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Abstract

We provide a brief overview of power analysis for genetic association studies in Sec-

tion 1. The relationship between two approaches to specifying the alternative hypothesis

in power calculations for association studies is clarified in Section 2. We develop a uni-

fied analysis of statistical power for common association tests in Section 4, and provide

a simple rule for finite-sample correction of the asymptotic approximations in Section

5. The performance of this correction is examined through numerical experiments in

Section 7. Proof of the main result is found in Section 6.
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1 Overview of power analysis in genetic association studies

In power analysis of genetic association studies, disease models are used to specify the

distribution of observations under the alternative hypothesis. In this document, we discuss

the challenges in disease model specifications, and discuss its relationship with an alternative

approach that accomplishes the same goal through a set of ”cannonical parameters”.

We shall first briefly recall the main steps of a typical power analysis for genetic associ-

ation studies.

1.1 Disease model specifications

A typical power analysis for genetic association studies begin by specifiying an alternative

hypothesis through a disease model (dominant, recessive, multiplicative, additive, etc.),

which assumes:

• The genotype relative risks (GRR).

• Risk allele frequency in the general population (p).

• Disease prevalence in the general population (Prev).

The disease model and parameters determine the joint distribution of the genotypes and

phenotyes in the population, shown in the following table.
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Risk allele copies

Population Prob. 0 copies 1 copy 2 copies

Cases π10 π11 π12

Controls π20 π21 π22

In the disease models, the conditional probabilities of having the disease, given the risk

allele copy numbers, satisfy the following relations,

π10
π10 + π20

:
π11

π11 + π21
:

π12
π12 + π22

=



1 : GRR : GRR2, Multiplicative

1 : GRR : 2×GRR− 1, Additive

1 : GRR : GRR, Dominant

1 : 1 : GRR, Recessive

(1)

where GRR is strictly greater than 1 under the alternative, and equal to 1 under the null

hypothesis.

The disease prevalence determines the sum of the probabilities of cases in the population,

π10 + π11 + π12 = Prev. (2)

The risk allele frequency in the general population, p, assuming Hardy-Weinberg equi-

librium, satisfies

π10 + π20 = (1− p)2, π11 + π21 = 2p(1− p), π12 + π22 = p2. (3)

The population probabilities are determined by the disease model and its parameters

(GRR, Prev, and p). The six unknowns (π10, . . . , π22) and are solved for using the six

equations above: two from Relation (1), one from (2), and three from (3).

1.2 Sampling adjustments

Next, the probabilities of observing each genotype-phenotype combination are adjusted

according the number of cases and controls recruited *in the studies*, where the sample

sizes are specified with

1. The number of cases (n1) and controls (n2), or equivalently, the fraction of cases (φ)

and total number of subjects (n).
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Risk allele copies

Prob. in study 0 copies 1 copy 2 copies

Cases π10
φ

Prev π11
φ

Prev π12
φ

Prev

Controls π20
1−φ

1−Prev π21
1−φ

1−Prev π22
1−φ

1−Prev

As an example, if φ > Prev, the probabilities are adjusted to account for over-sampling

of cases.

The relative frequencies of allele type-phenotype combinations in the study are then

calculated as follows.

Allele variant

Prob. in study Risk allele Non-risk allele

Cases φ
(
π12
Prev + π11

2×Prev

)
φ
(

π11
2×Prev + π10

Prev

)
Controls (1− φ)

(
π22

1−Prev + π21
2(1−Prev)

)
(1− φ)

(
π21

2(1−Prev) + π20
1−Prev

)
To simplify notation, we denote the relative frequencies of allele type-phenotype combi-

nations with µ = (µ11, µ12, µ21, µ22).

Allele variant

Prob. in study Risk allele Non-risk allele Total by phenotype

Cases µ11 µ12 φ = µ11 + µ12

Controls µ21 µ22 1− φ = µ21 + µ22

1.3 Power calculations of association tests

Finally, the power of an statistical test is calculated as the probability of (a correct) rejection,

assuming that the data (i.e., tabulated counts of the allele type-phenotype combinations)

follow a multinomial distribution with probability matrix µ and sample size 2n, since each

individual has a pair of alleles.

Some common association tests include the likelihood ratio test, Pearson’s chi-square

test, tests of zero slope coefficient in logistic regressions, as well as t-tests for equal propor-

tions. In principal, power analysis has to be tailored to the association test used. Fortu-

nately, many of these tests are asymptotically equivalent in terms of power, and results of

the power analysis applies to all equivalent tests; see Section 4.

These steps form the basis of the calculations implemented in the most existing tools,

including the GAS calculator (Johnson et al., 2017). Although not explicitly stated, the

GAS calculator assumes the test of association to be the Welch t-test.
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2 Two approaches to specifying the alternative hypothesis

In the power calculations outlined above, the disease models are used to describe the dis-

tribution of the data under the alternative hypothesis. Specifically, they are used to specify

the conditional distributions of the allele variants, given the phenotypes. The probability

of observing a risk allele in the control group,

f := P[ risk allele | control group ] =
µ21

1− φ
=

π22 + π21/2

π22 + π21 + π20
, (4)

is fully determined by the disease model. Similarly, the odds ratio between the two allele

variants,

R :=
µ11µ22
µ12µ21

=
(π12 + π11/2)(π20 + π21/2)

(π10 + π11/2)(π22 + π21/2)
, (5)

is also determined by the disease model and its parameters.

In turn, the parameters (f,R), together with the sample sizes (φ, n), fully describe the

distribution of our data under the alternative hypothesis (by determining the probability

vector µ and the sample size n). Power of association tests, therefore, depends on (and only

on) the set of “canonical parameters”:

• Risk allele frequency among the controls (f).

• Odds ratio (R) of having the defined trait between the two allele variants.

• One of the two equivalent ways of parametrizing the sample sizes.

We illustrates the common process of power analysis implemented in existing power

calculators in Figure 1.

Our discussion above shows that in power calculations, we can either describe the alter-

native hypothesis with a disease model, or through the canonical parameters (f,R). Both

approaches are sufficient for the purpose of power analysis.

We remind readers that the risk allele frequency in the control group (f) is not equivalent

to the risk allele frequency in the general population (p); odds ratio (R) is not equivalent

to genotype relative risk (GRR).

2.1 Conversion between the two specifications

Notice that, as illustrated in Figure 1, the power calculations are mediated through the

canonical parameters, which are invariant to different model specifications. That is, differ-

ent disease model specifications may lead to the same set of canonical parameters (f,R),
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Figure 1: The process of a typical power analysis for genetic association tests. The quantities
depend on, and can be calculated from the values of their parents in the directed graph.
Power can be calculated as long as one set of parameters in each branch is known. While
there is a one-to-one correspondence between the sample size specifications (n1, n2) and
(φ, n), the mapping from disease model specifications to (f,R) is many-to-one.

and consequently the) same distributions of the allele variant counts. From a statistical per-

spective, the disease models that map to the same set of canonical parameters are equivalent

in terms of power.

For example, the following set of disease models and parameters imply the same set of

canonical parameters (f = 0.290, R = 1.575), and therefore enjoy the same power at the

same sample sizes (n1 = n2 = 1000).

Disease Model (Prev, p,GRR) (f,R) Power

Multiplicative (0.1, 0.3, 1.500) (0.290, 1.575) 0.990

Additive (0.1, 0.3, 1.588) (0.290, 1.575) 0.990

Dominant (0.1, 0.3, 1.909) (0.290, 1.575) 0.990

Recessive (0.1, 0.3, 2.666) (0.290, 1.575) 0.990

Conversely, different disease models with the same parameters, map to drastically dif-

ferent canonical parameters. For example, the default disease model parameters in the GAS

calculator,

Disease prevalence in the population : Prev = 0.1 (6)

Risk allele frequency in the population : p = 0.5 (7)

Genotype relative risk : GRR = 1.5. (8)

map to very different canonical parameters under different disease model assumptions (as-

suming the same sample sizes of n1 = n2 = 1000), which leads to drastically different
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statistical power.

Disease Model (Prev, p,GRR) (f,R) Power

Multiplicative (0.1, 0.5, 1.5) (0.489, 1.568) 0.995

Additive (0.1, 0.5, 1.5) (0.491, 1.453) 0.920

Dominant (0.1, 0.5, 1.5) (0.495, 1.224) 0.282

Recessive (0.1, 0.5, 1.5) (0.494, 1.281) 0.098

In the application, we provide users with a “Disease model converter” that implements

this many-to-one conversion from the disease model specifications to the canonical param-

eters.

2.2 Comparisons of the two approaches

While the disease models may carry additional insights into the biological process, the

canonical parameters also have their unique advantages. We offer an incomplete list of

comparisons of the two approaches, and discuss their usage in practice.

2.2.1 Interpretability and communicability

In general, geneticists and biostatisticians seem to agree that disease models are more

interpretable. The concept of genotype relative risks, in particular, seems easier to reason

about than odds ratios in the canonical parameters definition. Disease models also seem

to be the de facto mode of model specification when performing power analysis for study

planning and grant applications.

The “nonparametric” approach to model specification through the canonical parameters

is somewhat lesser known to the statistical genetics community. The canonical parameters

are typically estimated and reported as outcomes of the research, but not used as inputs to

the power analysis for planning purposes.

2.2.2 Availability of parameter estimates

The canonical parameters f and R can be estimated from data collected in the study.

They are also reported and curated in GWAS catalogs such as the NHGRI-EBI Catalog

(MacArthur et al., 2016).

On the other hand, accurate information regarding the disease model parameters can

be more difficult to obtain, partly because some parameters in the disease models cannot

be estimated from the association studies alone.

In particular, disease prevalence in population (Prev), as well as RAF in population

(p), must be obtained from other studies or surveys targeting the general population; the
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association studies, unless matching the proportion of cases in the population vs in the

study (φ = Prev), cannot produce estimates without using external information. Genetic

association studies rarely explicitly estimate the disease model and its parameters. In fact,

we are not aware of a GWAS catalog that reports and curates the disease models and their

estimated parameters.

This paucity of information on disease model parameters is not an issue if we are planning

to study a trait for which we have little prior knowledge. In this case, the purpose of power

analysis is to determine the range of models and parameters that lead to discovery of

associations, given the study designs.

In contrast, in confirmatory / follow-up studies and systematic reviews, our main interest

is in the statistical validity of the reported findings. Power analysis then serves to find

efficient designs, and to validate the claims made. Knowledge obtained in prior studies (in

the form of parameter estimates) are indeed necessary.

2.2.3 Robustness against model misspecification

Disease models are useful in as much as they help us understand the biology behind the

data we observe. Unfortunately, like all models, they can be misspecified. For example, the

following genotype relative risks,

π10
π10 + π20

:
π11

π11 + π21
:

π12
π12 + π22

= 1 : 3 : 4,

does not follow any of the common disease models. In this case, different studies may come

up with different disease models (say, Dominant and Additive), and of course, different

parameter estimates.

Suppose a researcher wishes to perform a meta analysis or confirmatory experiment of

the existing results, where the literature reports inconsistent estimates of disease models

and parameters, he would a have a difficult time pooling the information from these different

sources. And even when they are pooled, the resulting model usually does not fall in one

of the familiar categories — there is no existing tool with which to perform power analysis.

The researcher will likely have to forgo the information from one model, and use estimates

from only the other.

On the other hand, the canonical parameters are invariant to the disease model choices,

and accommodate models falling outside the usual categories. They can also be easily

combined to produce pooled estimates. This universality allows us to perform power analysis

in a unified fashion, regardless of the disease models assumed. This also paves the way for

the “OR-RAF diagram”, as well as systematic reviews of statistical validity of existing

studies.
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2.2.4 Robustness against human errors

The disparity in availability of parameter estimates we mentioned earlier can lead to unin-

tended consequences, one of which is potentially incorrect usage of power calculators.

This issue, although minor, affects correctness of the results from power analysis.

Recall that the specification of a disease model requires as input the risk allele fre-

quency (RAF) in the general population (p). The RAF reported in the NHGRI-EBI Cat-

alog (MacArthur et al., 2016), in contrast, refers to RAF in the control group (f). With

RAF in population often unavailable, it is tempting to substitute the RAF in control group

into the calculations. While the two quantities may be close when diseases prevalence and

penetrance are low, their difference becomes non-negligible if either of the two conditions

are violated, leading to grossly distorted results.

Performing power analysis with the canonical parameters is not guaranteed to prevent

this human error, as mistake in the other direction could also happen. But perhaps it is

more robust to such mistakes, since what is readily available matches with what is required

as input.

2.2.5 Compatibility of parameters

We make another minor comment regarding correct usage of disease models.

We caution users that not all values of the disease model parameter combinations are

valid. For example, in a multiplicative model, the parameters

p = 0.1, Prev = 0.5, GRR = 1.5,

would result in the conditional probability of having two risk allele copies greater than 1.

(In this case, the GAS calculator (Johnson et al., 2017) would produce the error message: “I

don’t like the genetic model you requested!”, without explicitly pointing to the compatibility

issue.)

Although an experienced geneticist would immediately notice the impossibility of the

disease model parameter combinations, these contradictions may not be obvious to the

untrained eye. The end user of the software – experienced or not – is ultimately responsible

for inputting valid values when specifying a disease model.

On the other hand, any combination of

f ∈ (0, 1), and R ∈ (0,+∞)

is valid. Parameter compatibility is not an problem for the set of canonical parameters.
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2.3 Recommendations on model specification in power analysis

Since both the disease models and the canonical parameters are sufficient for the purpose

of power analysis, a natural question then arises: why (and when) should one take the

canonical parameters approach, given that the more familiar disease models would also

suffice?

We believe that either approach may be preferred, depending on the use cases. Recall

that power analysis is useful in at least three scenarios:

1. In planning for an exploratory study, where little is known about the associations.

In this case, the top branch in Figure 1 is unknown to the researcher. The goal is to

find out the range of disease models and parameters that are discoverable given the

study designs. Power analysis is also to some extent exploratory in nature.

2. In planning for a confirmatory study, where something is known about the associations

and one wishes to validate the findings with an efficient design.

In this case, the top branch in Figure 1 is known, and the variables in the bottom

branch is what we are solving for. The goal of power analysis is to provide a set of

efficient study designs with sufficient power.

3. In reviewing the reported findings and verify the statistical validity of the claims made.

In the third case, one looks to find out whether the claims of statistical significance

are congruent with the evidence from data. A claim supported by very weak or

contradictory evidence should invite further investigations. In this case, both branches

in Figure 1 have to be available.

In view of the discussions above and in Section 2.2, we propose the following general

guideline for power analysis in genetic association studies.

• When designing an association study where little to no prior information is available:

– Either approach is valid.

– Disease models are easier to interpret and communicate.

• When designing a follow-up / confirmatory study, or conducting a systematic review:

– Choose the approach for which the parameter estimates are available, or of better

quality.

– Typically the canonical parameters are better estimated, reported, and curated.
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There are, of course, exceptions to these rules. The minor comments we made about the

two approaches should not be taken as criticisms, but rather as reminders of the potential

pitfalls in power analysis. In either approach, care needs to be exercised in order to produce

valid results.

3 Use case illustrations

We detail each of the three functionalities of the application, and illustrate with examples.

3.1 Reviewing reported findings in the GWAS catalog

The “OR-RAF power diagram” tab of the application provides a tool for reviewing reported

associations from existing studies. The application calculates statistical power based the

core parameters common to models of qualitative traits:

• Sample sizes, i.e., the number of cases and controls i.e., (n1, n2) or (φ, n).

• The canonical parameters (f,R).

Users need only prescribe the sample sizes, by one of two ways provided in the first box,

i.e., total sample size + fraction of cases, or number of cases + number of controls.

Statistical power of familiar association tests, including the likelihood ratio test, chi-

square test, Welch’s t-test, and LR test for logistic regressions, have the same asymptotic

power curves (see the Section 4 for details). This common power limit is calculated as a

function of RAF and OR, and visualized as a heatmap in the OR-RAF diagram.

3.1.1 Adaptive and interactive display for exploring GWAS catalogs

We provide options for users to load and overlay findings reported in the NHGRI-EBI

GWAS Catalog (MacArthur et al., 2016), or upload data from other sources compliant with

the Catalog’s data format.

The initial sample sizes are dynamically adjusted, and automatically determined from

texts of the article reporting the user selected loci. Since the sampling structures are many

and varied across different studies, and no uniform reporting format is enforced in the

catalog, the initial sample sizes are best estimates from the extracted texts.

Information of the selected loci and the study is also dynamically displayed below the

diagram.
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Figure 2: Two studies where gross misalignment was identified. Left: Dominguez-Cruz
et al. (2018), right: Haryono et al. (2015). We reached out to the authors of the study
in the left panel (Dominguez-Cruz et al., 2018), who confirmed that this is the result of
a problem in the data curation process of the GWAS Catalog (Dominguez-Cruz, personal
communication). In particular, the RAF reported in the Catalog were based on all subjects
in the study, as opposed to only the control group, while the Catalog requires that RAF
be reported in the control group only. As a consequence, the RAFs are systematically
overestimated, shifting the reported findings to the right in the diagram. The study on the
right, though may very well be valid, calls for further scrutiny of its statistical methodologies
given the apparent incongruity of its conclusions at the reported the sample sizes.

3.1.2 An example: forensics of existing studies

The unified power analysis allows us to examine results from different studies employing

different models and applicable tests, in the same diagram, with the same power limits. It

allows for a systematic review of reported findings for their statistical validity.

In particular, a reported association predicted to have low power given the study’s

sample size – lying in the dark regions of the OR-RAF diagram – while not impossible,

invites further scrutiny.

It should be noted that a reported association predicted to have high power is not

automatically accurate, as survival bias induced by multiple testing may inflate the reported

OR and RAF estimates.

Studies where reported associations show misalignment with the predicted powered

curves may be further investigated for potential problems in the data curation process.

The following figure shows one such study, where gross misalignment was identified.

In general, we expect this aspect of our software to be useful for discovering problems
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with data entry and catalog curation process, as well as for assessing the reproducibility

and robustness of reported findings.

3.2 Designing association studies

The “Design my studies” tab of the application provides a tool for finding optimal designs

of association studies. The tool requires inputs in a four-step process.

1. Model specification.

2. Sample size constraints specification.

3. False discovery Criteria specification.

4. Target power specification.

Each of the steps can be specified in a number of alternative ways.

3.2.1 Model specification

We provide two three ways to describe the model for biological process of the disease or

trait of interest.

As outlined in Section 2, the distribution of observations can be specified through the

canonical parameters, risk allele frequency in the control group (f) and odds ratio (R).

Estimates for these quantities in previous studies of the same trait can be found in GWAS

catalogs such as the NHGRI-EBI Catalog. See Section 2 for their definitions.

Alternatively, users may opt to specify through the disease models, of which we imple-

ment the four most popular ones: additive, multiplicative, dominant, and recessive. See

Section 1 for the definitions of the quantities involved in the disease models. We remind

users the difference between the risk allele frequency in the control group (f) versus risk

allele frequency in the general population (p); only the latter is used in the disease model

specifications.

Advanced users may choose to use a more succinct “signal size per sample” option,

which directly parametrizes the signal sizes (λ/n). Details can be found in Section 6.

3.2.2 Sample size specifications

The second step requires users input the sample size constraints of the study. The three

available options are “Budget / total number of subjects”, “Number of cases”, and “Fraction

of cases”. In the subsequent calculations, the selected and specified quantities are treated

as fixed. With only one unknown parameter left in the flow of power calculations (recall the
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flowchart in Fig. 1), we calculate power as a function of the remaining specified parameter.

In particular,

• If the constraint is total budget, power is shown as a function of the fraction of cases.

• If the constraint is number of cases, power is shown as a function of the number of

controls.

• If the constraint is fraction of cases, power is shown as a function of the total number

of subjects.

3.2.3 Type I and Type II errors specifications

The final two steps require as input the desired level of false discovery and false non-discovery

control. Both specification can be done through the marginal levels, i.e., Type I error and

Type II error, or alternatively, through the multiple testing-adjusted levels, i.e., family-wise

error rate (FWER) and family-wise non-discovery rate (FWNR).

3.2.4 An example: designing prospective studies

A researcher wishes to find out how many controls are needed in order to detect an associ-

ation between a risk variant described by a multiplicative model with parameters:

RGG = 1.2, p = 0.3, Prev = 0.1.

The study has recruited 1000 subjects in the case group, and is aiming for power of 80%

with FWER controlled at 5% level adjusted for the multiplicity of 106 tests.

In the application, we input the disease model parameters in the first step. In the second

step, we select the sample size constraint as “number of cases” and set to 1000. The third

step, we selected FWER as the criteria, and set the appropriate levels and multiplicity; a

p-value cut off (0.05/106 = 5 × 10−8) is automatically calculated and displayed. The final

step, we choose “Type II error / (1-power)” as the target and select 1− 80% = 20%.

The result of the calculation shows that the targeted power cannot be achieved at

the current number of cases, no matter how many controls are recruited. Therefore, the

researcher should consider recruiting more subjects in the case group in order to in crease

power. For example, if there are instead 4000 subjects in the case group, then we would

need only roughly 4929 controls in order to achieve the desired level of power.
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3.3 Converting disease models into canonical parametrization

The “Disease model converter” tab of the application provides a tool for converting disease

models into their implied canonical parameters.

The converter implements the mapping from disease models to the canonical parameters

as detailed in Section 2 and illustrated in Figure 1. The tool also allows users to copy the

model parameters into the “Design my study” tab for power calculations. Several numerical

examples, discussed in Section 2, are provided in the tool.

4 Unified asymptotic analysis of power

In genetic association studies, researchers have the freedom to choose their favorite statisti-

cal procedure to perform hypothesis tests with the data collected. In this section, we answer

the natural question that arises: does the choice of statistical test influence the power of

scientific discovery?

It turns out, perhaps unsurprisingly, that most common association tests have asymp-

totically equivalent power. We shall quantify this shared power limit, and provide practical

formulas for power calculations.

4.1 A model-invariant parametrization

In association studies for qualitative traits, counts of subjects in each phenotype-genetic

variant combination are tabulated in the form of a contingency table. For a 2-allele-variant-

by-2-phenotype definition, we have the following table of counts.

Genotype

# Observations Variant 1 Variant 2 Total by phenotype

Cases O11 O12 n1

Controls O21 O22 n2

Statistics are then calculated based on the counts, to test for associations between

the genotypes and phenotypes, at levels adjusted for multiplicity. Performance of a test

is measured in terms of power, i.e., probability of correct rejection under an alternative

hypothesis.

As we have seen in Section 2, power analysis typically starts by assuming an alternative

distribution, typically (though not necessarily) described by a disease model. Power of a test

is approximated either based on large sample asymptotics, or by simulating the empirical

distribution of the statistic under the alternative.

Recall the 2-by-2 multinomial distributions with probability matrix µ = (µij)2×2,
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Allele type

Prob. in study Risk allele Non-risk allele Total by phenotype

Cases µ11 µ12 φ = µ11 + µ12

Controls µ21 µ22 1− φ = µ21 + µ22

We may assume – by relabelling, and hence without loss of generality – that allele

Variant 1 is positively associated with the Cases, and referred to as the risk allele/variant.

The multinomial probability matrix µ can be fully parametrized by the parameter triple:

• Fraction of Cases φ, i.e., marginal distribution of phenotypes.

• Conditional distribution of risk variant among Controls, i.e., risk allele frequency

(RAF) in the Control group

f := µ21/(1− φ). (9)

• Odds ratio (OR) of the allele Variant 1 to Variant 2

R :=
µ11
µ21

/µ12
µ22

=
µ11µ22
µ12µ21

. (10)

An alternative hypothesis, e.g., a disease model, determines the canonical parameters

(f,R) implicitly, and therefore fully determines statistical power for a specific test at given

sample sizes. Alternatively, power can also be calculated by directly prescribing the canon-

ical parameters and the sample sizes.

It is worth pointing out that while disease models play no role beyond specifying the al-

ternative, they do sometimes inform our choice of a test statistic, hence influencing statistical

power in higher order contingency tables. These tests include, e.g., the Cochran-Armitage

test, and variations thereof; see González et al. (2008); Li et al. (2008) for further examples

where tests are tailored to disease models.

We make the important distinction between RAF in the Control group (f), versus RAF

in the study (µ11 + µ21), and RAF in the general population (p). In the following sections,

unless otherwise stated, RAF will refer to the risk allele frequency in the Control group,

consistent with the reporting standards of the NHGRI-EBI Catalog (MacArthur et al.,

2016).

4.2 Conditional vs unconditional tests

Readers familiar with the underlying assumptions of association tests in contingency tables

may have noticed that we have described a multinomial distribution of the cell counts. That

is, we have only conditioned on the total number of observations in the study. This is indeed
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the assumption behind tests such as (the original, unconditional version of) the likelihood

ratio test, and the Person chi-square test.

It is not, however, the assumption behind some other tests. For example, analysis of

t-tests typically assumes the observed number in each arm of the study are given. That is,

we would condition on the phenotype marginals when comparing the proportions of genetic

variants among the Cases and Controls. It is perhaps an assumption most close to reality,

where the number of samples collected in each arm of the study are pre-determined. In

this case, we have two binomial observations, Binom(n1, p1) and Binom(n2, p2), instead of

a multinomial observation.

Allele type

Cond. Prob. Variant 1 Variant 2 Counts by phenotype

Cases p1 1− p1 n1

Controls p2 1− p2 n2

RAF and OR can be similarly defined,

• Marginal distribution of Cases, fixed at φ := n1/(n1 + n2),

• Risk allele frequency (RAF) in the Control group is the synonymous with the condi-

tional distribution of risk variant among Controls,

f := p2,

• Odds ratio (OR)

R :=
p1φ

p2(1− φ)

/ (1− p1)φ
(1− p2)(1− φ)

=
p1(1− p2)
(1− p1)p2

.

Alternative hypotheses may be formed as in the multinomial case with parameters φ, f and

R, along with the total samples size.

Finally, we mention the assumptions behind the Fisher’s exact test. The Fisher exact

test conditions on the number of observations of both the phenotype variants and genetic

variants, leading to a hypergeometric distribution of the first cell count O11 given the

marginals n1, n2, and O11 +O21, under the null hypothesis. We found no easy parametriza-

tions of alternative hypotheses under this framework. Indeed, existing power calculations

for Fisher’s exact test resort to simulations under the two-binomial assumptions (Smyth

et al., 2017).

We refer interested readers to the recent work by Ripamonti et al. (2017) and Choi

et al. (2017) which elucidate the controversies regarding the choices of conditioning when

performing statistical inferences on 2-by-2 contingency tables. We do not attempt to resolve
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the controversies in this work. Our goal is to state clearly the assumptions behind the tests,

and show the asymptotic equivalence in terms of power, under their respective assumptions.

4.3 A test-independent power analysis

We now present the main result allowing a unified power analysis, applicable for a wide

range of common association tests in 2-by-2 tables.

If we consider a fixed parameter values of (f,R) under the alternative, no matter how

close to the null, the probability of rejection of the null hypothesis by any reasonable test

should approach one as sample size increases (n→∞). On the other hand, the probability

of rejection is less than one in finite samples, making this type of asymptotics useless for

approximation.

Therefore, in order to find finer approximations of power, we study alternatives close

to the null. In particular, we take a sequence of alternatives approaching a limit point in

the null space, in the hope that limiting rejection probability is between 0 and 1. It turns

out – see, e.g., Ferguson (2017) Chapter 10, and Lehmann (2004) Chapter 5 – that the

appropriate rate at which the alternatives should shrink towards the limit point is 1/
√
n.

Under the multinomial assumption, let µ(0) be the probability matrix of the (indepen-

dent) 2-by-2 multinomial distribution, with marginals (θ, 1 − θ) for the genetic variants,

and marginals (φ, 1 − φ) for the phenotypes. We require that θ ∈ (0, 1) and φ ∈ (0, 1) be

bounded away from 0 and 1. Let µ = µ(n) be the sequence of alternatives such that

√
n(µ(n) − µ(0))→ δ

(
1 −1

−1 1

)
, (11)

where δ is a positive constant.

Equivalently, under the two-binomial assumption, let p
(0)
1 = p

(0)
2 = θ be the null hypoth-

esis, with fixed marginals (φ, 1− φ) for the phenotypes. Let (p1, p2) = p(n) be the sequence

of alternatives such that

√
nφ(p1 − θ)→ δ and

√
n(1− φ)(p2 − θ)→ −δ, (12)

where δ is a positive constant. It is easy to see that with the same δ the two sequences of

alternatives have the same RAF and OR, and therefore have the same expected number of

observations in each cell.

Theorem 1. In 2-by-2 contingency tables, under the assumption that the counts in the

contingency table follow the multinomial distributions.

• The likelihood ratio test for independence,
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• the likelihood ratio test for zero slope in logistic regressions,

• Person’s chi-squared test for Independence,

and under the assumption that counts in the contingency table follow the two binomial

distributions,

• the two-sided Welch’s t-test for equal proportions

have the same asymptotic power curves. Specifically, for the sequence of alternatives defined

in (11) and (12), all of the listed tests, at level α, have statistical powers converging to

P[χ2(λ) ≥ qα], (13)

where qα is the upper α quantile of the central chi-square distribution, and χ2(λ) is a non-

central chi-square distribution with non-centrality parameter

λ = δ2/(θ(1− θ)φ(1− φ)). (14)

The proof of Theorem 1 is detailed in Section 6 below.

Theorem 1 is the central result that paves the way for a unified power analysis. It

allows us to chart findings from different studies employing the applicable tests in the same

diagram, with the same power limits. In particular, for large samples, tests for zero slopes

in logistic regressions should report approximately the same set of loci as Welch’s t-tests for

equal proportions on the same dataset, after the same family-wise error rate adjustments.

The estimated odds ratios (in the case of logistic regression, estimate slopes exponentiated)

and RAF’s, when charted on the OR-RAF diagram, should also follow the same power

limits.

To use this result for power calculations, we start with an alternative hypothesis, defined

by the canonical parameters (f,R), and sample sizes (φ, n).

Allele type

Probabilities Variant 1 Variant 2

Cases fRφ/(fR+ 1− f) (1− f)φ/(fR+ 1− f)

Controls f(1− φ) (1− f)(1− φ)

Elementary algebra yields θ = fRφ/(fR+ 1− f) + f(1 − φ), and δ =
√
n(θ − f)(1 − φ).

If tests are based on allele type counts, accounting for the fact that each genetic location

has a pair of alleles, the effective sample sizes should be doubled, and the appropriate non-

centrality parameter becomes δ =
√

2n(θ − f)(1 − φ). Power may then be approximated

using the formula in (13).
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5 Finite-sample corrections

The result of our power calculations above are only accurate to the extend that the asymp-

totic approximations are applicable. In practice, of course, we have only finite samples, and

the asymptotic approximations no longer hold when cell counts are low. While existing

tools have completely ignored this issue, we offer here a simple correction in finite samples

by resorting to exact tests.

Specifically, we calculate the minimum number of observations of the genetic variants

needed for Fisher’s exact test to be correctly calibrated, referred to as the minimum

calibration numbers. As we shall see in simulations in Section 7, they provide a useful

lower bound on the variant counts necessary for any asymptotic approximations to apply.

For a contingency table with marginal phenotype counts (n1, n2), and marginal genetic

variant counts (m1,m2), we calculate the p-values of the most extreme observations accord-

ing to Fisher’s exact test. For rare risk alleles, this corresponds to the following table.

Allele type

# Observations Variant 1 Variant 2 Counts by phenotype

Cases m1 n1 −m1 n1

Controls 0 n2 n2

If the p-values do not fall below the desired type I error threshold, then the rejection region

(for O11) must lie beyond m1. Under the fixed marginal assumptions of Fisher’s exact test,

no contingency tables with the given marginals can be rejected at the specified level. In

other words, we have given up all power to achieve proper type I error control. Therefore,

the minimum counts needed for the risk allele count must exceed m1, in order for association

tests to have any power.

For rare non-risk alleles, the most extreme observation corresponds to the following

table.

Allele type

# Observations Variant 1 Variant 2 Counts by phenotype

Cases n1 0 n1

Controls n2 −m2 m2 n2

We can similarly determine the minimum number of non-risk allele counts needed to achieve

non-zero power at the given type I error target, for a given phenotype marginals (n1, n2).

For correctly calibrated tests, an alternative hypothesis with expected variant counts less

than the minimum calibration numbers should have power close to zero; asymptotic power

approximations do not apply for these alternatives. We correct the asymptotic approxima-

tions laid out in Section 4.3 by setting the predicted statistical power for alternatives in

this “rare-variant zone” to zero.
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In the web-based application U-PASS, we mark the “rare-variant zone” with red dashed

lines in the OR-RAF diagram. We also provide options for users to specify the rare-variant

threshold by absolute number of counts, or as a fraction of the total number of subjects.

6 Proof of Theorem 1

6.1 Asymptotic equivalence of likelihood ratio tests and the chi-square

test

The asymptotic equivalence of the likelihood ratio (LR) test and the chi-square test in 2-

by-2 tables can be found in standard texts on asymptotic theory. See, e.g., Ferguson (2017)

Chapter 10 and Chapter 24, and Lehmann (2004) Chapter 5; see also, Hunter (2002) for an

accessible derivation of the formula (14).

Recall the likelihood ratio statistic in LR test

LR =
supµ∈H1

L(µ)

supµ∈H0
L(µ)

.

where H0 is the set of independent probabilities, and H1 all valid 2-by-2 multinomial prob-

abilities. To see the asymptotic equivalence with the LR statistic under logistic regressions

with binary predictors, we reparametrize the likelihood as

L(µ) = µO11
11 µO12

12 µO21
21 (1− µ11 − µ12 − µ21)O22

= φn1(1− φ)n2pO11
1 (1− p1)O12pO21

2 (1− p2)O22

where we have omitted the multinomial coefficient. In the latter parametrization, it is

easy to show that the maximizers are φ̂ = n1/n, p̂1 = O11/n1, and p̂1 = O21/n2 under

the alternative, and φ̂ = n1/n, p̂1 = p̂1 = (O11 + O21)/n under the null. Therefore, the

terms involving φ cancels in the LR statistic, and the LR statistic coincides with the logistic

regressions likelihood ratio, where p1 and p2 are further reparametrized as

p1 = exp (β0 + β1)/(1 + exp (β0 + β1)),

p2 = exp (β0)/(1 + expβ0).

Hence, the logistic regressions likelihood ratio follows the same distribution as in the original

likelihood ratio test. Notice that this is not an immediate consequence of the invariance

property of the likelihood ratio tests. Rather, it follows because n1, n2 are ancillary for

inference of the odds ratios.
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6.2 Asymptotic equivalence with Welch’s t-test

We now work with the two-binomial assumption, conditioning on the phenotype marginals

n1, n2, and show that Welch’s t-test has asymptotically the same power. Recall the Welch

t-statistic

t =
p̂1 − p̂2√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

, (15)

where p̂1 = O11/n1 and p̂2 = O21/n2. By the (Lindeberg-Feller) central limit theorem, for

the sequence of alternatives defined in (12) we have

√
ni(p̂i − pi)

/√
pi(1− pi)⇒ N(0, 1), for i = 1, 2.

and therefore, by independence of the two binomial distributions, we have

t− (p1 − p2)
/√p1(1− p1)

n1
+
p2(1− p2)

n2
⇒ N(0, 1). (16)

By the definition of the alternatives in (12), we know that

√
n(p1 − p2)→ δ/(φ(1− φ)). (17)

On the other hand, for the denominator, we have

√
n

√
p1(1− p1)

n1
+
p2(1− p2)

n2
∼

√
p1(1− p1)

φ
+
p2(1− p2)

1− φ

=

(
(θ +O(1/

√
n))(1− θ +O(1/

√
n))

φ
+

(θ +O(1/
√
n))(1− θ +O(1/

√
n))

1− φ

)1/2

∼
√

(θ(1− θ))/(φ(1− φ)). (18)

Dividing (17) by (18), in view of (16), we conclude that the centers of the distribution of t

converges to

δ/
√
θ(1− θ)φ(1− φ),

which is precisely the square root of the non-centrality parameter in (14). Finally, the

conclusion in Theorem 1 follows from the fact that the square of a normal distribution with

mean
√
λ is equal in distribution to a chi-square distribution with non-centrality parameter

λ.
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7 Numerical illustrations

We examine the accuracy of the asymptotic approximations in Theorem 1 in finite samples,

and of the correction by minimum calibration number introduced in Section 5, via numerical

simulation.

7.1 Power as a function of the sample sizes

We compare the theoretical predictions with empirical power of the following tests

• Fisher’s exact test

• Welch’s t-test

• Pearson’s chi-square test

• Likelihood ratio test, and

• LR test with logistic regression.

Theses tests are performed on data simulated from the two-binomial model at following

ranges of parameter values:

• Sample size total, n: 100, 150, 200, 300, . . . , 900, 1000, 1500, 2000, . . ., up to 105,

• Fraction of cases in the study, φ: 15%, 25%, 35%, 50%, 85%,

• Risk allele frequencies in the control group, f : 0.01%, 0.1%, 1%, 10%, 50%, 90%,

• Odds ratio, R: 1.05, 1.1, 1.2, 1.5, 3.0.

• p-value cutoffs: 5× 10−5, 5× 10−8.

Each of the 41×5×6×5×2 parameter value combinations was simulated 200 times. In the

interest of space, only the results for p-value cutoff at 5×10−8, and odds ratios 1.05, 1.1, 1.5

are visualized. The figures are organized by increasing fraction of cases in the study φ, in

Figures 3 to 7.

Each design (and test) were examined under small to moderate odds ratios (left to right

panels), and under rare to common risk allele frequencies (top to bottom panels). The

Fisher’s exact test (black circles), Welch’s t-test (red triangles), Pearson’s chi-square test

(blue crosses), Likelihood ratio test, and equivalently, LR test with logistic regression (light

blue diamonds) are compared against the theoretical predictions (purple nabla).

The accuracy of the theoretical predictions will be commented in Section 7.3.
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Figure 3: Empirical power as a function of sample sizes, under small to moderate odds ratios
(left to right panels), and under rare to common risk allele frequencies (top to bottom
panels). The Fisher’s exact test (black circles), Welch’s t-test (red triangles), Pearson’s
chi-square test (blue crosses), Likelihood ratio test, and equivalently, LR test with logistic
regression (light blue diamonds) are almost identical to the theoretical predictions (purple
nabla), at sample sizes ranging from 100 to 100,000. Fraction of cases φ = 15%.
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Figure 4: Empirical power as a function of sample sizes, under small to moderate odds ratios
(left to right panels), and under rare to common risk allele frequencies (top to bottom
panels). The Fisher’s exact test (black circles), Welch’s t-test (red triangles), Pearson’s
chi-square test (blue crosses), Likelihood ratio test, and equivalently, LR test with logistic
regression (light blue diamonds) are almost identical to the theoretical predictions (purple
nabla), at sample sizes ranging from 100 to 100,000. Fraction of cases φ = 25%.
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Figure 5: Empirical power as a function of sample sizes, under small to moderate odds ratios
(left to right panels), and under rare to common risk allele frequencies (top to bottom
panels). The Fisher’s exact test (black circles), Welch’s t-test (red triangles), Pearson’s
chi-square test (blue crosses), Likelihood ratio test, and equivalently, LR test with logistic
regression (light blue diamonds) are almost identical to the theoretical predictions (purple
nabla), at sample sizes ranging from 100 to 100,000. Fraction of cases φ = 35%.
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Figure 6: Empirical power as a function of sample sizes, under small to moderate odds ratios
(left to right panels), and under rare to common risk allele frequencies (top to bottom
panels). The Fisher’s exact test (black circles), Welch’s t-test (red triangles), Pearson’s
chi-square test (blue crosses), Likelihood ratio test, and equivalently, LR test with logistic
regression (light blue diamonds) are almost identical to the theoretical predictions (purple
nabla), at sample sizes ranging from 100 to 100,000. Fraction of cases φ = 50%.
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Figure 7: Empirical power as a function of sample sizes, under small to moderate odds ratios
(left to right panels), and under rare to common risk allele frequencies (top to bottom
panels). The Fisher’s exact test (black circles), Welch’s t-test (red triangles), Pearson’s
chi-square test (blue crosses), Likelihood ratio test, and equivalently, LR test with logistic
regression (light blue diamonds) are almost identical to the theoretical predictions (purple
nabla), at sample sizes ranging from 100 to 100,000. Fraction of cases φ = 85%.
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7.2 Power as a function of the canonical parameters

To fully explore the accuracy of the theoretical predictions, we extend the simulation to a

wider range of model parameters.

• Sample size total, n: 102, 103, 104, 105,

• Fraction of cases in the study, φ: 5%, 15%, 25% 50%, 85%,

• Risk allele frequencies in control group, f : a grid of 100 values ranging from 0.01%

to 99.5%. The values are non-regularly spaced; more values are selected towards the

end points of the interval (0, 1).

• Odds ratio, R: a grid of 100 values ranging from 1 to 100. The values are regularly

spaced on the log-scale.

• p-value cutoffs: 5× 10−5, 5× 10−8.

Each of the 4× 4× 100× 100× 2 parameter value combinations were simulated 1000 times.

We compare the theoretical results with powers of Fisher’s exact test obtained by sim-

ulations. We choose to compare against exact tests for their superior performance in finite

samples — while approximate tests like the chi-square test and likelihood ratio tests may

fail to protect against type I error inflation when sample sizes are small, exact tests maintain

the correct levels.

The results for p-value cutoff at 5×10−8 are visualized in the form “OR-RAF diagrams”

to better highlight settings under which the theoretical predictions and the empirical powers

differ.

The results are shown in Figures 8 to 12, organized by increasing fraction of cases in the

study φ. Left columns of the figures show the theoretical predictions obtained by Theorem

1, the middle columns shows the estimated powers from simulation, and the right columns

visualize their differences. Sample sizes ranging from 100 to 100, 000 are arranged from top

to bottom in each figure.

7.3 Accuracy of theoretical predictions

We find that the asymptotic approximations in Theorem 1 to be robust for small to moderate

odds ratios (R < 2), as seen in all simulation studies (see Figures 3 to 12).

The theoretical approximations are extremely accurate (within 1 percentage point in

absolute deviations) for balanced designs, even at very small sample sizes (see Figure 11),

as well as in settings with moderately more controls than controls at large sample sizes (see

Figures 9 and 10, n = 100, 000). Some discrepancies can be seen under designs with too
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Figure 8: Statistical powers for the OR-RAF combinations, obtained from theoretical pre-
dictions (left column) and by simulations (middle column). Their absolute differences (right
column) are shown at sample sizes ranging from 100 to 100, 000 (top to bottom). p-value
threshold is at 5× 10−8. Fractions of cases φ = 5%.
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Figure 9: Statistical powers for the OR-RAF combinations, obtained from theoretical pre-
dictions (left column) and by simulations (middle column). Their absolute differences (right
column) are shown at sample sizes ranging from 100 to 100, 000 (top to bottom). p-value
threshold is at 5× 10−8. Fractions of cases φ = 15%.
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Figure 10: Statistical powers for the OR-RAF combinations, obtained from theoretical
predictions (left column) and by simulations (middle column). Their absolute differences
(right column) are shown at sample sizes ranging from 100 to 100, 000 (top to bottom).
p-value threshold is at 5× 10−8. Fractions of cases φ = 25%.
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Figure 11: Statistical powers for the OR-RAF combinations, obtained from theoretical
predictions (left column) and by simulations (middle column). Their absolute differences
(right column) are shown at sample sizes ranging from 100 to 100, 000 (top to bottom).
p-value threshold is at 5× 10−8. Fractions of cases φ = 50%.
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Figure 12: Statistical powers for the OR-RAF combinations, obtained from theoretical
predictions (left column) and by simulations (middle column). Their absolute differences
(right column) are shown at sample sizes ranging from 100 to 100, 000 (top to bottom).
p-value threshold is at 5× 10−8. Fractions of cases φ = 85%.
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few cases (see Figure 8) as well as too few controls (see Figure 12), although the differences

vanish as the sample sizes increase.

Fraction of cases φ
sample size n 5% 15% 25% 50% 85%

100 4.61 (0.15) 2.39 (0.08) 1.44 (0.05) 0.78 (0.02) 2.00 (0.07)
1, 000 5.00 (0.15) 3.37 (0.10) 2.35 (0.7) 1.03 (0.03) 3.44 (0.10)
10, 000 4.73 (0.14) 3.06 (0.09) 1.98 (0.07) 0.50 (0.02) 2.43 (0.08)
100, 000 1.74 (0.07) 0.73 (0.03) 0.43 (0.02) 0.18 (0.01) 0.88 (0.04)

Table 1: Mean absolute deviations in percentage points between the theoretical predictions
and the simulated results, with standard errors in brackets. The p-values threshold are set
at 5× 10−8.

In general, the mismatch between the theoretical predictions and empirical power only

takes place at small sample sizes, and only for large odds ratios (R > 3). For small odds

ratios, numerical experiments suggest that our power calculations are robust across a wide

range of case-control ratios and sample sizes.

Theoretical predictions for p-value cutoff at 5 × 10−5 are up to 20% more accurate

than for p-value cutoff at 5 × 10−8, but qualitatively similar. For example, the average

absolute deviation for unbalanced designs (φ = 15%) at sample size n = 100, 000 is only

0.57 percentage points for p-value cutoff at 5×10−5, down from 0.73 percentage points when

p-value cutoff is at 5×10−8. The same metric improves to 0.16, down from 0.18 percentage

points, for balanced designs (φ = 50%) at the same sample sizes. In the interest of space,

we only show the more challenging cases where the p-value cutoffs are set at 5× 10−8.

For sample sizes beyond 100, 000 (not reported), we find the empirical power to be

almost indistinguishable from theoretical predictions.
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