990 Y 

Q8Y422 2 N 0.090 N 0.985 Y 

P37869 2 N 0.128 N 0.991 Y 

P9WNK7 1 Y 0.647 Y 0.637 Y 

P9WNK5 1 Y 0.855 Y 0.687 Y 

P39810 2 N 0.831 N 0.840 Y 

P39738 1 Y 0.857 Y 0.527 Y 

P09124 2 N 0.127 N 0.992 Y 

P9WN39 2 N 0.534 Y 0.735 Y 

P28598 2 N 0.037 N 0.999 Y 

P02968 2 N 0.291 N 0.578 Y 

P26901 2 N 0.741 Y 0.734 Y 

P21881 2 N 0.150 N 0.896 Y 

P21882 2 N 0.051 N 0.997 Y 

P21880 2 N 0.062 N 0.992 Y 

O53083 1 Y 0.061 N 0.182 N 

P39634 2 N 0.091 N 0.986 Y 



P39138 2 N 0.110 N 0.427 N 

Q9RLT9 2 N 0.116 N 0.083 N 

Q8YA96 2 N 0.068 N 0.019 N 

Q8Y459 2 N 0.070 N 0.721 Y 

P54375 1 Y 0.760 Y 0.960 Y 

P9WGE7 1 Y 0.306 N 0.890 Y 

P39797 2 N 0.464 N 0.768 Y 

P54327 2 N 0.103 N 0.373 N 

P54331 2 N 0.736 Y 0.939 Y 

P54332 2 N 0.631 Y 0.411 N 

P39800 2 N 0.707 Y 0.745 Y 

P80875 2 N 0.452 N 0.610 Y 

Note: 1The original list contained a total of 35 proteins, of which only one entry was a Gram-positive bacterium 

non-classical secretory protein and the other were Gram-positive non-classical secretory proteins. Therefore, 

after removing this protein, and another two obsolete proteins (i.e. Q4EL63_LISMO and C1L1X5_LISMC), 

32 non-classical Gram-positive bacterial proteins remained and were used to assess the performance of the 

three methods. 
2The prediction results of SecretP were extracted from the reference paper entitled "SecretP: Identifying 

bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition". 
3The prediction results of SecretomeP were generated by the web server presented in the article titled "Non-

classical protein secretion in bacteria". 
4For the prediction results of SecretP, “0”, “1” and “2” represent the types of CSP, non-classically secreted 

protein and non-secreted protein, respectively. 
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