SUPPLEMENTAL INFORMATION

Automatic local resolution-based sharpening of cryo-EM maps

Erney Ramírez-Aportela ${ }^{\text {a, }, \tau_{,}^{*}}$, Jose Luis Vilas ${ }^{\mathrm{a}, \uparrow}$, Alisa Glukhova ${ }^{\mathrm{b}}$, Roberto Melero ${ }^{\text {a }}$, Pablo Conesa ${ }^{\text {a }}$, Marta Martínez ${ }^{\text {a }}$, David Maluenda ${ }^{\text {a }}$, Javier Mota ${ }^{\text {a }}$, Amaya Jiménez ${ }^{\text {a }}$, Javier Vargas ${ }^{\text {c }}$, Roberto Marabini ${ }^{\text {d }}$, Patrick M. Sexton ${ }^{\text {b,e }}$, Jose Maria Carazo ${ }^{\text {a, },}{ }^{*}$, Carlos Oscar S. Sorzano ${ }^{\text {a,f, },{ }^{*}}$ ${ }^{\text {a }}$ Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Univ. Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.

${ }^{\mathrm{b}}$ Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Victoria, Australia.
${ }^{c}$ Dept of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Canada.
${ }^{\mathrm{d}}$ Univ. Autónoma de Madrid, Campus Univ. Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
${ }^{\mathrm{e}}$ School of Pharmacy, Fudan University, Shanghai 201203, China.
${ }^{f}$ Univ. CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
${ }^{\dagger}$ These two authors have equally contributed to this work.
*Correspondence should be addressed to E.R-A. (erney.ramirez@gmail.com), J.M.C. (carazo@cnb.csic.es) and C.O.S.S. (coss@cnb.csic.es).

Convolution as a matrix multiplication

Here is a simplified example of the convolution of two matrices, with a small size of (3x3) kernel h and the (5x5) input signal x. So we have a 2D input x and 2D kernel h and we want calculate the convolution $y=h^{*} x$. For simplicity of notation we present the nature of the matrix H with this simplified 2D example, but the same ideas could be written for 3D convolutions.

The input signal x can be represented as a vector in lexicographic order, as represented below and it is possible to convert h into a Toeplitz matrix H and compute the matrix-matrix product between H and X .

$$
\mathrm{x}=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{16} & x_{17} & x_{18} & x_{19} & x_{20} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25}
\end{array}\right) \Rightarrow \mathrm{X}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8} \\
x_{9} \\
x_{10} \\
x_{11} \\
x_{12} \\
x_{13} \\
x_{14} \\
x_{15} \\
x_{16} \\
x_{17} \\
x_{18} \\
x_{19} \\
x_{20} \\
x_{21} \\
x_{22} \\
x_{23} \\
x_{24} \\
x_{25}
\end{array}\right)
$$

$\mathrm{h}=\left(\begin{array}{lll}h_{-1,-1} & h_{-1,0} & h_{-1,1} \\ h_{0,-1} & h_{0,0} & h_{0,1} \\ h_{1,-1} & h_{1,0} & h_{1,1}\end{array}\right) \Rightarrow H=$
$\left(\begin{array}{cccccccccccc}h_{0,0} & h_{0,1} & 0 & 0 & 0 & h_{1,0} & h_{1,1} & 0 & 0 & 0 & 0 & 0 \\ h_{0,-1} & h_{0,0} & h_{0,1} & 0 & 0 & h_{1,-1} & h_{1,0} & h_{1,1} & 0 & 0 & 0 & 0 \\ 0 & h_{0,-1} & h_{0,0} & h_{0,1} & 0 & 0 & h_{1,-1} & h_{1,0} & h_{1,1} & 0 & 0 & 0 \\ 0 & 0 & h_{0,-1} & h_{0,0} & h_{0,1} & 0 & 0 & h_{1,-1} & h_{1,0} & h_{1,1} & 0 & 0 \\ 0 & 0 & 0 & h_{0,-1} & h_{0,0} & 0 & 0 & 0 & h_{1,-1} & h_{1,0} & 0 & 0 \\ h_{-1,0} & h_{-1,1} & 0 & 0 & 0 & h_{0,0} & h_{0,1} & 0 & 0 & 0 & h_{1,0} & h_{1,1} \\ h_{-1,-1} & h_{-1,0} & h_{-1,1} & 0 & 0 & h_{0,-1} & h_{0,0} & h_{0,1} & 0 & 0 & h_{1,-1} & h_{1,0} \\ 0 & h_{-1,-1} & h_{-1,0} & h_{-1,1} & 0 & 0 & h_{0,-1} & h_{0,0} & h_{0,1} & 0 & 0 & h_{1,-1} \\ 0 & 0 & h_{-1,-1} & h_{-1,0} & h_{-1,1} & 0 & 0 & h_{0,-1} & h_{0,0} & h_{0,1} & 0 & 0 \\ 0 & 0 & 0 & h_{-1,-1} & h_{-1,0} & 0 & 0 & 0 & h_{0,-1} & h_{0,0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & h_{-1,0} & h_{-1,1} & 0 & 0 & 0 & h_{0,0} & h_{0,1} \\ 0 & 0 & 0 & 0 & 0 & h_{-1,-1} & h_{-1,0} & h_{-1,1} & 0 & 0 & h_{0,-1} & h_{0,0} \\ 0 & 0 & 0 & 0 & 0 & 0 & h_{-1,-1} & h_{-1,0} & h_{-1,1} & 0 & 0 & h_{0,-1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{-1,-1} & h_{-1,0} & h_{-1,1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{-1,-1} & h_{-1,0} & h_{-1,0} & h_{-1,1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{-1,-1} & h_{-1,0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{-1,-1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & & & & 0 & & & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}\right)$

 $005_{5}^{5} 5005^{1} 0^{5} 5^{5} 005_{5}^{5} 5^{5} 0000000000$
 $5^{5} 5^{5} 000^{3} 5^{3} 005^{3} 5^{3} 000000000000$
 $0000^{\frac{1}{2}} 0005^{5} 000000000000000$
 $0 \frac{7}{0} 00^{5} 005^{5} 5^{5} 0000000000000000$

The matrix product HX is equal to the convolution results:

The output vector can be reshaped into a 2D form. This is the same result that would be obtained by making a sliding window of h over x .

$$
\left(\begin{array}{ccc}
h_{-1,-1} & h_{-1,0} & h_{-1,1} \\
h_{0,-1} & h_{0,0} & h_{0,1} \\
h_{1,-1} & h_{1,0} & h_{1,1}
\end{array}\right) *\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{16} & x_{17} & x_{18} & x_{19} & x_{20} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25}
\end{array}\right)=\left(\begin{array}{ccccc}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} \\
y_{6} & y_{7} & y_{8} & y_{9} & y_{10} \\
y_{11} & y_{12} & y_{13} & y_{14} & y_{15} \\
y_{16} & y_{17} & y_{18} & y_{19} & y_{20} \\
y_{21} & y_{22} & y_{23} & y_{24} & y_{25}
\end{array}\right)
$$

Transpose filters

Given a filter operation described by a matrix multiplication $\mathrm{Y}=\mathrm{HX}$, the matrix H is Toeplitz and square (assuming that the output is kept at the same size as the input). This filter can be described in terms of the 2D signals

$$
y(\boldsymbol{r})=h(\boldsymbol{r}) * x(\boldsymbol{r})
$$

It can be easily proven that the filter $\mathrm{Y}=\mathrm{H}^{\mathrm{T}} \mathrm{X}$ corresponds to the filtering with a symmetrized version of the filter

$$
y(\boldsymbol{r})=h(-\boldsymbol{r}) * x(\boldsymbol{r})
$$

If the filter is even, like a Gaussian filter, for instance, then $h(-\boldsymbol{r})=h(\boldsymbol{r})$ and the transpose filter fulfills $\mathrm{H}^{\mathrm{T}}=\mathrm{H}$, that is, applying the same filter again.

Raised cosine filter

In our approach we apply a filter bank to the map $v_{s h}$. Each filter in the bank is a bandpass filter centered at frequency ω_{i}, and represented by a matrix H^{i}. The filter bank consists of a set of raised cosine filters that cover the frequencies range corresponding to the minimum and maximum resolution determined for the input map, and distributed every $0.2 \AA$ of resolution. Each raise cosine filter is defined by:

$$
h_{i}(\omega)=\left\{\begin{array}{cc}
\frac{1}{2}\left(1+\cos \left(\frac{\pi}{\delta}\left(\omega_{i}-\omega\right)\right)\right) & \omega_{i}-\delta \leq \omega<\omega_{i}+\delta \\
0 & \text { otherwise }
\end{array}\right.
$$

where δ is the width of the transition band (in our experiments we chose $\delta=\omega_{\delta}-\omega_{i}$; where $\omega_{\delta}=1 /\left(R_{i}-0.2\right)$). Note that the formula above is defined only for positive frequencies $(\omega>0)$. The filter in real space is real-valued and consequently for the negative frequencies it is defined as $h_{i}(-\omega)=h_{i}^{*}(\omega)$. Note also that the definition of the filter is one-dimensional, so that ω represents the norm of the 3D frequency coming from the 3D Fourier transform of the volume.

Supplementary Figure 1

Supplementary Figure 1.

Sharpened maps of Plasmodium falciparum 80S ribosome (EMD-2660). (A) The whole density map from 80 S ribosome is shown. The red frame corresponds to the density enlarged in panel B.
(B) Sharpened map of 80 S ribosome generated with LocalDeblur and comparison with the main sharpening methods (RELION post-processing, Phenix AutoSharpen and LocScale). Only the section corresponding to the red frame in A is shown. The RNA density is represented in blue and the amino acid density in yellow. Below each sharpened map, the density for 149-186 (chain-K) (left), and 3712-3727, 3761-3775 (chain-A) and 283-381 (chain-E) (right) residues are represented.

Supplementary Figure 2

Supplementary Figure 2.

Sharpened of low resolution map of L-20S (NSF/aSNAP/L-SNARE) complex (EMD-8944).

Supplementary Figure 3

Supplementary Figure 3.

Guinier plots for each sharpened map represented in Supplementary Figure 2 are shown. The profile corresponding to the density map generated from the atomic models (PDBs ID: 3j7a and ID: 3 j 79) is superimposed as a dashed line representing our "target result". Note how profiles obtained by LocalDeblur are very similar to the target ones.

Supplementary Table 1

TRPV1 ${ }^{\mathrm{a}}$ refinement statistics.

	EMDB	LocalDeblur	Phenix	RELION	LocScale	LocaIDeblur +LocScale
EMRinger score	2.16	4.12	3.89	3.66	3.40	3.83
Molprobity score	2.19	1.50	1.88	1.72	2.17	2.14
Clashscore	4.71	2.61	3.61	5.37	4.21	3.56
Ramachandran Favored (\%) allowed(\%)	93.16 6.84	93.13 6.87	92.83 7.17	93.49 6.51	93.81 Rotmers outliers (\%) CCmask	3.40

${ }^{\text {a }}$ ankyrin domain not included

